
PROBLEM 14.1

KNOWN:  Mixture of O2 and N2 with partial pressures in the ratio 0.21 to 0.79.

FIND:  Mass fraction of each species in the mixture.

SCHEMATIC:

2O

N2

p 0.21
p 0.79

=

2O 32 kg/kmol=M

2N 28 kg/kmol=M

ASSUMPTIONS:  (1) Perfect gas behavior.

ANALYSIS:  From the definition of the mass fraction,
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With the mole fractions as

2 2O O
0.21

x p / p 0.21
0.21 0.79

= = =
+

2 2N Nx p / p 0.79,= =

find the mass fractions as

2O
32 0.21

m 0.233
32 0.21 28 0.79

×= =
× + ×

<

2 2N Om 1 m 0.767.= − = <



PROBLEM 14.2

KNOWN:  Partial pressures and temperature for a mixture of CO2 and N2.

FIND:  Molar concentration, mass density, mole fraction and mass fraction of each species.

SCHEMATIC:

2 AA CO , 44 kg/kmol→ =M

2 BB N , 28 kg/kmol→ =M

ASSUMPTIONS:  (1) Perfect gas behavior.

ANALYSIS:  From the equation of state for an ideal gas,

i
i

p
C .

T
=

ℜ
Hence, with pA = pB,

A B 2 3
1bar

C C
8.314 10 m bar/kmol K 2 9 8 K−= =

× ⋅ ⋅ ×

3
A BC C 0.040 kmol/m .= = <

With i i iC ,ρ = M  it follows that
3 3

A 44 kg/kmol 0.04 kmol/m 1.78kg/mρ = × = <

3 3
B 28 kg/kmol 0.04 kmol/m 1.13 kg/m .ρ = × = <

Also, with

i i i ix C / C= Σ

find

A Bx x 0.04/0.08 0.5= = = <
and with

i i im /ρ ρ= Σ

find

( )Am 1.78/ 1.78 1.13 0.61= + = <

( )Bm 1.13/ 1.78 1.13 0.39.= + = <



PROBLEM 14.3

KNOWN:  Mole fraction (or mass fraction) and molecular weight of each species in a mixture of n
species.  Equal mole fractions (or mass fractions) of O2, N2 and CO2 in a mixture.

FIND:

SCHEMATIC:

2 2 2O N COx x x 0.333= = =
or

2 2 2O N COm m m 0.333= = =

2CO 44=M

2 2O N32, 28= =M M

ASSUMPTIONS:  (1) Perfect gas behavior.

ANALYSIS:  (a) With
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(b) With

2 2 2 2 2 2O O N N CO COx x x 32 0.333 28 0.33 44 0.333 34.6+ + = × + × + × =M M M

2 2 2O N COm 0.31, m 0.27, m 0.42.= = = <
With

2 2 2 2 2 CO2O O N N CO /m / m / m 0.333/32 0.333/28 0.333/44+ + = + +MM M

2
2

Om 2.987 10 .−= ×
find

2 2 2O N COx 0.35, x 0.40, x 0.25.= = = <



PROBLEM 14.4

KNOWN:  Temperature of atmospheric air and water.  Percentage by volume of oxygen in the air.

FIND:  (a) Mole and mass fractions of water at the air and water sides of the interface, (b) Mole and
mass fractions of oxygen in the air and water.

SCHEMATIC:

ASSUMPTIONS:  (1) Perfect gas behavior for air and water vapor, (2) Thermodynamic equilibrium
at liquid/vapor interface, (3) Dilute concentration of oxygen and other gases in water, (4) Molecular
weight of air is independent of vapor concentration.

PROPERTIES:  Table A-6, Saturated water (T = 290 K):  pvap = 0.01917 bars.  Table A-9, O2/water,
H = 37,600 bars.

ANALYSIS:  (a) Assuming ideal gas behavior, pw,vap = (Nw,vap/V) •T and p = (N/V) •T, in which
case

( ) ( )w,vap w,vap airx p / p 0.01917 /1.0133 0.0194= = = <
With mw,vap = (ρw,vap/ρair) = (Cw,vap Μ w/Cair Μ air) = xw,vap ( Μ w/ Μ air).  Hence,

mw,vap = 0.0194 (18/29) = 0.0120 <
Assuming negligible gas phase concentrations in the liquid,

xw,liq = mw,liq = 1 <
(b) Since the partial volume of a gaseous species is proportional to the number of moles of the
species, its mole fraction is equivalent to its volume fraction.  Hence on the air side of the interface

O2,airx 0.205= <

( ) ( )2,air 2,air 2O O Om x / 0.205 32 / 29 0.226= = =airΜ Μ <

The mole fraction of O2 in the water is

2,liq 2,air
6

O Ox p / H 0.208 bars / 37,600 bars 5.53 10−= = = × <

where 
2,air 2,airO Op x=  patm = 0.205 × 1.0133 bars = 0.208 bars.  The mass fraction of O2in the

water is

( ) ( )2,liq 2,liq 2
6 6

O O 0 wm x / 5.53 10 32 /18 9.83 10− −= = × = ×Μ Μ <

COMMENTS:  There is a large discontinuity in the oxygen content between the air and water sides
of the interface.  Despite the low concentration of oxygen in the water, it is sufficient to support the
life of aquatic organisms.



PROBLEM 14.5

KNOWN:  Air is enclosed at uniform pressure in a vertical, cylindrical container whose top and
bottom surfaces are maintained at different temperatures.

FIND:  (a) Conditions in air when bottom surface is colder than top surface, (b) Conditions when
bottom surface is hotter than top surface.

SCHEMATIC:

ASSUMPTIONS:  (1) Uniform pressure, (2) Perfect gas behavior.

ANALYSIS:  (a) If T1 > T2, the axial temperature gradient (dT/dx) will result in an axial density
gradient.  However, since dρ/dx < 0 there will be no buoyancy driven, convective motion of the
mixture.

There will also be axial species density gradients, 
2 2O Nd /dx and d /dx.ρ ρ   However, there is no

gradient associated with the mass fractions ( )2 2O Ndm /dx 0, d m /dx 0 .= =   Hence, from Fick’s

law, Eq. 14.1, there is no mass transfer by diffusion.

(b) If 1 2T T , d /dx 0ρ< >  and there will be a buoyancy driven, convective motion of the mixture.

However, 
2 2O Ndm /dx 0 and dm /dx 0,= =  and there is still no mass transfer.  Hence, although

there is motion of each species with the convective motion of the mixture, there is no relative motion
between species.

COMMENTS:  The commonly used special case of Fick’s law,

A
A AB

d
j D

dx
ρ= −

would be inappropriate for this problem since ρ is not uniform.  If applied, this special case indicates
that mass transfer would occur, thereby providing an incorrect result.



PROBLEM 14.6

KNOWN:  Pressure and temperature of hydrogen stored in a spherical steel tank of prescribed
diameter and thickness.

FIND:  (a) Initial rate of hydrogen mass loss from the tank, (b) Initial rate of pressure drop in the tank.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional species diffusion in a stationary medium, (2) Uniform total
molar concentration, C, (3) No chemical reactions.

ANALYSIS:  (a) From Table 14.1

( ) ( )i

A,o A,L A,o
A,r

m,dif AB o

C C C
N

R 1/4 D 1 / r 1 / rπ

−
= =

−

( )
( )

12 2 3
12

A,r

4 0.3 10 m / s 1.5 kmol/m
N 7.35 10 kmol/s

1/0.05 m 1/0.052 m

π −
−

×
= = ×

−

or

12 12
A,r A A,rn N 2 kg/kmol 7.35 10 kmol/s 14.7 10 kg/s.− −= = × × = ×M <

(b) Applying a species balance to a control volume about the hydrogen,

A,st A,out A,rM M n= − = −& &

( ) 3 3 3
A A A A A

A,st
A

d V D d D dp D dp
M

dt 6 dt 6R T dt 6 T dt

ρ π ρ π π= = = =
ℜ

& M

Hence

( )( )

( )
3

12A
A,r3 3

A

6 0.08314 m bar/kmol K 300 Kdp 6 T
n 14.7 10 kg/s

dt D 0.1m 2 kg/kmolπ π
−

⋅ ⋅ℜ= − = − × ×
M

7Adp
3.50 10 bar/s.

dt
−= − × <

COMMENTS:  If the spherical shell is appoximated as a plane wall, Na,x = DAB(CA,o) πD
2
/L = 7.07

× 10
-12

 kmol/s.  This result is 4% lower than that associated with the spherical shell calculation.



PROBLEM 14.7

KNOWN:  Molar concentrations of helium at the inner and outer surfaces of a plastic membrane.
Diffusion coefficient and membrane thickness.

FIND:  Molar diffusion flux.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional diffusion in a plane wall, (3)
Stationary medium, (4) Uniform C = CA + CB.

ANALYSIS:  The molar flux may be obtained from Eq. 14.50,

( ) ( )
9 2

3AB
A,x A,1 A,2

D 10 m /s
N C C 0.02 0.005 kmol/m

L 0.001m

−
′′ = − = −

8 2
A,xN 1.5 10 kmol/s m .−′′ = × ⋅ <

COMMENTS:  The mass flux is

8 2 8 2
A,x A A,xn N 4 kg/kmol 1.5 10 kmol/s m 6 10 kg/s m .− −′′ ′′= = × × ⋅ = × ⋅M



PROBLEM 14.8

KNOWN:  Mass diffusion coefficients of two binary mixtures at a given temperature, 298 K.

FIND:  Mass diffusion coefficients at a different temperature, T = 350 K.

ASSUMPTIONS:  (a) Ideal gas behavior, (b) Mixtures at 1 atm total pressure.

PROPERTIES:  Table A-8, Ammonia-air binary mixture (298 K), DAB = 0.28 × 10
-4

 m
2
/s;

Hydrogen-air binary mixture (298 K), DAB = 0.41 × 10
-4

 m
2
/s.

ANALYSIS:  According to treatment of Section 14.1.5, assuming ideal gas behavior,

3 /2
ABD ~ T

where T is in kelvin units.  It follows then, that for

( ) ( )3/24 2
3 ABNH Air: D 350 K 0.28 10 m / s 350 K / 2 9 8 K−− = ×

( ) 4 2
ABD 350 K 0.36 10 m / s−= × <

( ) ( )3/24 2
2 ABH Air: D 350 K 0.41 10 m / s 350/298−− = ×

( ) 4 2
ABD 350 K 0.52 10 m / s−= × <

COMMENTS:  Since the H2 molecule is smaller than the NH3 molecule, it follows that

2 Air 3 AirH NHD D− −>

as indeed the numerical data indicate.



PROBLEM 14.9

KNOWN:  The inner and outer surfaces of an iron cylinder of 100-mm length are exposed to a

carburizing gas (mixtures of CO and CO2).  Observed experimental data on the variation of the carbon
composition (weight carbon, %) in the iron at 1000°C as a function of radius.  Carbon flow rate under
steady-state conditions.

FIND:  (a) Beginning with Fick’s law, show that d d n rcρ / � � �� �  is a constant if the diffusion

coefficient,  DC-Fe, is a constant; sketch of the carbon mass density, ρc(r), as function of ln(r) for such

a diffusion process; (b) Create a graph for the experimental data and determine whether DC-Fe for this
diffusion process is constant, increases or decreases with increasing mass density; and (c) Using the

experimental data, calculate and tabulate DC-Fe for selected carbon compositions over the range of the
experiment.

