مثال : در برج جداره مرطوبی به قطر داخل "1 آب از بالا و مخلوط آمونیاک و هوا از پائین برج وارد می شود. آب از روی دیواره و گاز از وسط برج حرکت می کند. در برش معینی از این برج، جزء مولی آمونیاک در توده گاز 0.8 و در توده مایع 0.08 است. درجه حرارت و فشار به ترتیب 0.8 و یک جو است. شدت جریان دو فاز به میزانی است که، برای انتقال جرم از سیستمهای دقیق، ضریب انتقال جرم در فاز مایع برابر $\frac{lb_{mol}}{hr.ft^2}$ و عدد شرود برای فاز گاز 0.8 می باشد. ضریب نفوذ مولکولی آمونیاک در هوا 0.89 ft2/hr است. به فرض اینکه آب تبخیر نگرد، شدت موضعی جذب آمونیاک در این برش را محاسبه نمائید.

اطلاعات زیر در مورد نحوه توزیع تعادل آمونیاک بین آب و هوا در 80°F در دسترس است.

جزء مولى آمونياك در هوا y _A =P _A /14.7	فشار جزئی آمونیاک در هوا $ ext{P}_A\colon ext{lb}_{ ext{f}}/ ext{in}^2$	جزء مولی آمونیاک در آب X _A
0	0	0
0.0707	1.04	0.05
0.1347	1.98	0.1
0.590	8.69	0.25
0.920	13.52	0.3

F جل: به علت زیاد بودن غلظت آمونیاک در فاز گازی به جای ضرائب نوع K باید از ضریب عمومی استفاده کرد.

From Table 1.3 : $F_L = K_L x_{BM} C$

با توجه به اینکه جرم مولکولی آمونیاک تقریباً برابر آب است، جرم ویژه محلول رقیق آمونیاک در

آب تقريباً برابر با جرم ويژه آب خالص است.

$$C = \frac{\rho}{M} = \frac{62.3}{18} = 3.44 \quad \frac{lb_{mol}}{ft^3}$$

به خاطر رقیق بودن $^{\sim}1$ می باشد پس

$$F_L = (0.34)(3.44)(1) = 1.17 \frac{lb_{mol}}{hr.ft^2}$$

$$C = \frac{P}{RT}$$
 or $C = \frac{1}{359} \frac{492}{460 + 80} = 0.00254$ $\frac{lb_{mol}}{ft^3}$

$$F_G = \frac{40.C.D_A}{d} = \frac{(40)(0.00254)(0.89)}{1/12} = 1.085 \quad \frac{lb_{mol}}{ft^2}$$

از آنجائی که تنها مولکولهای آمونیاک انتقال می یابند پس
$$N_{
m B}$$
و $N_{
m B}=0$ خواهد بود. با تغییر

دادن y_{Ai} به y_{Ai} و معادله ی زیر

$$\frac{\frac{N_{A}}{\sum N} - y_{A_{i}}}{\frac{N_{A}}{\sum N} - y_{A_{G}}} = \left(\frac{\frac{N_{A}}{\sum N} - x_{A_{L}}}{\frac{N_{A}}{\sum N} - x_{A_{i}}}\right)^{\frac{F_{L}}{F_{G}}}$$

خواهيم داشت:

$$\frac{1 - y_A}{1 - y_{A_G}} = \left(\frac{1 - x_{A_L}}{1 - x_A}\right)^{\frac{F_L}{F_G}} \implies 1 - y_A = (1 - y_{A_G}) \left(\frac{1 - x_{A_L}}{1 - x_A}\right)^{\frac{F_L}{F_G}}$$

$$\Rightarrow y_A = 1 - (1 - y_{A_G}) \left(\frac{1 - x_{A_L}}{1 - x_A}\right)^{\frac{r_L}{F_G}} \Rightarrow$$

$$\Rightarrow y_A = 1 - (1 - 0.8) \left(\frac{1 - 0.05}{1 - x_A}\right)^{1.078} \Rightarrow$$

