Mass Transfer: Diffusion

Semnan University, Chemical Engineering Department

Fick's First Law

Fluxes

$$_{v}J_{AZ} = -D_{AB} \frac{dC_{A}}{dz}$$

Flux relative to the volume average velocity

$${}_{M}J_{AZ} = -CD_{AB}\frac{dx_{A}}{dz}$$

Flux relative to the molar average velocity

$${}_{m}J_{AZ} = -\rho D_{AB} \frac{d\omega_{A}}{dz} \leftarrow$$

Flux relative to the mass average velocity

Semnan University, Chemical Engineering Department

Mass and molar concentrations

$$\rho_{\alpha} = \max_{N} \text{ scalar concentration of species } \alpha$$

 $\rho_{\alpha} = \sum_{\alpha=1}^{N} \rho_{\alpha} = \max_{\alpha} \text{ density of solution}$

 $\omega_{\alpha} = \frac{\rho_{\alpha}}{\rho} = \max_{\alpha} \text{ fraction of species } \alpha$

$$c_{\alpha} = \text{molar concentration of species } \alpha$$

 $c_{\alpha} = \sum_{\alpha=1}^{N} c_{\alpha} = \text{molar density of solution}$
 $x_{\alpha} = \frac{c_{\alpha}}{c} = \text{molar fraction of species } \alpha$

Semnan University, Chemical Engineering Department

Fick's First Law

v_i =velocity of the *ith* species wrt a stationary coordinate

Semnan University, Chemical Engineering Department

Mass average and molar averages velocity

Mass average velocity

Molar average velocity

Semnan University, Chemical Engineering Department

Molecular mass and molar fluxes

Molecular mass flux, with respect to

 stationary axes

$$n_{\alpha} = \rho_{\alpha} v_{\alpha}$$

– mass average velocity
$$j_{\alpha} = \rho_{\alpha} (v_{\alpha} - v)$$

- molar average velocity
$$j_{\alpha}^{*} = \rho_{\alpha} (v_{\alpha} - v^{*})$$

Semnan University, Chemical Engineering Department

Molecular mass and molar fluxes

- Molecular molar flux, with respect to
 - stationary axes

$$N_{\alpha} = c_{\alpha} v_{\alpha}$$

mass average velocity

$$\mathbf{J}_{\alpha} = \mathbf{c}_{\alpha} (\mathbf{v}_{\alpha} - \mathbf{v})$$

molar average velocity

$$\mathbf{J}_{\alpha}^{*} = \mathbf{c}_{\alpha} \left(\mathbf{v}_{\alpha} - \mathbf{v}^{*} \right)$$

Semnan University, Chemical Engineering Department

Summary of mass and molar fluxes

• Equivalent forms of Fick's law of binary diffusion

$$\begin{split} &j_A = -\rho D_{AB} \nabla \omega_A \\ &J_A^* = -c D_{AB} \nabla x_A \\ &n_A = \omega_A (n_A + n_B) - \rho D_{AB} \nabla \omega_A = \rho_A v - \rho D_{AB} \nabla \omega_A \\ &N_A = x_A (N_A + N_B) - c D_{AB} \nabla x_A = c_A v^* - c D_{AB} \nabla x_A \end{split}$$

Semnan University, Chemical Engineering Department

Flux relative to a stationary coordinate, N_A

For a binary system:

$$N_A = J_{AZ} + x_A (N_A + N_B)$$

Total flux of A relative to a stationary point

Diffusion flux of A relative to the moving fluid Convective flux of A relative to a stationary point

Semnan University, Chemical Engineering Department

Definition of transfer coefficients in one phase. Some examples

 Mass transfer across a plane boundary, drying of a saturated slab

Semnan University, Chemical Engineering Department

Diffusion Cases

Unimolar diffusion (Diffusion of A through stagnant, nondiffusing B)

$$N_A = \frac{CD_{AB}}{\Delta z} \ln \frac{1 - x_{A_2}}{1 - x_{A_1}}$$

Semnan University, Chemical Engineering Department

Diffusion Cases

Equimolar counter diffusion

$$N_{A} = -\frac{CD_{AB}}{\Delta z}(x_{A_{2}} - x_{A_{1}}) \qquad N_{B} = +\frac{CD_{BA}}{\Delta z}(x_{B_{2}} - x_{B_{1}})$$