SCHEMATIC:

PROPERTIES:  Iron (1000°C).  ρ = 7730 kg/m
3
.Experimental observations of carbon composition

r (mm) 4.49 4.66 4.79 4.91 5.16 5.27 5.40 5.53
Wt. C (%) 1.42 1.32 1.20 1.09 0.82 0.65 0.46 0.28

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional, radial diffusion in a stationary
medium, and (3) Uniform total concentration.

ANALYSIS:  (a) For the one-dimensional, radial (cylindrical) coordinate system, Fick’s law is

j D  A
d

drA AB r
A= − ρ

(1)

where Ar = 2πrL.  For steady-state conditions, jA is constant, and if DAB is constant, the product

r
d

dr
CA

1
ρ = (2)

must be a constant.  Using the differential relation dr/r = d (ln r), it follows that

d

d ln r
CA

1
ρ
� �

= (3)

so that on a ln(r) plot, ρA is a straight line.  See the graph below for this behavior.

Continued …..



PROBLEM 14.9 (Cont.)

(b) To determine whether DC-Fe is a constant for the experimental diffusion process, the data are
represented on a ln(r) coordinate.

Since the plot is not linear, DC-Fe is not a constant.  From the treatment of part (a), if DAB is not a
constant, then

D
d

d ln r
CAB

A
2

ρ
� �

=

must be constant.  We conclude that DC-Fe will be lower at the radial position where the gradient is

higher.  Hence, we expect DC-Fe to increase with increasing carbon content.

(c) From a plot of Wt - %C vs. r (not shown), the mass fraction gradient is determined at three
locations and Fick’s law is used to calculate the diffusion coefficient,

j A D  
 Wt % C

rc r C Fe= − ⋅ ⋅
−

−ρ
∆

∆
� �

where the mass flow rate is

j  kg / 100 h 3600 s / h  kg / sc = × = ×− −36 10 1 103 8. � �

and ρ = 7730 kg/m
3
, density of iron.  The results of this analysis yield,

Wt - C (%) r (mm) ∆ Wt-C/∆r (%/mm) DC-Fe × 10
11

 (m
2
/s)

    1.32 4.66 -0.679 6.51
  0.955 5.04 -1.08 3.79
   0.37 5.47 -1.385 2.72

Wt. carbon distribution - experimental observations
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PROBLEM 14.10

KNOWN:  Three-dimensional diffusion of species A in a stationary medium with chemical reactions.

FIND:  Derive molar form of diffusion equation.

SCHEMATIC:

ASSUMPTIONS:  (1) Uniform total molar concentration, (2) Stationary medium.

ANALYSIS:  The derivation parallels that of Section 14.2.2, except that Eq. 14.33 is applied on a
molar basis.  That is,

A,x A,y A,z A,g A,x dx A,y dy A,z dz A,stN N N N N N N N .+ + ++ + + − − − =& &

With

A,x
A,x dx A,x A,y dy

N
N N dx, N ....

x+ +
∂

= + =
∂

( ) A
A,x AB A,y

C
N D dydz , N ....

x
∂= − =
∂

( ) A
A,g A A,st

C
N N dxdydz , N dxdydz

t
∂= =

∂
& & &

It follows that

A A A A
AB AB AB A

C C C C
D D D N .

x x y y z z t

 ∂ ∂ ∂ ∂ ∂ ∂ ∂   + + + =    ∂ ∂ ∂ ∂ ∂ ∂ ∂    
& <

COMMENTS:  If DAB is constant, the foregoing result reduces to Eq. 14.38b.



PROBLEM 14.11

KNOWN:  Gas (A) diffuses through a cylindrical tube wall (B) and experiences chemical reactions at
a volumetric rate, AN .&

FIND:  Differential equation which governs molar concentration of gas in plastic.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional radial diffusion, (2) Uniform total molar concentration, (3)
Stationary medium.

ANALYSIS:  Dividing the species conservation requirement, Eq. 14.33, by the molecular weight, �A,
and applying it to a differential control volume of unit length normal to the page,

A,r A,g A,r dr A,stN N N N++ − =& &

where

( ) A
A,r A,r AB

C
N 2 r 1 N 2 rD

r
π π ∂′′= ⋅ = −

∂

A,r
A,r dr A,r

N
N N dr

r+
∂

= +
∂

( ) ( )A
A,g A A,st

C 2 rdr 1
N N 2 r dr 1 N .

t

π
π

 ∂ ⋅ = − ⋅ ⋅ =
∂

& & &

Hence

( ) A A
A AB

C C
N 2 rdr 2 D r dr 2 rdr

r r t
π π π

∂ ∂ ∂ − + = ∂ ∂ ∂ 
&

or

AB A A
A

D C C
r N .

r r r t
∂ ∂ ∂  − = ∂ ∂ ∂ 

& <

COMMENTS:  (1) The minus sign in the generation term is necessitated by the fact that the
reactions deplete the concentration of species A.

(2) From knowledge of ( )AN r, t ,&  the foregoing equation could be solved for CA (r,t).

(3) Note the agreement between the above result and the one-dimensional form of Eq. 14.39 for
uniform C.



PROBLEM 14.12

KNOWN:  One-dimensional, radial diffusion of species A in a stationary, spherical medium with
chemical reactions.

FIND:  Derive appropriate form of diffusion equation.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional, radial diffusion, (2) Uniform total molar concentration, (3)
Stationary medium.

ANALYSIS:  Dividing the species conservation requirement, Eq. 14.33, by the molecular weight, �A,
and applying it to the differential control volume, it follows that

A,r A,g A,r dr A,stN N N N++ − =& &

where

2 A
A,r AB

C
N D 4 r

r
π ∂= −

∂

A,r
A,r dr A,r

N
N N dr

r+
∂

= +
∂

( ) ( )2
A2

A,g A A,st

C 4 r dr
N N 4 r dr , N .

t

π
π

 ∂   = =
∂

& & &

Hence

( )2 2 2A A
A AB

C C
N 4 r dr 4 D r dr 4 r dr

r r t
π π π

∂ ∂ ∂ + = ∂ ∂ ∂ 
&

or

2 A A
AB A2

1 C C
D r N .

r r tr

∂ ∂ ∂  + = ∂ ∂ ∂ 
& <

COMMENTS:  Equation 14.40 reduces to the foregoing result if C is independent of r and variations
in φ  and θ are negligible.



PROBLEM 14.13

KNOWN:  Oxygen pressures on opposite sides of a rubber membrane.

FIND:  (a) Molar diffusion flux of O2, (b) Molar concentrations of O2 outside the rubber.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional, steady-state conditions, (2) Stationary medium of uniform
total molar concentration, C = CA + CB, (3) Perfect gas behavior.

PROPERTIES:  Table A-8, Oxygen-rubber (298 K):  DAB = 0.21 × 10
-9

 m
2
/s; Table A-10, Oxygen-

rubber (298 K):  S = 3.12 × 10
-3

 kmol/m
3⋅bar.

ANALYSIS:  (a) For the assumed conditions

( ) ( )A AA
A,x A,x AB AB

C 0 C LdC
N J D D .

dx L
∗ −

′′ = = − =

From Eq. 14.33,

( ) 3 3
A A,1C 0 Sp 6.24 10 kmol/m−= = ×

( ) 3 3
A A,2C L Sp 3.12 10 lmol/m .−= = ×

Hence

( )3 3 3
9 2

A,x

6.24 10 3.12 10 kmol/m
N 0.21 10 m / s

0.0005 m

− −
−

× − ×
′′ = ×

9 2
A,xN 1.31 10 kmol/s m .−′′ = × ⋅ <

(b) From the perfect gas law

( )
A,1 3

A,1 3

p 2 bar
C 0.0807 kmol/m

T 0.08314 m bar/kmol K 298 K
= = =

ℜ ⋅ ⋅
<

3
A,2 A,1C 0.5C 0.0404 kmol/m .= = <

COMMENTS:  Recognize that the molar concentrations outside the membrane differ from those
within the membrane; that is, CA,1 ≠ CA(0) and CA,2 ≠ CA(L).



PROBLEM 14.14

KNOWN:  Water vapor is transferred through dry wall by diffusion.

FIND:  The mass diffusion rate through a 0.01 × 3 × 5 m wall.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional species diffusion, (3)
Homogeneous medium, (4) Constant properties, (5) Uniform total molar concentration, (6) Stationary
medium with xA << 1, (7) Negligible condensation in the dry wall.

ANALYSIS:  From Eq. 14.46,

A,1 A,2A A
A,x AB AB AB

C Cdx dC
N CD D D .

dx dx L

−
′′ = − = − =

From Eq. 14.33

3 3
A,1 A,1C Sp 0.15 10 kmol/m−= = ×

3
A,2 A,2C Sp 0 kmol/m .= =

Hence

3 3
9 2 10 2

A
0.15 10 kmol/m

N 10 m / s 0.15 10 kmol/s m .
0.01m

−
− −×′′ = × = × ⋅

Therefore

( ) 2 10 2
A A An A N 18kg/kmol 15 m 0.15 10 kmol/s m−′′= ⋅ = × × × ⋅M

or

9
An 4.05 10 kg/s.−= × <



PROBLEM 14.15

KNOWN:  Pressure and temperature of CO2 in a container of prescribed volume.  Thickness and
surface area of rubber plug.

FIND:  (a) Mass rate of CO2 loss from container, (b) Reduction in pressure over a 24 h period.

SCHEMATIC:

ASSUMPTIONS:  (1) Loss of CO2 is only by diffusion through the rubber plug, (2) One-dimensional
diffusion through a stationary medium, (3) Diffusion rate is constant over the 24 h period, (4) Perfect
gas behavior, (5) Negligible CO2 pressure outside the plug.

PROPERTIES:  Table A-8, CO2-rubber (298 K, 1 atm):  DAB = 0.11 × 10
-9

 m
2
/s; Table A-10, CO2-

rubber (298 K, 1 atm): S = 40.15 × 10
-3

 kmol/m
3⋅bar.

ANALYSIS:  (a) For diffusion through a stationary medium,

A,1 A,2
A AB

C C
N AD

L

−
=

where 3 3 3
A,1 A,1C Sp 40.15 10 kmol/m bar 5bar 0.200 kmol/m−= = × ⋅ × =

A,2 A,2C Sp 0.= =
Hence

( ) ( ) 3
4 2 9 2 13

A
0.200 0 kmol/m

N 3 10 m 0.11 10 m / s 3.30 10 kmol/s
0.02 m

− − −−
= × × = ×

and
13 11

A A An N 44 kg/kmol 3.30 10 kmol/s 1.45 10 kg/s.− −= = × × = ×M <
(b) Applying conservation of mass to a control volume about the container

( ) ( )A A
A A

d V d C V
n or N .

dt dt

ρ
= − = −

Hence, with CA = pA/ℜT,

( )13 2 3
10A A

2 3

3.3 10 kmol/s 8.314 10 m bar/kmol K 298Kdp N T
8.18 10 bar/s.

dt V 10 m

− −
−

−
× × × ⋅ ⋅ℜ

= − = − = − ×

Hence

10 5A
A

dp
p t 8.18 10 bar/s 24h 3600s/h 7.06 10 bar.

dt
− − ∆ = ∆ = − × × × = ×  

<



PROBLEM 14.16

KNOWN:  Pressure and temperature of helium in a glass cylinder of 100 mm inside diameter and 5
mm thickness.