$\mathbf{x}_{\mathbf{A}}$	0.05	0.15	0.25	0.3
$\mathbf{y_A}$	0.8	0.78	0.742	0.722

منحنی به دست آمده از این نقاط منحنی تعادل را در نقطه ای به مختصات x_{A_i} و y_{A_i} قطع می کند. این مختصات که برابر با غلظت آمونیاک در فصل مشترک است از روی شکل برابر x_{A_i} =0.274 و y_{A_i} =0.732 خوانده می شود. حال با داشتن معادله y_{A_i} =0.732

$$N_{A} = \frac{N_{A}}{\sum N} . F_{L} . \ln \left[\frac{\frac{N_{A}}{\sum N} - x_{A_{L}}}{\frac{N_{A}}{\sum N} - x_{A_{l}}} \right] = (1)(1.17) \ln \left[\frac{1 - 0.05}{1 - 0.274} \right] = 0.316 \frac{lb_{mol}}{hr.ft^{2}}$$

 $N_{A} = \frac{N_{A}}{\sum N} \cdot F_{G} \cdot \ln \left[\frac{\frac{N_{A}}{\sum N} - y_{A_{i}}}{\frac{N_{A}}{\sum N} - y_{A_{G}}} \right] = (1)(1.085) \ln \left[\frac{1 - 0.732}{1 - 0.8} \right] = 0.316 \quad \frac{lb_{mol}}{hr \cdot ft^{2}}$

موازنه مواد در عملیات انتقال جرم

عملیات انتقال جرم را در فرایندهای هم جهت در حالت پایا و یا در فرایندهای غیر هم جهت در حالت پایا می توان بررسی نمود. ابتدا فر آیندهای هم جهت را بررسی می نمائیم. اگر دو فاز E و R را به عنوان دو فاز مخلوط نشدنی در نظر بگیریم. اگر شدت جریان ${
m R}$ در هنگام ورود به دستگاه برابر ${
m R}_1$ مول بر واحد زمان فرض شود. از این مقدار $R_{
m S}$ مول بر واحد زمان شامل اجزائی است که انتقال نمی یابد. جزء مولی جزء A در فاز R هنگام ورود به دستگاه x_1 است که ضمن عبور از دستگاه و تماس با فاز E، جزء از فاز R به فاز E منتقل شده و موجب می گردد که در انتهای دستگاه مقدار فاز R به R مول بر Aواحد زمان و جزء A در آن به x_2 کاهش یابد. بدیهی است که شدت جریان اجزای غیر A در این فاز، به علت عدم انتقال آنها، به میزان $R_{
m S}$ مول بر واحد زمان ثابت باقی می ماند. به همین ترتیب شدت جریان $R_{
m S}$ در نقطه ورود ${
m E_1}$ مول بر واحد زمان است که از این مقدار ${
m E_S}$ مول بر واحد زمان مربوط به شدت ${
m E}$

جریان اجزائی است که انتقال نمی یابند . جزء مولی جزء A در این فاز هنگام ورود به دستگاه y_1 است. به خاطر افزایش تدریجی مقدار جزء A در فاز E در طول دستگاه شدت جریان این فاز هنگام خروج به E_2 و جزء مولی جزء A در آن به E_2 افزایش می یابد در حالی که شدت جریان اجزای غیر E_3 در آن برابر با E_3 ثابت باقی می ماند.