Semnan University, Chemical Engineering Department

Diffusion Cases

Steady-state diffusion

 $N_A \neq N_B \neq 0$

Semnan University, Chemical Engineering Department

Diffusion IN Gases

Case I: Unimolar diffusion

$$N_A = \frac{CD_{AB}}{\Delta z} \ln \frac{1 - x_{A_2}}{1 - x_{A_1}}$$

But
$$C = P_T / RT$$

$$N_A = \frac{P_T D_{AB}}{RT\Delta z} \ln \frac{1 - x_{A_2}}{1 - x_{A_1}}$$

Semnan University, Chemical Engineering Department

Diffusion IN Gases

Case II: Equimolar counter diffusion

$$N_A = -\frac{CD_{AB}}{\Delta z} \left(x_{A_2} - x_{A_1} \right)$$

$$N_A = -\frac{P_T D_{AB}}{RT\Delta z} \left(x_{A_2} - x_{A_1} \right)$$

Semnan University, Chemical Engineering Department

Diffusion Coefficients of A IN Gas (B)

I. Experimental diffusivity data

 Table 6.2-1 (Geankoplis)

II. Prediction using correlation

Correction of D_{AB}
$$\frac{D'_{AB}P'}{T'^{1.75}} = \frac{D''_{AB}P''}{T'^{1.75}}$$

Semnan University, Chemical Engineering Department

Diffusion Coefficients of A IN Gas (B)

Fuller-Schettler-Giddings Correlation

$$D_{AB} = \frac{0.001T^{1.75} \left(\frac{1}{M_A} + \frac{1}{M_B}\right)^{1/2}}{P\left[\left(\sum v_A\right)^{1/3} + \left(\sum v_B\right)^{1/3}\right]^2}$$

 $\Sigma v_A = sum of structural volume increments (Table 6.2-2)$

 $M_{A'} M_B$ = molecular weights of A and B

 D_{AB} [=] cm²/s

Semnan University, Chemical Engineering Department

of Diffusivities

• For gas mixtures at low pressure (kinetic theory)

$$\frac{pD_{AB}}{(p_{cA}p_{cB})^{1/3}(T_{cA}T_{cB})^{5/12}(1/M_{A}+1/M_{B})^{1/2}} = a\left(\frac{T}{\sqrt{T_{cA}T_{cB}}}\right)^{b}$$

- Diffusivities
 - are inversely proportional to the pressure
 - increases with increasing temperature
 - almost independent of composition

Theory of diffusion in gases at low density

• Self diffusivity
$$D_{AA^*} = \frac{2}{3\pi} \frac{\sqrt{\pi m_A \kappa T}}{\pi d_A^2} \frac{1}{\rho}$$

• For binary mixtures

$$D_{AB} = \frac{2}{3} \sqrt{\frac{\kappa T}{\pi}} \sqrt{\frac{1}{2} \left(\frac{1}{m_A} + \frac{1}{m_B}\right)} \cdot \frac{1}{\pi [0.5(d_A + d_B)]^2} \cdot \frac{1}{n}$$

Semnan University, Chemical Engineering Department

Chapman-Enskog

$$cD_{AB} = \frac{3}{16} \sqrt{\frac{2RT}{\pi} \left(\frac{1}{M_A} + \frac{1}{M_B}\right)} \cdot \frac{1}{\widetilde{N}\sigma_{AB}^2 \Omega_{D,AB}}$$

Semnan University, Chemical Engineering Department

Homework

1.Evaluate the diffusion coefficient of CO_2 in air at 20 °C and atmospheric pressure. Compare the value with the reported experimental data.

2.An open circular tank 8 m in diameter contains benzene at 22°C exposed to the atmosphere in such a manner that the liquid is covered with stagnant air film estimated to be 5 mm thick. The concentration of benzene beyond the stagnant film is negligible. The vapor pressure of benzene at 22 °C is 100 mmHg. How much benzene is lost from this tank per day?