FIND:  Mass rate of helium loss per unit length.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional radial diffusion through cylinder
wall, (3) Negligible end losses, (4) Stationary medium, (5) Uniform total molar concentration, (6)
Negligible helium concentration outside cylinder.

PROPERTIES:  Table A-8, He-SiO2 (298 K):  DAB ≈ 0.4 × 10
-13

 m
2
/s; Table A-10, He-SiO2 (298

K):  S ≈ 0.45 × 10
-3

 kmol/m
3⋅bar.

ANALYSIS:  From Table 14.1,

( )
A,S1 A,S2

A,r
2 1 AB

C C
N

ln r / r / 2 Dπ
−

′ =

where, from Eq. 14.44, CA,S = SpA.  Hence

3 3 3 3
A,S1 A,1C Sp 0.45 10 kmol / m bar 4 bar 1.8 10 kmol / m− −= = × ⋅ × = ×

A,S2 A,2C SP 0.= =

Hence

( ) ( )
3 3

A,r 13 2

1.8 10 kmol / m
N

ln 0.055 / 0.050 / 2 0.4 10 m / sπ

−

−
×′ =

×

15
A,rN 4.75 10 kmol / s m.−′ = × ⋅

The mass loss is then

15
A,r A A,rn N 4 kg / kmol 4.75 10 kmol / s m−′ ′= = × × ⋅Μ

14
A,rn 1.90 10 kg / s m.−′ = × ⋅ <



PROBLEM 14.17

KNOWN:  Temperature and pressure of helium stored in a spherical pyrex container of prescribed
diameter and wall thickness.

FIND:  Mass rate of helium loss.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) Helium loss by one-dimensional diffusion in radial
direction through the pyrex, (3) C = CA + CB is independent of r, and xA << 1, (4) Stationary medium.

PROPERTIES:  Table A-8, He-SiO2 (293 K):  DAB = 0.4 × 10
-13

 m
2
/s; Table A-10, He-SiO2 (293

K):  S = 0.45 × 10
-3

 kmol/m
3⋅bar.

ANALYSIS:  From Table 14.1, the molar diffusion rate may be expressed as

A,S1 A,S2
A,r

m,dif

C C
N

R

−
=

where

( )
12 3

m,dif 13 2AB 1 2

1 1 1 1 1 1
R 1.81 10 s / m

4 D r r 0.1m 0.11m4 0.4 10 m / sπ π −
   

= − = − = ×   
   ×

with
3 3 3 3

A,S1 AC Sp 0.45 10 kmol/m bar 4 bar 1.80 10 kmol/m− −= = × ⋅ × = ×

A,S2C 0=
find

3 3
15

A,r 12 3
1.80 10 kmol/m

N 10 kmol/s.
1.81 10 s / m

−
−×= =

×
Hence

15 15
A,r A A,rn N 4 kg/mol 10 kmol/s 4 10 kg/s.− −= = × = ×M <

COMMENTS:  Since r1 ≈ r2, the spherical shell could have been approximated as a plane wall with L

= 0.01 m and 2 2
mA 4 r 0.139 m .π≈ =   From Table 14.1,

( )( )
12 3

m,dif 13 2 2AB

L 0.01m
R 1.8 10 s / m

D A 0.4 10 m / s 0.137 m−
= = = ×

×

and
3 3

A,S1 A,S2 15
A,x 12 3m,dif

C C 1.80 10 kmol/m
N 10 kmol/s.

R 1.8 10 s / m

−
−− ×= = =

×
Hence the approximation is excellent.



PROBLEM 14.18

KNOWN:  Pressure and temperature of hydrogen inside and outside of a circular tube.  Diffusivity
and solubility of hydrogen in tube wall of prescribed thickness and diameter.

FIND:  Rate of hydrogen transfer through tube per unit length.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady diffusion in radial direction, (2) Uniform total molar concentration in
wall, (3) No chemical reactions.

ANALYSIS:  The mass transfer rate per unit tube length is

( ) ( )
( )
A 1 A 2

A,r
2 1 AB

C r C r
N

ln r / r / 2 Dπ
−

′ =

where from Eq. 14.44, CA,s = Spa,

( ) 3 3
A 1 A,1C r Sp 160 kmol/m atm 2 atm 320 kmol/m= = ⋅ × =

( ) 3 3
A 2 A,2C r Sp 160 kmol/m atm 0.1atm 16 kmol/m .= = ⋅ × =

Hence,

( )
( )

3 3

A,r 11 2 8 2
320 16 kmol/m 304 kmol/m

N
ln 20.5/20 / 2 1.8 10 m / s 2.18 10 s / mπ −

−
′ = =

× × ×

6
A,rN 1.39 10 kmol/s m.−′ = × ⋅ <

COMMENTS:  If the wall were assumed to be plane,

( )

4
8 2

m,dif 11 2AB

L 5 10 m
R 2.21 10 s / m

D D 1.8 10 m / s 0.04 mπ π

−

−
×′ = = = ×

×

which is close to the value of 2.18 × 10
8
 s/m

2
 for the cylindrical wall.



PROBLEM 14.19

KNOWN:  Dimensions of nickel tube and pressure of hydrogen flow through the tube.  Diffusion
coefficient.

FIND:  Mass rate of hydrogen diffusion per unit tube length.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state, (2) One-dimensional diffusion through tube wall, (3) Negligible

pressure of H2 in ambient air, (4) Tube wall is a stationary medium of uniform total molar
concentration, (5) Constant properties.

PROPERTIES:  Table A-10 (H2 – Ni):  S = 9.01 × 10
-3

 kmol/m
3⋅bar.

ANALYSIS:  From Table 14.1, the resistance to diffusion per unit tube length is

Rm,dif = ln (Do/Di)/2π DAB, and the molar rate of hydrogen diffusion per unit length is

( )
( )

AB A,si A,so
A,r

o i

2 D C C
N

ln D / D

π −
=

From Eq. (14.44), the tube wall molar concentrations are

3 3 3
A,si A,iC S p 9.01 10 kmol / m bar 4 bar 0.036 kmol / m−= = × ⋅ × =

A,so A,oC S p 0= =

( )
12 2 3

12
A,r

2 10 m / s 0.036 kmol / m
N 2.00 10 kmol / s m

ln 0.028 / 0.025

π −
−× ×= = × ⋅

With A 22kg / kmol for H ,=M

12 12
A,r A A,rn N 2 kg / kmol 2.00 10 kmol / s m 4.00 10 kg / s m− −= = × × ⋅ = × ⋅M <

COMMENTS:  The hydrogen loss is miniscule.



PROBLEM 14.20

KNOWN:  Conditions of the exhaust gas passing over a catalytic surface for the removal of NO.

FIND:  (a) Mole fraction of NO at the catalytic surface, (b) NO removal rate.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional species diffusion through the film,
(3) Effects of bulk motion on NO transfer in the film are negligible, (4) No homogeneous reactions of
NO within the film, (5) Constant properties, including the total molar concentration, C, throughout the
film.

ANALYSIS:  Subject to the above assumptions, the transfer of species A (NO) is governed by
diffusion in a stationary medium, and the desired results are obtained from Eqs. 14.60 and 14.61.
Hence

( )
A,s

A,s 4 2A,L 1 AB

x 1 0.15
x 0.10.

x 1 Lk / D 1 0.001m 0.05 m / s 10 m / s−= = =
′′+ + ×

  <

Also

( )
1 A,L

A,s
1 AB

k Cx
N

1 Lk / D

′′
′′ = −

′′+
where, from the equation of state for a perfect gas,

3
2 3

p 1.2 bar
C 0.0187 kmol/m .

T 8.314 10 m bar/kmol K 773 K−= = =
ℜ × ⋅ ⋅ ×

Hence

( )
3

5 2
A,s 4 2

0.05 m / s 0.0187 kmol/m 0.15
N 9.35 10 kmol/s m

1 0.001m 0.05m/s 10 m / s

−
−

× ×′′ = − = − × ⋅
+ ×

or

( )5 2 3 2
A,S A A,Sn N 30 kg/kmol 9.35 10 kmol/s m 2.80 10 kg/s m .− −′′ ′′= = − × ⋅ = − × ⋅M

The molar rate of NO removal for the entire surface is then

5 2 2 6
A,s A,sN N A 9.35 10 kmol/s m 0.02 m 1.87 10 kmol/s− −′′= = − × ⋅ × = − ×

or
5

A,Sn 5.61 10 kg/s.−= − × <
COMMENTS:  Because bulk motion is likely to contribute significantly to NO transfer within the film,
the above results should be viewed as a first approximation.



PROBLEM 14.21

KNOWN:  Radius of coal pellets burning in oxygen atmosphere of prescribed pressure and
temperature.

FIND:  Oxygen molar consumption rate.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional diffusion in r, (2) Steady-state conditions, (3) Constant
properties, (4) Perfect gas behavior, (5) Uniform C and T.
ANALYSIS:  From Equation 14.53,

2 Ad dC
r 0

dr dr
  =  

2
A 1 A 1 2dC /dr C / r or C C / r C .= = − +

The boundary conditions at r → ∞ and r = ro are, respectively,

( )A 2C C C C∞ = → =

( )
o o

A A
A A o AB AB

r r

dx dC
N N r CD D

dr dr
′′ ′′= = − = −&

Hence

( ) 2
1 1 o AB 1 ok C / r C D C / r′′− − + = −

( ) ( )
( ) ( )

2 1
1 1 o AB 1 o 1 1 2

1 o AB o

k C
k C / r D C / r k C or C .

k / r D / r

′′′′ ′′+ = =
′′ +

The oxygen molar consumption rate is

( )
o

A 1
A o AB AB

1 o ABr

dC k C
N r D D

dr k r D
′′′′ = − = −

′′ +

where

( )
3 3

2 3
p 1 atm

C 8.405 10 kmol/m .
T 8.205 10 m atm/kmol K 1450 K

−
−

= = = ×
ℜ × ⋅ ⋅

Hence,

( ) ( )
3 3

4 2 4 2
A o 4 4 2

0 .1m/s 8.405 10 kmol/m
N r 1.71 10 m / s 5.30 10 kmol/s m

10 1.71 10 m /s

−
− −

− −
× ×′′ = − × = − × ⋅
+ ×

( ) ( ) ( )22 4 2
A o o A oN r 4 r N r 4 0.001 m 5.30 10 kmol/s mπ π −′′= = × × ⋅

( ) 9
A oN r 6.66 10 kmol/s.−= × <

COMMENTS:  The O2 consumption rate would increase with increasing 1k′′  and approach a limiting

finite value as 1k′′  approaches infinity.



PROBLEM 14.22

KNOWN:  Radius of coal particles burning in oxygen atmosphere of prescribed pressure and
temperature.

FIND:  (a) Radial distributions of O2 and CO2, (b) O2 molar consumption rate.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional, steady-state conditions, (2) Uniform total molar
concentration, (3) No homogeneous chemical reactions, (4) Coal is pure carbon, (5) Surface reaction
rate is infinite (hence concentration of O2 at surface, CA, is zero), (6) Constant DAB, (7) Perfect gas
behavior.

PROPERTIES:  Table A-8, CO2 → O2; DAB (273 K) = 0.14 × 10
-4

 m
2
/s; DAB (1450 K) = DAB

(273 K) (1450/273)
3/2

 = 1.71 × 10
-4

 m
2
/s.