مول كل بر واحد زمان E_1 : مول مواد غير قابل انتقال بر واحد زمان E_S

 y_1 : جزء مولی حل شده Y_1 : جزء نسبی مولی حل شده

مول کل بر واحد زمان R_1 : مول مواد غیر قابل انتقال بر واحد زمان $R_{
m S}$

X₁ : جزء مولی حل شده

جزء نسبی مولی حل شده X_1

تغییرات غلظت جزء A را می توان با نوشتن موازنه برای جزء A نوشت:

موازنه کلی :
$$R_1 + E_1 = R_2 + E_2$$

or
$$R_1 - R_2 = E_2 - E_1$$

موازنه جزئی:
$$R_1x_1 + E_1y_1 = R_2x_2 + E_2y_2$$
 or $R_1x_1 - R_2x_2 = E_2y_2 - E_1y_1$

$$R_1x_1-R_2x_2 = E_2y_2-E_1y_1$$

مى توان اين رابطه را بر اساس اجزاء منتقل نشونده نيز نوشت:

$$R_S = R_1(1-x_1) = R_2(1-x_2)$$

$$E_S = E_1(1-y_1) = E_2(1-y_2)$$

$$: R_1 + E_1 = R_2 + E_2$$
 عوازنه کلی
$$: R_1 + E_1 = R_2 + E_2$$
 $\Rightarrow R_1 \frac{x_1}{1 - x_1} + E_1 \frac{y_1}{1 - y_1} = R_2 \frac{x_2}{1 - x_2} + E_2 \frac{y_2}{1 - y_2}$ $\Rightarrow R_1 \frac{x_1}{1 - x_1} + E_1 \frac{y_1}{1 - y_1} = R_2 \frac{x_2}{1 - x_2} + E_2 \frac{y_2}{1 - y_2}$ $\Rightarrow E_S = E_1(1 - y_1) = E_2(1 - y_2)$

$$R_S X_1 + E_S Y_1 = R_S X_2 + E_S Y_2$$

$$R_S(X_1 - X_2) = E_S(Y_2 - Y_1)$$

یا جایگذاری:

$$R_{1}x_{1} = R_{S} \frac{x_{1}}{1 - x_{1}} = R_{S}X_{1}$$

$$R_1 x_1 = R_S \frac{x_1}{1 - x_2} = R_S X_1$$
 & $R_2 x_2 = R_S \frac{x_2}{1 - x_2} = R_S X_2$

$$E_{1}y_{1} = E_{S} \frac{y_{1}}{1 - y_{1}} = E_{S}Y_{1}$$

$$E_1 y_1 = E_S \frac{y_1}{1 - y_1} = E_S Y_1$$
 & $E_2 y_2 = E_S \frac{y_2}{1 - y_2} = E_S Y_2$

می توان نوشت:

$$R_{S}X_{1} - R_{S}X_{2} = E_{S}Y_{2} - E_{S}Y_{1}$$
 or $R_{S}(X_{1} - X_{2}) = E_{S}(Y_{2} - Y_{1})$

$$R_{S}(X_{1}-X_{2})=E_{S}(Y_{2}-Y_{1})$$

$$\frac{Y_2 - Y_1}{X_2 - X_1} = -\frac{R_S}{E_S}$$

خط تبادل:

اگر منحنی تعادلی Y (مول A بر مول غیر A) در فاز E را بر حسب X (مول A بر مول غیر A) در فاز R رسم کنیم خط Q خط تبادل نامیده می شود .

نمودار انتقال جرم از R به فاز E در یک فرایند هم جهت در حالت پایا

چنانچه جهت انتقال جرم از فاز E به فاز R باشد، خط تبادل در بالای منحنی تعادل قرار می گیرد.

نمودار انتقال جرم از فاز E به فاز R در یک فرایند هم جهت در حالت پایا

اگر در منحنی های رسم شده به جای مختصات X و Y از مختصات X و y استفاده می شد به جای خط

تبادل، منحنى تبادل داشتيم.

x : جز مولى A در فاز R

انتقال جرم از فاز R به فاز E در یک فرایند هم جهت در حالت پایا

*در مواردی که مثلاً، به خاطر نفوذ متقابل اجزای مختلف، با وجود تغییر غلظت جزء مورد نظر در هر فاز مقادیر E و E ثابت باقی بماند، استفاده از مختصات E منجر به حصول خط مستقیم تبادل خواهد گردید.

$$R_2 = R_1 = R$$

$$E_2 = E_1 = E$$