Semnan University, Chemical Engineering Department

Diffusion in Liquids

Case I: Unimolar diffusion

$$N_{A} = \frac{C_{AV}D_{AB}}{\Delta z} \ln \frac{1 - x_{A_{2}}}{1 - x_{A_{1}}}$$

Case II: Equimolar counter diffusion

$$N_A = -\frac{C_{AV}D_{AB}}{\Delta z} \left(x_{A_2} - x_{A_1} \right)$$

where
$$C_{AV} = \left(\frac{\rho}{M}\right)_{AV} = \frac{\frac{\rho_1}{M_1} + \frac{\rho_2}{M_2}}{2}$$

Semnan University, Chemical Engineering Department

Diffusion Coefficients of A in Liquids

I. Experimental diffusivity data

 Table 6.3-1 (Geankoplis)

II. Prediction using correlation

Correction of D_{AB}

$$\frac{D'_{AB}\mu'}{T'} = \frac{D''\mu''}{T'}$$

Semnan University, Chemical Engineering Department

Diffusion Coefficients of A in Liquids

Wilke-Chang Correlation

$$D_{AB} = 1.173 x 10^{-16} (\varphi M_B)^{1/2} \frac{T}{\mu_B V_A^{0.6}}$$

 φ = association parameter

M_B = molecular weights of solvent **B**

 D_{AB} [=] m²/s

 V_A = solute molar volume at the boiling point (Table 6.3-2)

 μ_{B} = viscosity of B [=] Pa-s or kg/m-s

Semnan University, Chemical Engineering Department

Diffusion in Solids

Case I: Fickian Diffusion

(No network f pore openings is present for the solid to travel)

Assumption: bulk flow term is small

General equation for gas/liquid diffusing in solid

$$N_A = -D_{AB} \frac{C_{A2} - C_{A1}}{\Delta z}$$

Semnan University, Chemical Engineering Department

Diffusion in Solids For Gases in Solids:

$$N_{A} = -\frac{D_{AB}S}{22.414\,\Delta z}(P_{A2} - P_{A1})$$

In terms of permeability : $P_M = D_{AB} S$

$$N_{A} = -\frac{P_{M}}{22.414\,\Delta Z}(P_{A2} - P_{A1})$$

Semnan University, Chemical Engineering Department

Diffusion in Solids

Case II: Non-Fickian Diffusion

(Porous solids that have pores or interconnected voids in the solid)

General equation for gas/liquid diffusing in solid

$$N_{A} = -\frac{\varepsilon D_{AB}}{\tau \Delta z} (C_{A2} - C_{A1})$$

 τ = tortuosity (actual path length)

ε = porosity (open void fraction)

$$D_{Aeff} = \varepsilon D_{AB} / \tau [=] m^2/s$$

Semnan University, Chemical Engineering Department

Diffusion in Solids Case III: Knudsen Diffusion

(Diffusion in small pores , mean free path, λ , > diameter)

 λ = average distance traveled by 2 molecules before collision

$$\lambda = \frac{3.2\,\mu}{P} \sqrt{\frac{RT}{2\pi M}}$$

Knudsen number:

Semnan University, Chemical Engineering Department

Diffusion in Solids

Case 1: $N_{Kn} \leq \frac{1}{100}$ **Fickian (Fick's Law)**

Case 2: $N_{Kn} \ge 10$ Knudsen diffusion

Knudsen
diffusivity
$$D_{KA} = 97.0 \overline{r} \left(\frac{T}{M_A}\right)^{1/2}$$

$$N_{A} = -D_{KA} \frac{dC_{A}}{dz}$$

Semnan University, Chemical Engineering Department

Diffusion in Solids

Case 3: $\frac{1}{100} < N_{Kn} < 10$ Transition region (both Knudsen)

Knudsen)

where

$$\alpha = 1 + \frac{N_A}{N_B}$$

Semnan University, Chemical Engineering Department