ANALYSIS:  (a) For the assumed conditions, Eq. 14.53 reduces to

2 Ad dC
r 0

dr dr
  =  

( ) ( )2
A 1 A 1 2r dC /dr C or C C / r C .= = − +

From the boundary conditions:

( )A 2C C C C∞ = → =

( )A o 1 o 1 oC r 0 0 C / r C C Cr .= → = − + =

Hence, recognizing that C = CA + CB,

( ) ( ) ( )A o o B A oC C C r / r C 1 r / r C C C C r / r .= − = − = − = <
(b) The conditions correspond to equimolar, counter diffusion ( )A BN N ,′′ ′′= −  with

2 2 2 2 oA A
A,r A,r AB AB AB AB o2

Crdx dC
N N 4 r CD 4 r D 4 r 4 D r 4 D Cr .

dr dr r
π π π π π′′= = − = − = − + = −

 
 
 

With

3 3
2 3

p 1 atm
C 8.405 10 kmol/m

T 8.205 10 m atm/kmol K 1450 K
−

−= = = ×
ℜ × ⋅ ⋅ ×

find

( )4 2 3 3 3
A,rN 1.71 10 m / s 4 8.405 10 kmol/m 10 mπ− − −= − × × × ×

8
A,rN 1.81 10 kmol/s.−= × <



PROBLEM 14.23
KNOWN:  Pore geometry in a catalytic reactor.  Concentration of reacting species at pore opening
and order of catalytic reaction.
FIND:  (a) Differential equation which determines concentration of reacting species, (b) Distribution
of reacting species concentration along the pore.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional diffusion in x direction, (3)
Stationary medium, (4) Uniform total molar concentration.

ANALYSIS:  (a) Apply the species conservation requirement to the differential control volume,
( )A,x 1 A A,x dxN k C D dx N 0,π +′′− − =  where

( )A,x dx A,x A,xN N dN /dx dx+ = +

and from Fick’s law
2 2

A A
A,x AB AB

dx D D dC
N CD D .

dx 4 4 dx
π π = − = −  

Hence

( ) ( )
2 2

A A
1 A AB 1 A2

dN D d C
dx k C D dx D k C D dx 0

dx 4 dx

ππ π′′ ′′− − = − =

2
A 1

A2 AB

d C 4k
C 0.

DDdx

′′
− = <

(b) A solution to the above equation is readily obtained by recognizing that it is of exactly the same
form as the energy equation for an extended surface of uniform cross section.  Hence for boundary
conditions of the form

( ) ( ) ( )A A,0 AB A 1 Ax LC 0 C , D dC /dx k C L= ′′= − =

the solution must be analogous to that obtained for a fin with a convection tip condition.  With the
analogous quantities

( ) ( )1/2 1/2
A 1 ABC T T , m 4k /DD 4h/Dkθ ∞ ′′↔ ≡ − ≡ ↔

AB 1D k, k h′′↔ ↔
the solution is, by analogy to Eq. 3.70

( ) ( ) ( ) ( )
( )

1 AB
A

1 AB

cosh m L x k /mD sinh m L x
C x .

cosh mL k /mD sinh mL

′′− + −
=

′′+
<

COMMENTS:  The total pore reaction rate is – DAB(πD
2
/4) (dCA/dx)x=0, which can be inferred by

applying the analogy to Eq. 3.72.



PROBLEM 14.24

KNOWN:  Pressure, temperature and mole fraction of CO in auto exhaust.  Diffusion coefficient for
CO in gas mixture.  Film thickness and reaction rate coefficient for catalytic surface.

FIND:  (a) Mole fraction of CO at catalytic surface and CO removal rate, (b) Effect of reaction rate
coefficient on removal rate.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state, (2) One-dimensional species diffusion in film, (3) Negligible
effect of advection in film, (4) Constant total molar concentration and diffusion coefficient in film.

ANALYSIS:  From Eq. (14.60) the surface molar concentration is

( ) ( ) ( )
A,L

A 4 21 AB

x 0.0012
x 0 0.0008

1 Lk / D 1 0.01m 0.005m / s /10 m / s−
= = =

′′+ + ×
<

With C = p/•T = 1.2 bar/(8.314 × 10
-2

 m
3⋅bar/kmol⋅K × 773 K) = 0.0187 kmol/m

3
, Eq. (14.61) yields

a CO molar flux, and hence a CO removal rate, of

( ) ( )
1 A,L

A,s A
1 AB

k C x
N N 0

1 Lk / D

′′
′′ ′′= − =

′′+

( )
3

8 2
A,s 4 2

0.005m / s 0.0187 kmol / m 0.0012
N 7.48 10 kmol / s m

1 0.01m 0.005m / s /10 m / s

−
−

× ×′′ = = × ⋅
+ ×

<

If the process is diffusion limited, 1 ABLk / D 1′′ >>  and

3 4 2
AB A,L 7 2

A,s
C D x 0.0187 kmol / m 10 m / s 0.0012

N 2.24 10 kmol / s m
L 0.01m

−
−× ×′′ = = = × ⋅ <

COMMENTS:  If the process is reaction limited, A,s 1N 0as k 0.′′ ′′→ →



PROBLEM 14.25

KNOWN:  Partial pressures and temperatures of CO2 at opposite ends of a circular tube which also
contains nitrogen.

FIND:  Mass transfer rate of CO2 through the tube.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional diffusion, (3) Uniform
temperature and total pressure.

PROPERTIES:  Table A-8, CO2 – N2 (T ≈ 298 K, 1 atm): DAB = 0.16 × 10
-4

 m
2
/s.

ANALYSIS:  From Eq. 14.70 the CO2 molar transfer rate is

( )2
AB A,0 A,L

A

D D / 4 p p
N

T L

π −
=

ℜ

( ) ( ) ( )24 2

A 3
0.16 10 m / s / 4 0.05 m 100 50 mmHg

N
1 m 760 mmHg/atm0.08205 m atm/kmol K 298 K

π−× −
=

×⋅ ⋅ ×

11
AN 8.45 10 kmol/s.−= ×

The mass transfer rate is then
11

A A An N 44kg/kmol 8.45 10 kmol/s−= = × ×M

9
An 3.72 10 kg/s.−= × <

COMMENTS:  Although the molar transfer rate of N2 in the opposite direction is NB = 8.45 × 10
-11

kmol/s, the mass transfer rate is

11 9
B B Bn N 28 kg/kmol 8.45 10 kmol/s 2.37 10 kg/s.− −= = × × = ×M



PROBLEM 14.26

KNOWN:  Conditions associated with evaporation from a liquid in a column, with vapor (A) transfer
occurring in a gas (B).  In one case B has unlimited solubility in the liquid; in the other case it is
insoluble.

FIND:  Case characterized by the largest evaporation rate and ratio of evaporation rates if pA = 0 at

the top of the column and pA = p/10 at the liquid interface.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional species transfer, (3) Uniform
temperature and total pressure in the column, (4) Constant properties.

ANALYSIS:  If gas B has unlimited solubility in the liquid, the solution corresponds to equimolar
counter diffusion of A and B.  From Eqs. 14.63 and 14.68, it follows that

A,0 A,LA
A,x AB AB

x xdx
N CD CD .

dx L

−
′′ = − = (1)

If gas B is completely insoluble in the liquid, the diffusion of A is augmented by convection and from
Eqs. 14.73 and 14.77

A,LA AB
A,x AB A x

A,0

1 xdx CD
N CD C v ln .

dx L 1 x
∗ −

′′ = − + =
−

(2)

Comparing Eqs. (1) and (2), it is obvious that the evaporation rate for the second case exceeds that for
the first case.  Also

( )
( )

( )( )
( ) ( ) ( ) ( ) ( )

A,x sol AB A,0 A,L

A,x insol AB A,L A,0

N CD / L x x 0.1 0
N ln 1 0 / 1 0.1CD / L ln 1 x / 1 x

′′ − −= =
′′  − −− −  

( )
( )

A,x sol

A,x insol

N
0.949.

N

′′
=

′′
<

COMMENTS:  The above result suggests that, since the mole fraction of the saturated vapor is
typically small, the rate of evaporation in a column is well approximated by the result corresponding to
equimolar counter diffusion.



PROBLEM 14.27

KNOWN:  Water in an open pan exposed to prescribed ambient conditions.

FIND:  Evaporation rate considering (a) diffusion only and (b) convective effects.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional diffusion, (3) Constant properties,
(4) Uniform T and p, (5) Perfect gas behavior.

PROPERTIES:  Table A-8, Water vapor-air (T = 300 K, 1 atm), DAB = 0.26 × 10
-4

 m
2
/s; Table A-6,

Water vapor (T = 300 K, 1 atm), psat = 0.03513 bar, vg = 39.13 m
3
/kg.

ANALYSIS:  (a) The evaporation rate considering only diffusion follows from Eq. 14.63 simplified for
a stationary medium.  That is,

A
A,x A,x AB

dC
N N A D A .

dx
′′= ⋅ = −

Recognizing that φ  ≡ pA/pA,sat = CA/CA,sat, the rate is expressed as

( )A, A,s AB
A,x AB A,sat

C C D A
N D A C 1

L L
φ∞

∞
−

= − = −

( )( ) ( )
4 2 2

8
A,x 3 3

0.26 10 m / s / 4 0 .2m 1
N 1 0.25 1.087 10 kmol/s

80 10 m 39.13 m /kg 18 kg/kmol

π−
−

−
×

= − = ×
× ×

where ( )A,s g AC 1/ v= M  with A 18 kg/kmol.=M

(b)The evaporation rate considering convective effects using Eq. 14.77 is

AB AL
A,x A,x

A,0

CD A 1 x
N N A ln .

L 1 x
−′′= ⋅ =
−

Using the perfect gas law, the total concentration of the mixture is

( )2 3 3C p/ T 1.0133 bar/ 8.314 10 m bar/kmol K 300K 0.04063 kmol/m−= ℜ = × ⋅ ⋅ × =

where p = 1 atm = 1.0133 bar.  The mole fractions at x = 0 and x = L are

A,s
A,0 A,L A,0

p 0.03531bar
x 0.0348 x x 0.0087.

p 1.0133bar
φ∞= = = = =

Hence

( )( )3 4 2 2
8

A,x 3

0.04063 k m o l / m 0.26 10 m / s / 4 0.2 m 1 0.0087
N ln 1.107 10 kmol/s.

1 0.034880 10 m

π−
−

−
× × −

= = ×
−×

<

COMMENTS:  For this situation, the convective effect is very small but does tend to increase (by
1.5%) the evaporation rate as expected.



PROBLEM 14.28

KNOWN:  Vapor concentrations at ends of a tube used to grow crystals.  Presence of an inert gas.
Ends are impermeable to the gas.  Constant temperature.

FIND:  Vapor molar flux and spatial distribution of vapor molar concentration.  Location of maximum
concentration gradient.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional, steady-state conditions, (2) Constant properties, (3) Constant
pressure, hence C is constant.

ANALYSIS:  Physical conditions are analogous to those of the evaporation problem considered in
Section 14.4.4 with

CA,0 > CA,L → diffusion of vapor from source to crystal,

CB,L > CB,0 → diffusion of inert gas from crystal to source,

Impermeable ends → absolute flux of species B is zero ( )B,xN 0 ;′′ =  hence B,xv 0.=

Diffusion of B from crystal to source must be balanced by advection from source to crystal.  The

advective velocity is x A,xv N /C.∗ ′′=   The vapor molar flux is therefore determined by Eq. 14.77,

A,LAB
A,x

A,0

1 xCD
N ln

L 1 x

 −
′′ =   − 

<

and the vapor molar concentration is given by Eq. 14.75,

( )
x / L

A,LA
A A,0

A,0

1 xC
x 1 1 x .

C 1 x

 −
= = − −   − 

<

From Eq. 14.72,

( )A
A,x A AB

dx
N 1 x /CD

dx
′′= − −

( )A,xA
A

AB

NdC
1 x .

dx D

′′
= − −

Hence maximum concentration gradient corresponds to minimum xA and occurs at

x L.=

COMMENTS:  Vapor transfer is enhanced by the advection, which is induced by presence of the
inert gas.



PROBLEM 14.29

KNOWN:  Spherical droplet of liquid A and radius ro evaporating into stagnant gas B.

FIND:  Evaporation rate of species A in terms of pA,sat, partial pressure pA(r), the total pressure p and
other pertinent parameters.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional, radial, species diffusion, (3)
Constant properties, including total concentration, (4) Droplet and mixter air at uniform pressure and
temperature, (5) Perfect gas behavior.

ANALYSIS:  From Eq. 14.31 for a radial spherical coordinate system, the evaporation rate of liquid A
into a binary gas mixture A + B is

A A
A,r AB r A,r

dC C
N D A N

dr C
= − +

where Ar = 4πr
2
 and NA,r = NA, a constant,

2A A
A AB

C dC
N 1 D 4 r .

C dr
π − = − ⋅ ⋅  

From perfect gas behavior, A AC p / T= ℜ  and C p / T,= ℜ

( ) 2 A
A A AB

p dp
N p p D 4 r

T dr
π− = − ⋅ ⋅

ℜ

Separating variables, setting definite limits, and integrating

A,r

o A,ro

r p A
A 2r pAB A

T 1 dr dp
N

p 4 D p prπ
ℜ− =

−∫ ∫
find that

( )A
A o AB

o A,o

p p rp 1
N 4 r D ln

T 1 r / r p p
π

−
=

ℜ − −
<

where ( )A,o A o A,satp p r p ,= =  the saturation pressure of liquid A at temperature T.

COMMENTS:  Compare the method of solution and result with the content of Section 14.4.4,
Evaporation in a Column.



PROBLEM 14.30

KNOWN:  Vent pipe on a methanol distillation system condenser discharges to atmosphere at 1 bar.
Cooler and vent at 21°C.  Vapor volume of cooler is 0.005 m

3
.

FIND:  (a) Weekly loss of methanol vapor due to diffusion out the vent pipe and (b) Weekly loss due
to expulsion of methanol vapor in the cooler once per hour caused by process heat rate change.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional species transport, (3) Uniform
temperature and total pressure in vent pipe, (4) Constant properties, (5) Perfect gas behavior.

PROPERTIES:  Methanol-air mixture (given, 273 K): DAB = 0.13 × 10
-4

 m
2
/s.

ANALYSIS:  (a) The methanol transfer rate through the vent follows from Eq. 14.77
2

A,2AB
A,x A,x c

A,1

1 p / pD CD
N N A ln

4 L 1 p / p
π −

′′= ⋅ =
−

where pA,2 = 0 and pA,1 = pA = 100 mmHg = 0.1333 bar = 13.3 kPa,

( )
2 3

2 3
p 1bar

C 4.093 10 kmol/m
T 8.314 10 m bar/kmol K 21 273 K

−
−

= = = ×
ℜ × ⋅ ⋅ +

( ) ( )( ) ( )4 2 4 23 / 2 3 / 2
AB ABD 294K D 273 294/273 0.13 10 m / s 294/273 0.145 10 m /s.− −= = × = ×

Substituting numerical values, find the rate on a weekly basis as

( )2 4 2
2 3

A
0.035 m 0.145 10 m / s 1 0

N 4.093 10 kmol/m ln
4 0.5 m 1 0.1333/1

π −
− × −= × × ×

−
53600 s / h 24 h / d a y 7day/week 9.883 10 kmol/week−× × × = ×

5
A A Am N 9.883 10 kmol/week 32 kg/kmol 0.00316 kg/week.−= = × × =M <

(b) The methanol vapor in the cooler of volume 0.005 m
3
 is expelled once per hour, so that the

additional mass loss is A A Am n ,= M  where nA is

3
5A

A 2 3
p V 0.1333bar 0.005m

n 2.728 10 kmol
T 8.314 10 m bar/kmol K 294 K

−
−

×= = = ×
ℜ × ⋅ ⋅ ×

from which it follows that
5

Am 2.728 10 kmol/ 24 7 32 kg/kmol 0.1467 kg/week.−= × × × × = <
COMMENTS:  Note that the loss through the vent is approximately 2% that lost by expulsion when
the process heat rate is varied.



PROBLEM 14.31

KNOWN:  Clean surface with pure steam has condensate rate of 0.020 kg/m
2⋅s for the prescribed

conditions.  With the presence of stagnant air in the steam, the condensate surface drops from 28°C to
24°C and the condensate rate is halved.

FIND:  Partial pressure of air in the air-steam mixture as a function of distance from the condensate
film.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) Constant properties including pressure in air-steam
mixture, (3) Perfect gas behavior.

PROPERTIES:  Table A-6, Water vapor:  psat (28°C = 301 K) = 0.03767 bar; psat (24°C = 297 K) =

0.02983 bar;  Table A-8, Water-air (298 K, 1 bar): DAB = 0.26 × 10
-4

 m
2
/s.

ANALYSIS:  The partial pressure distribution of the air as a function of distance y can be found from
the species (A) rate expression, Eq. 14.77,

( ) ( ) ( )A,y AB A,y A,0N CD / y ln 1 x / 1 x .′′ = − −

With B,y A,y B,0 A,0,C p/ T, x 1 x and x 1 x= ℜ = − = −  recognizing that xB = pB/p, find

( )B B,0 A,y
AB

T
p y p exp N y

pD

 ℜ′′= ⋅  
 

( ) ( ) ( )B,0 A,0 sat satp p p p 28 C p 24 C 0.03767 0.02983 bar 0.00784 bar.= − = ° − ° = − =

With ( ) 2 4 2
A,yN 0.020/2 kg /m s/28kg/kmol 3.57 10 kmol/m s,−′′ = − ⋅ = × ⋅

( )B

2 3
4 2

4 2
8.314 10 m bar/kmol K 299 K

p y 0.0784 bar exp 3.57 10 kmol/m s
0.03767 bar 6.902 10 m / s

−
−

−

 × ⋅ ⋅ × = × × ⋅ × × 

( ) ( )B
p y 784 kPa exp 0.3415y= × −

with pB in [kPa] and y in [mm], where T = 26°C = 299 K, the average temperature of the air-steam

mixture, and DAB ≈ p
-1

 T
3/2

 = 0.26 × 10
-4

 m
2
/s (1/0.03767) (299/298)

3/2
 = 6.902 × 10

-4
 m

2
/s.  Selected

values for the pressure are shown below and the distribution is shown above:

y (mm)   0   5   10  15
pB(y) (kPa) 784 142 25.8 4.7

COMMENTS:  To minimize inert gas effects, the usual practice is to pass vapor over the surfaces so
that the inerts are eventually collected near the outlet region of the condenser.  Our estimate shows
that the effective region to be swept is approximately 10 mm thick.



PROBLEM 14.32

KNOWN:  Column containing liquid phase of water (A) evaporates into the air (B) flowing over the
mouth of the column.

FIND:  Evaporation rate of water (kg/h⋅m2
) using the known value of the binary diffusion coefficient

for the water vapor - air mixture.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state, one-dimensional diffusion in the column, (2) Constant
properties, (3) Uniform temperature and pressure throughout the column, (4) Water vapor exhibits
ideal gas behavior, and (5) Negligible water vapor in the chamber air.

PROPERTIES:  Table A-6, water (T = 320 K):  psat = 0.1053 bar; Table A-8, water vapor-air (0.25

atm, 320 K):  Since DAB ~ p
-1

 T
3/2

 find

D  m s 1.00 / 0.25  320 / 298  m sAB
2 2= × = ×− −0 26 10 1157 104 3 2 4. / . //� � � �

ANALYSIS:  Equimolar counter diffusion occurs in the vertical column as water vapor, evaporating
at the liquid-vapor interface (x = 0), diffuses up the column through air out into the chamber.  From
Eq. 14.7, the molar flow rate per unit area is

′′ =
−
−

N
C D

L
ln

1 x

1 xA,x
AB A,L

A,0
where C is the mixture concentration determined from the ideal gas law as

3
2 3u

p 0.25 atm
C 0.009397 kmol/m

T 8.205 10  m atm/kmol K 320 KR −= = =
× ⋅ ⋅ ×

where 2 3
u 8.205 10  m atm/kmol K.R −= × ⋅ ⋅   The mole fractions at x = 0 and x = L are

xA,L = 0 (no water vapor in air above column)

x p pA,0 A= = =/ . / . .01053 0 25 0 4212

where pA is the saturation pressure for water at T = 320 K.  Substituting numerical values

′′ = × × −
−

−
N

 kmol / m  m s

0.150 m
ln

1 0

1 0.4212A,x

3 20 009397 1157 10 4. . / � �
� �

′′ = × ⋅−N  kmol / m sA,x
23 964 10 6.

or, on a mass basis,

′′ = ′′m NA,x A,x AM

′′ = × ⋅ × ×−m  kmol / m s 3600 s / h 18 kg / kmolA,x
23964 10 6.

′′ = ⋅m  kg / m hA,x
20 257. <



PROBLEM 14.33

KNOWN:  Ground level flux of NO2 in a stagnant urban atmosphere.

FIND:  (a) Vertical distribution of NO2 molar concentration, (b) Critical ground level flux of NO2,

A,0,critN .′′

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional diffusion in a stationary medium,
(3) Total molar concentration C is uniform, (4) Perfect gas behavior.

ANALYSIS:  (a) For the prescribed conditions the molar concentration of NO2 is given by Eq. 14.80,
subject to the following boundary conditions.

( ) A,0A
A

ABx 0

NdC
C 0, .

dx D=

′′∞ = = −

From the first condition, C1 = 0.  From the second condition,

2 A,0 ABmC N / D .′′− = −

Hence

( ) A,0 mx
A

AB

N
C x e

mD
−′′

= <

where m = (k1/DAB)
1/2

.

(b) At ground level, ( ) A,0
A

AB

N
C 0 .

mD

′′
=   Hence, from the perfect gas law,

( ) ( ) A,0
A A

AB

TN
p 0 C 0 T .

mD

′′ℜ
= ℜ =

Hence, with m = (0.03/0.15 × 10
-4

)
1/2

 m
-1

 = 44.7 m
-1

.

( ) 1 4 2 6AB A crit
A,0,crit 2 3

mD p 0 44.7m 0.15 10 m / s 2 10 bar
N

T 8.314 10 m bar/kmol K 300 K

− − −

−
× × × ×′′ = =

ℜ × ⋅ ⋅ ×

11 2
A,0,critN 5.38 10 kmol/s m .−′′ = × ⋅ <

COMMENTS:  Because the dispersion of pollutants in the atmosphere is governed strongly by
convection effects, the above model should be viewed as a first approximation which describes a worst
case condition.



PROBLEM 14.34

KNOWN:  Radius of a spherical organism and molar concentration of oxygen at surface.  Diffusion
and reaction rate coefficients.

FIND:  (a) Radial distribution of O2 concentration, (b) Rate of O2 consumption, (c) Molar
concentration at r = 0.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state, one-dimensional diffusion, (2) Stationary medium, (3) Uniform

total molar concentration, (4) Constant properties (k0, DAB).

ANALYSIS:  (a) For the prescribed conditions and assumptions, Eq. (14.40) reduces to

2AB A
02

D d d C
r k 0

dr drr

  − =  

3
2 0A

1
AB

k rd C
r C

dr 3D
= +

2
0 1

A 2
AB

k r C
C C

6 D r
= − +

With the requirement that CA(r) remain finite at r = 0, C1 = 0.  With CA(ro) = CA,o

2
0 o

2 A,o
AB

k r
C C

6 D
= −

( )( )2 2
A A,o 0 AB oC C k / 6 D r r= − − <

Because CA cannot be less than zero at any location within the organism, the right-hand side of the

foregoing equation must always exceed zero, thereby placing limits on the value of CA,o.  The

smallest possible value of CA,o is determined from the requirement that CA(0) ≥ 0, in which case

( )2
A,o 0 o ABC k r / 6 D≥ <

(b) Since oxygen consumption occurs at a uniform volumetric rate of k0, the total respiration rate is

0R k ,= ∀�  or

( ) 3
o 0R 4 / 3 r kπ=� <

Continued …..



PROBLEM 14.34 (Cont.)

(c) With r = 0,

( ) 2
A A,o 0 o ABC 0 C k r / 6D= −

( ) ( )25 3 4 3 4 8 2
AC 0 5 10 kmol / m 1.2 10 kmol / s m 10 m / 6 10 m / s− − − −= × − × ⋅ ×

( ) 5 3
AC 0 3 10 kmol / m−= × <

COMMENTS:  (1) The minimum value of CA,o for which a physically realistic solution is possible is
2 5 3

A,o 0 o ABC k r / 6D 2 10 kmol / m .−= = ×

(2) The total respiration rate may also be obtained by applying Fick’s law at r = ro, in which case

( ) ( ) ( )( ) ( )o
2 2 3

A o AB o A r r AB o o AB o o 0R N r D 4 r d C / dr D 4 R k / 6 D 2r 4 / 3 r k .π π π== − = + = =�

The result agrees with that of part (b).



PROBLEM 14.35

KNOWN:  Radius of a spherical organism and molar concentration of oxygen at its surface.
Diffusion and reaction rate coefficients.

FIND:  (a) Radial distribution of O2 concentration, (b) Expression for rate of O2 consumption, (c)
Molar concentration at r = 0 and rate of oxygen consumption for prescribed conditions.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state, one-dimensional diffusion, (2) Stationary medium, (3) Uniform

total molar concentration, (4) Constant properties (k1, DAB).

ANALYSIS:  (a) For the prescribed conditions and assumptions, Eq. (14.40) reduces to

2 A
AB 1 A2

1 d d C
D r k C 0

dr drr

  − =  

With y ≡ r CA, d CA/dr = (1/r) dy/dr – y/r
2
 and

2
2 A AB AB

AB2 2 2 2
1 d d C D d dy D d y

D r r y r
dr dr dr drr r r dr

      = − =          

The species equation is then

2
1

2 AB

d y k
y 0

Ddr
− =

The general solution is of the form

( ) ( )1/ 2 1/ 2
1 1 AB 2 1 ABy C sinh k / D r C cosh k / D r= +

or

( ) ( )1/ 2 1/ 21 2
A 1 AB 1 AB

C C
C sinh k / D r cosh k / D r

r r
= +

Because CA must remain finite at r = 0, C2 = 0.  Hence, with CA (ro) = CA,o,

( )
A,o o

1 1/ 2
1 AB o

C r
C

sinh k / D r
=

and

Continued …..



PROBLEM 14.35 (Cont.)

( )
( )

o
1/ 2

r 1 AB
A A,o 1/ 2

1 AB o

sinh k / D r
C C

r sinh k / D r

 
=    

<

(b) The total O2 consumption rate corresponds to the rate of diffusion at the surface of the organism.

( ) ( ) o
2

A o AB o A rR N r D 4 r d C / drπ= − = +�

( ) ( )1/ 2 1/ 22
o AB A,o o 1 AB 1 AB o2 oo

1 1
R 4 r D C r k / D cot k / D r

rr
π

 
= − + 

  
�

( )o AB A,oR 4 r D C coth 1π α α= −� <

where ( )1/ 22
1 o ABk r / D .α ≡

(c) For the prescribed conditions, (k1/DAB)
1/2

 = (20 s
-1

 ÷ 10
-8

 m
2
/s)

1/2
 = 44,720 m

-1
 and α = 4.472.

( )
( ) ( )1/ 2 1/ 25 3 4

101 AB 1 AB
A 3

sinh k / D r sinh k / D r5 10 kmol / m 10 m kmol
C 1.136 10

sinh 4.472 r rm

− −
−× ×

= × = × ×

In the limit of r → 0, the foregoing expression yields

( ) 6 3
AC r 0 5.11 10 kmol / m−→ = × <

( )4 8 2 5 3R 4 10 m 10 m / s 5 10 kmol / m 4.472coth 4.472 1π − − −= × × × × −�

152.18 10 kmol / s−= ×

COMMENTS:  The total respiration rate may also be obtained by integrating the volumetric rate of

consumption over the volume of the organism.  That is, ( )or 2
A 1 A0

R N d k C r 4 r dr.π= − ∀ =∫ ∫� �



PROBLEM 14.36

KNOWN:  Radius and catalytic reaction rate of a porous spherical pellet.  Surface mole fraction of
reactant and effective diffusion coefficient.

FIND:  (a) Radial distribution of reactant concentration in pellet, total reactant consumption rate, and
pellet effectiveness, (b) CO consumption rate and effectiveness for prescribed conditions.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional radial diffusion, (3) Constant
properties, (4) Homogeneous chemical reactions, (5) Isothermal, constant pressure conditions within
pellet, (6) Stationary medium.

ANALYSIS:  (a) In spherical coordinates, the mass diffusion equation is given by

2 A
AB A2

1 x
CD r N 0

r rr

∂ ∂ + = ∂ ∂ 
&

where C, DAB are constant and A 1 v AN k A C .′= −&   Hence

2 1 vA
A2 eff

k A1 d dx
r x 0.

dr dr Dr

′  − =  
The boundary conditions are xA(ro) = xA,s and xA(0) is finite.  Transform the dependent variable, y ≡
rxA, with

2
2A A

2 2 2 2 2
dx 1dy y 1 d dx 1 d dy 1 d y

or r r y r .
dr r dr dr dr dr drr r r r dr

      = − = − =          
Hence

2
1 v

2 eff

k Ad y
y 0.

Ddr

′
− =

The general solution is of the form

( ) ( )1 2y C sinh ar C cosh ar= +

where ( )1/2
1 v effa k A / D giving′≡

( ) ( )1 2
A

C C
x sinh ar cosh ar

r r
= +

and using the boundary conditions,

( ) ( ) ( )A 2 A o A,s 1 A,so ox 0 finite C 0 x r x C x r /sinh ar .→ = = → =

Continued …..



PROBLEM 14.36 (Cont.)

Hence

( ) ( ) ( )
( )A A,s o

o

sinh ar
x r x r / r .

sinh ar
= <

Applying conservation of species to a control volume about the pellet, A,in A,gN N 0,+ =& &  the total

rate of consumption of A in the pellet is

( ) ( )2
A,g A,in A,r o o A,r oN N N r 4 r J r .π ∗− = = =& &

Hence

( ) ( ) ( )
( ) ( )

o o

3
2 oA

A,r o o eff eff A,s 2 2or r r r

sinh ar cosh ar4 rdx
N r 4 r CD CD x

dr sinh ar r r

ππ
= =

  = − = −     

( ) ( )
o

A,r o o eff A,s
o

ar
N r 4 r CD x 1 .

tanh ar
π

 
= − 

  
<

The pellet effectiveness ε  is defined as ε  ≡ NA,r(ro)/[NA,r(ro)]max and the maximum consumption

occurs if xA(r) = xA,s for all 0 ≤ r ≤ ro.  Hence

( ) 3
A,r o A p 1 v A,s omax

4
N r N V k A Cx r

3
π  ′= = − 

&

( )
o

2 2 oo

ar3
1 .

tanh ara r
ε

 
= − − 

  
<

(b) To evaluate the rate, first determine values for these parameters:

3
3

p 1.2atm
C 0.0178 kmol/m

T 0.08205 m atm/kmol K 823 K
= = =

ℜ ⋅ ⋅ ×

1/21/2 3 8 2 3
4 11 v

5 2eff

k A 10 m / s 10 m / m
a 7.07 10 m

D 2 10 m / s

−
−

−

  ′ × = = = ×   ×   

( )o oar 176.8 tanh ar 1.= =

Hence the consumption rate is

( ) ( ) ( )3 5 2
A,r oN r 4 0.0025 m 0.0178 kmol/m 2 10 m / s 0.04 1 176.8π −= × × × −

( ) 8
A,r oN r 7.86 10 kmol/s−= − × <

and the effectiveness is

( ) ( )
[ ]2 24 1

3
1 176.8 0.0169

7.07 10 m 0.0025 m

ε
−

= − − =
×

<

COMMENTS:  For the range of conditions of interest, ε  ≈ 3/aro.  Hence ε  may be increased by

o 1 v effr , k , A and D .′↓ ↓ ↓ ↑   However, ( )A,r oN r  would decrease with o 1 vr , k and A .′↓ ↓ ↓



PROBLEM 14.37

KNOWN:  Molar concentrations of oxygen at inner and outer surfaces of lung tissue.  Volumetric rate
of oxygen consumption within the tissue.

FIND:  (a) Variation of oxygen molar concentration with position in the tissue, (b) Rate of oxygen
transfer to the blood per unit tissue surface area.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional species transfer by diffusion
through a plane wall, (3) Homogeneous, stationary medium with uniform total molar concentration and
constant diffusion coefficient.

ANALYSIS:  (a) From Eq. 14.78 the appropriate form of the species diffusion equation is
2

A
AB o2

d C
D k 0.

dx
− =

Integrating,

( ) 2o
A o AB 1 A 1 2

AB

k
dC /dx k / D x C C x C x C .

2D
= + = + +

With ( ) ( )A A A AC C 0 at x 0 and C C L at x L,= = = =

( ) ( ) ( )A A o
2 A 1

AB

C L C 0 k L
C C 0 C .

L 2D

−
= = −

Hence

( ) ( ) ( ) ( ) ( )o
A A A A

AB

k x
C x x x L C L C 0 C 0 .

2D L
 = − + − +  <

(b) The oxygen assimilation rate per unit area is

( ) ( )A,x AB A x LN L D dC /dx =′′ = −

( ) ( ) ( )o o AB
A,x AB A A

AB AB

k L k L D
N L D C L C 0

D 2D L

 
′′  = − − − −   

 

( ) ( )o AB
A,x A A

k L D
N C 0 C L .

2 L
′′  = − + −  <

COMMENTS:  The above model provides a highly approximate and simplified treatment of a
complicated problem.  The lung tissue is actually heterogeneous and conditions are transient.



PROBLEM 14.38

KNOWN:  Combustion at constant temperature and pressure of a hydrogen-oxygen mixture adjacent
to a metal wall according to the reaction 2H2 + O2 → 2H2O.  Molar concentrations of hydrogen,

oxygen, and water vapor are 0.10, 0.10 and 0.20 kmol/m
3
, respectively.  Generation rate of water

vapor is 0.96 × 10
-2

 kmol/m
3⋅s.

FIND:  (a) Expression for 
2HC  as function of distance from wall, plot qualitatively, (b) 

2HC  at the

wall, (c) Sketch also curves for ( ) ( )2 2O H OC x and C x ,  and (d) Molar flux of water at x = 10mm.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional diffusion, (3) Stationary mixture,
(4) Constant properties including pressure and temperature.

PROPERTIES:  Species binary diffusion coefficient (given, for H2, O2 and H2O):  DAB = 0.6 × 10
-5

m
2
/s.

ANALYSIS:  (a) The species conservation equation, Eq. 14.38b, and its general solution are

( )
2

A A A
A 1 22 AB AB

d C N N
0 C x x C x C .

D 2Ddx
+ = = − + +

& &
(1,2)

The boundary condition at the wall must be dCA(0)/dx = 0, such that C1 = 0.  For the species hydrogen,

evaluate C2 from knowledge of ( )2
3

HC 10 mm 0.10 kmol/m=  and 
2 2H H ON N ,= −& &  according

to the chemical reaction.  Hence,

( )
( )

2 3
23

25 2

0.96 10 kmol/m s
0.10 kmol/m 0.010 m 0 C

2 0.6 10 m / s

−

−

− × ⋅
= − + +

× ×

3
2C 0.02 kmol/m .=

Hence, the hydrogen species concentration distribution is

( ) 2
2

H 2 2
H

AB

N
C x x 0.02 800x 0.02

2D
= − + = +

&
<

which is parabolic with zero slope at the wall; see sketch above.

(b) The value of 2HC  at the wall is,

( ) ( )2
3 3

HC 0 0 0.02 kmol/m 0.02 kmol/m .= + = <

Continued …..



PROBLEM 14.38 (Cont.)

(c) The concentration distribution for water vapor species will be of the same form,

( ) 2
2

H O 2
H O 1 2

AB

N
C x x C x C

2D
= − + +

&
(3)

With C1 = 0 for the wall condition, find C2 from ( )2H OC 10 mm ,

( )
( )

2 3
3 32

2 25 2

0.96 10 kmol /m
0.20 kmol/m 0.010 m C C 0.28 k m o l / m .

2 0.6 10 m / s

−

−

×
= − + =

× ×

Hence, 2H OC  at the wall is,

( )2
3

H O 2C 0 0 0 C 0.28 kmol/m= + + =

and its distribution appears as above.  Recognizing that 
2 2O H ON 0.5N ,= −& &  by the same analysis, find

( )2
3

OC 0 0.06 kmol/m=

and its shape, also parabolic with zero slope at the wall is shown above.

(d) The molar flux of water vapor at x = 10 mm is given by Fick’s law

2
2

H O
H O,x AB

dC
N D

dx
′′ = −

and using the concentration distribution of Eq. (3), find

2
2 2

H O 2
H O,x AB H O

AB

Nd
N D x N x

dx 2D

 
′′ = − − = +   

&
&

and evaluation at the location x = 10 mm, the species flux is

( ) ( )2 x
2 3 5 2

H O,N 10 mm 0.96 10 kmol/m s 0.010 m 9.60 10 kmol/m s.− −′′ = + × ⋅ × = × ⋅ <

COMMENTS:  Note that the generation rate of water vapor is a positive quantity.  Whereas for H2

and O2, species are consumed and hence 
2 2H ON and N& &  are negative.  According to the chemical

reaction one mole of H2 and 0.5 mole of O2 are consumed to generate one mole of H2O.  Therefore,

2 2H H O H O2 2N N O and N 0.5 N .= − = −& & & &



PROBLEM 14.39

KNOWN:  Ground level flux of NO2 in a stagnant urban atmosphere.

FIND:  (a) Governing differential equation and boundary conditions for the molar concentration of
NO2, (b) Concentration of NO2 at ground level three hours after the beginning of emissions.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional diffusion in a stationary medium, (2) Uniform total molar
concentration, (3) Constant properties.

ANALYSIS:  (a) Applying the species conservation requirement, Eq. 14.33, on a molar basis to a unit
area of the control volume,

( ) A
A,x 1 A A,x dx

C
N k C dx N dx.

t+
∂′′ ′′− − =

∂

With ( ) ( )A,x dx A,x A,x A,x AB AN N N / x dxand N D C / x ,+′′ ′′ ′′ ′′= + ∂ ∂ = − ∂ ∂  it follows that

2
A A

AB 1 A2
C C

D k C .
tx

∂ ∂− =
∂∂

<

Initial Condition: ( )AC x,0 0.= <

Boundary Conditions: ( )A
AB A,0 A

x 0

C
D N , C , t 0.

x =

∂  ′′− = ∞ =∂ 
<

(b) The present problem is analogous to Case (2) of Fig. 5.7 for heat conduction in a semi-infinite
medium.  Hence by analogy to Eq. 5.59, with AB ABk D and D ,α↔ ↔

( )
( )

1/2 2
A,0

A A,0 1/2AB AB AB AB

N xt x x
C x,t 2N exp erfc

D 4D t D 2 D tπ

   ′′   ′′  = − −          

At ground level (x = 0) and 3h,

( )
1/2

A A,0
AB

t
C 0,3h 2N

Dπ
 ′′=  
 

( ) ( ) ( )1 / 211 2 4 2 7 3
AC 0,3h 2 3 10 kmol/s m 10,800s / 0.15 10 m / s 9.08 10 kmol /m .π− − −= × ⋅ × × = × <

COMMENTS:  The concentration decays rapidly to zero with increasing x, and at x = 100 m it is, for
all practical purposes, equal to zero.



PROBLEM 14.40

KNOWN:  Carbon dioxide concentration at water surface and reaction rate constant.

FIND:  (a) Differential equation which governs variation with position and time of CO2 concentration
in water, (b) Appropriate boundary conditions and solution for a deep body of water with negligible
chemical reactions.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional diffusion in x, (2) Constant properties, including total density
ρ, (3) Water is stagnant.

ANALYSIS:  (a) From Eq. 14.37b, it follows that, for the prescribed conditions,
2

A A
AB 1 A2

D k .
tx

ρ ρρ∂ ∂− =
∂∂

<

The first term on the left-hand side represents the net transport of CO2 into a differential control

volume by diffusion.  The second term represents the rate of CO2 consumption due to chemical

reactions.  The term on the right-hand side represents the rate of increase of CO2 storage within the
control volume.

(b) For a deep body of water, appropriate boundary conditions are

( )A A,00,tρ ρ=

( )A , t 0ρ ∞ =

and, with negligible chemical reactions, the species diffusion equation reduces to

2
A A
2 AB

1
.

D tx

ρ ρ∂ ∂=
∂∂

With an initial condition, ρA(x,0) ≡ ρA,i = 0, the problem is analogous to that involving heat transfer in a
semi-infinite medium with constant surface temperature.  By analogy to Eq. 5.57, the species
concentration is then

( )
( )

A A,0
1/2A,0 AB

x,t x
erf

2 D t

ρ ρ
ρ

 −  =
 −  

( )
( )

A A,0 1/2
AB

x
x,t erfc .

2 D t
ρ ρ

 
 =
 
 

<



PROBLEM 14.41

KNOWN:  Initial concentration of hydrogen in a sheet of prescribed thickness.  Surface
concentrations for time t > 0.

FIND:  Time required for density of hydrogen to reach prescribed value at midplane of sheet.

SCHEMATIC:
     CA(x,0) = 3 kmol/m

3
 = CA,i

     CA(0,tf) = 1.2 kg/m
3
/2 kg/kmol

     CA(0,tf) = 0.6 kmol/m
3
 = CA

     CA(20 mm,t) = 0 = CA,s

ASSUMPTIONS:  (1) One-dimensional diffusion in x, (2) Constant DAB, (3) No internal chemical
reactions, (4) Uniform total molar concentration.

ANALYSIS:  Using Heisler chart with heat and mass transfer analogy

A A,s
o

A,i A,s

C C 0.6 0
0.2

C C 3.0 0
γ γ∗ ∗− −= = = =

− −

With Bim = ∞, Fig. D.1 may be used with
1

o 0.2, Bi 0θ∗ −= =
Fo 0.75.≈

Hence

AB f
m 2

D t
Fo 0.75

L
= =

( )2 7 2
ft 0.75 0.02 m /9 10 m / s−= ×

ft 333s.= <
COMMENTS:  If the one-term approximation to the infinite series solution

( ) ( )2
n n n

n 1
C exp Fo cos xθ ς ς

∞
∗ ∗

=
= −∑

is used, it follows that

( )2
o 1 m1C exp Fo 0.2γ ς∗ ≈ − =

Using values of 1 11.56 and C 1.27,ς = =  it follows that

( )2 mexp 1.56 Fo 0.157 − =  

mFo 0.76=

which is in excellent agreement with the result from the chart.



PROBLEM 14.42

KNOWN:  Sheet material has high, uniform concentration of hydrogen at the end of a process, and is
then subjected to an air stream with a specified, low concentration of hydrogen.  Mass transfer

parameters specified include:  convection mass transfer coefficient, hm, and the mass diffusivity and

solubility of hydrogen (A) in the sheet material (B), DAB and SAB, respectively.

FIND:  (a) The final mass density of hydrogen in the material if the sheet is exposed to the air stream

for a very long time, ρA,f, (b) Identify and evaluate the parameter that can be used to determine
whether the transient mass diffusion process in the sheet can be characterized by a uniform
concentration at any time; Hint: this situation is analogous to the lumped capacitance method for a
transient heat transfer process; (c) Determine the time required to reduce the hydrogen concentration
to twice the limiting value calculated in part (a).

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional diffusion, (2) Material B is stationary medium, (3) Constant
properties, (4) Uniform temperature in air stream and material, and (5) Ideal gas behavior.

ANALYSIS:  (a) The final content of H2 in the material will depend upon the solubility of H2 (A) in
the material (B) and its partial pressure in the free stream.  From Eq. 14.44,

C S  p  kmol / m atm 0.1 atm 16 kmol / mA,f AB A,
3 3= = ⋅ × =∞ 160

ρf A A,f
3 3 C  kg / kmol 16 kmol / m  kg / m= = × =M 2 32 <

(b) The parameters associated with transient diffusion in the material follow from the analogous
treatment of Section 5.2 (Fig. 5.3) and are represented in the schematic.

In the material, from Fick’s law, the diffusive flux is

′′ = −N D  C C LA,dif AB A,1 A,2� � / (1)

At the surface, x = L, the rate equation, Eq. 6.8, convective flux of species A is

′′ = − ∞N h  C CA,conv m A,s A,� �
Continued …..



PROBLEM 14.42 (Cont.)

and substituting the ideal gas law, Eq. 14.9, and introducing the solubility relation, Eq. 14.44,

′′ = −
∞

∞N
h

S   T
 S  p S  pA,conv

m

AB u
AB A,s AB A,R
� �

′′ = −
∞

∞N
h

S   T
 C CA,conv

m

AB u
2,s A,R

� � (2)

where CA,∞ = CA,f, the final concentration in the material after exposure to the air stream a long time.
Considering a surface species flux balance, as shown in the schematic above, with the rate equations
(1) and (2),

D  C C

L

h

S   T
 C C

AB A,1 A,2 m

AB u
A,s A,f

−
= −

∞

� �
� �

R

C C

C C

h S   T

D L
BiA,1 A,2

A,s A,f

m AB u

AB

m,dif

m,conv
m

−
−

= =
′′

′′
=∞/

/

R R

R
(3)

and introducing resistances to species transfer by diffusion, Eq. 14.51, and convection.  Recognize

from the analogy to heat transfer, Eq. 5.10 and Table 14.2, that when Bim < 0.1, the concentration can
be characterized as uniform during the transient process.  That is, the diffusion resistance is negligible
compared to the convection resistance,

Bi
h L

S   T  Dm
m

AB u AB
= <

∞R
01. (4)

Bi
 m / h 3600 s / h m

160 kmol / m atm 8.205 10 m atm / kmol K 555  K 2.68 10   m s
m 3 -2 3 -8 2

=
× ×

⋅ × × ⋅ ⋅ × × ×

15 0 003. .

/

� �

Bi   <   0.1m = × −6 60 10 3.

Hence, the mass transfer process can be treated as a nearly uniform concentration situation.  From
conservation of species on the material with uniform concentration,

− ′′ = ′′N NA,conv A,st�

− − =
∞

h

S   T
C C L 

d C

dt
m

AB u
A A,f

A
R

� �

Integrating, with the initial condition CA (0) = CA,i, find

C C

C C
exp

h  t

L S   T
A A,f

A,i A,f

m

AB u

−
−

= −
�
��

�
	
∞R

(5)     <

Continued …..



PROBLEM 14.42 (Cont.)

which is similar to the analogous heat transfer relation for the lumped capacitance analysis, Eq. 5.6.

(c) The time, to, required for the material to reach a concentration twice that of the limiting value,

CA (To) = 2 CA,f, can be calculated from Eq. (5).

2 1 16

8 205 10 2
− ×

= − ×

× ⋅ × × ⋅ ⋅ ×

�
��

�
	
−

� �
� �

 kmol / m

320 -16  kmol / m
exp

1.5 m / h t

0.003 m 160 kmol / m atm  m atm / kmol K 555 K

3

3
o

3 3.

t  houro = 42 9. <



PROBLEM 14.43

KNOWN:  Hydrogen-removal process described in Problem 14.3 (S), but under conditions for which

the mass diffusivity of hydrogen gas (A) in the sheet (B) is DAB = 1.8 × 10
-11

 m
2
/s (instead of

2.6 × 10
-8

 m
2
/s).  With a smaller DAB, a uniform concentration condition may no longer be assumed

to exist in the material during the removal process.

FIND:  (a) The final mass density of hydrogen in the material if the sheet is exposed to the air stream

for a very long time, ρA,f, (b) Identify and evaluate the parameters that describe the transient mass
transfer process in the sheet;  Hint: this situation is analogous to that of transient heat conduction in a
plane wall; (c) Assuming a uniform concentration in the sheet at any time during the removal process,
determine the time required to reach twice the limiting mass density calculated in part (a); (d) Using
the analogy developed in part (b), determine the time required to reduce the hydrogen concentration to
twice the limiting value calculated in part (a); Compare the result with that from part (c).

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional diffusion, (2) Material B is a stationary medium, (3)
Constant properties, (4) Uniform temperature in air stream and material, and (5) Ideal gas behavior.

ANALYSIS:  (a) The final content of H2 in the material will depend upon the solubility of H2 (A) in
the material (B) at its partial pressure in the free stream.  From Eq. 14.44,

C S  p  kmol / m atm 0.1 atm 16 kmol / mA,f AB A,
3 3= = ⋅ × =∞ 160

ρf A A,f
3 3 C  kg / kmol 16 kmol / m  kg / m= = × =M 2 32 <

(b) For the plane wall shown in the schematic below, the heat and mass transfer conservation
equations and their initial and boundary conditions are

Heat transfer Mass (Species A) transfer

∂
∂

α ∂
∂

 T

 t

T

 x2
=

2 ∂
∂

∂
∂

 C

 t
D

C

 x
A

AB
A
2

=
2

T x,0 Ti� � = C x CA A,i,0� � =

∂
∂
 T

 x
t0 0,� � = ∂

∂
 C

 x
tA 0 0,� � =

− = − ∞k
 T

 x
L, t h T L, t T

∂
∂
� � � � − = −D

 C

 x
L, t

h

S   T
C x, t CAB

A m

AB u
A f

∂
∂
� � � �

R

Continued …..



PROBLEM 14.43 (Cont.)

The derivation for the species transport surface boundary condition is developed in the solution for
Problem 14.3 (S).  The solution to the mass transfer problem is identical to the analogous heat transfer
problem provided the transport coefficients are represented as

h

k

h S   T

D
m AB u

AB
<=> / R

(1)

(c) The uniform concentration transient diffusion process is analogous to the heat transfer lumped-
capacitance process.  From the solution of Problem 14.3 (S), the time to reach twice the limiting

concentration, CA (to) = 2 CA,f, can be calculated as

C t C

C C
exp

h  t

L S   T
A o A,f

A,i A,f

m o

AB u

� �−
−

= −
�
��

�
��R

(2)

t  houro = 42 9. <

For the present situation, the mass transfer Biot number is

Bi
h  L

S   T Dm
m

AB u AB
=

R

Bi
 m / h / 3600 s / h  m

160 kmol / m atm 8.205 10 m atm / kmol K 555 K 1.8 10 m s
m 3 -2 3 -11 2

=
×

⋅ × × ⋅ ⋅ × × ×

15 0 003. .

/

� �

Bi  >>  0.1m = 9 5.

and hence the concentration of A within B is not uniform

(d) Invoking the analogy with the heat transfer situation, we can use the one-term series solution, Eq.
5.40, with Bi Bim <=>  and

Fo Fo Fo
D  t

L
m m

AB
2

<=> = (3)

Continued …..



PROBLEM 14.43 (Cont.)

With Bim = 9.5, find ζ1 = 1.4219 rad and C1 = 1.2609 from Table 5.1, so that Eq. 5.41 becomes

C  t C

C C
C  exp  FoA o A,f

A,i A,f
1 1

2
m

� �
	 


−
−

= −ς

2 1 16
12609

3
− ×

−
= −� �

� �
	 


 kmol / m

320 16 kmol / m
 exp 1.4219  Fo

3
2

m.

Fo
 m s t

0.003 m
m

2
o= × × =

−18 10
1571

11

2
. /

.
� �

t  houro = 218 <
COMMENTS:  (1) Since Bim = 9.5, the uniform concentration assumption is not valid, and we

expect the analysis to provide a longer time estimate to reach CA(to) = 2 CA,f.

(2) Note that the uniform concentration analysis model of part (c) does not include DAB.  Why is this
so?



PROBLEM 14.44

KNOWN:  Radius and temperature of air bubble in water.

FIND:  Time to reach 99% of saturated vapor concentration at center.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional radial diffusion of vapor in air, (2) Constant properties, (3)
Air is initially dry.

PROPERTIES:  Table A-8, Water vapor-air (300 K): DAB = 0.26 × 10
-4

 m
2
/s.

ANALYSIS:  Use Heisler charts with heat and mass transfer analogy,

A A,s A

A,i A,s A,s

C C C
1 .

C C C
γ ∗ −

≡ = −
−

For 1
o m1 0.99 0.01and Bi 0,γ ∗ −= − = =  from Fig. D.7 find Fom ≈ 0.52.  Hence with

AB
m 2

o

D t
Fo 0.52

r
= =

( )6 2 4 2t 0.52 10 m /0.26 10 m /s 0.02s.− −= × = <

COMMENTS:  (1) This estimate is likely to be conservative, since shear driven motion of air within
the bubble would enhance vapor transport from the surface to the center.

(2) If the one-term approximation to the infinite series solution,

( ) ( )n2
n n

nn 1

sin r
C exp Fo

r

ς
θ ς

ς

∗∞
∗

∗
=

= −∑

is used, it follows that with sin 0/0 = 1,

( )2
o 1 m1C exp Fo 0.1.γ ζ∗ ≈ − =

Using values of 1 1 mC 2.0 and 3.11for Bi 100,ς= = =  it follows that

( )2
m m0.01 2.0 exp 3.11 Fo or Fo 0.55 = − =  

which is in reasonable agreement with the Heisler chart result.



PROBLEM 14.45

KNOWN:  Initial carbon content and prescribed surface content for heated steel.

FIND:  Time required for carbon mole fraction to reach 0.01 at a distance of 1 mm from the surface.

SCHEMATIC:

ASSUMPTIONS:  (1) Steel may be approximated as a semi-infinite medium, (2) One-dimensional
diffusion in x, (3) Isothermal conditions, (4) No internal chemical reactions, (5) Uniform total molar
concentration.

ANALYSIS:  Conditions within the steel are governed by the species diffusion equation of the form
2

A A
2 AB

C 1 C
D tx

∂ ∂=
∂∂

or, in molar form,

2
A A
2 AB

x 1 x
.

D tx

∂ ∂=
∂∂

The initial and boundary conditions are of the form

( )Ax x,0 0.001=

( ) ( )A A,s Ax 0,t x 0.02 x , t 0.001.= = ∞ =

The problem is analogous to that of heat transfer in a semi-infinite medium with constant surface
temperature, and by analogy to Eq. 5.57, the solution is

( )
( )

A A,s
1/2A,i A,s AB

x x,t x x
erf

x x 2 D t

 −  =
 −  

where

[ ]5 11 2
ABD 2 10 exp 17,000/1273 3.17 10 m /s.− −= × − = ×

Hence

( )1/211

0.01 0.02 0.001m
0.526 erf

0.001 0.02
2 3.17 10 t−

 
 − = =  

−  ×  

where erf w = 0.526 → w ≈ 0.51,

( )1/2110.51 0.001/2 3.17 10 t or t 30,321s 8.42 h.−= × = = <



PROBLEM 14.46

KNOWN:  Thick plate of pure iron at 1000°C subjected to a carburizing process with sudden

exposure to a carbon concentration CC,s at the surface.

FIND:  (a) Consider the heat transfer analog to the carburization process; sketch the mass and heat
transfer systems; explain correspondence between variables; provide analytical solutions to the mass

and heat transfer situation; (b) Determine the carbon concentration ratio, CC (x, t)/CC,s, at a depth of 1
mm after 1 hour of carburization; and (c) From the analogy, show that the time dependence of the

mass flux of carbon into the plate can be expressed as ′′ = −n  D  tC C,s C Feρ π/ ;/� �1 2
 also, obtain an

expression for the mass of carbon per unit area entering the iron plate over the time period t.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional transient diffusion, (2) Thick plate approximates a semi-
infinite medium for the transient mass and heat transfer processes, and (3) Constant properties.

ANALYSIS:  (a) The analogy between the carburizing mass transfer process in the plate and the heat
transfer process is illustrated in the schematic above.  The basis for the mass - heat transfer analogy
stems from the similarity of the conservation of species and energy equations, the general solution to
the equations, and their initial and boundary conditions.  For both processes, the plate is a semi-

infinite medium with initial distributions, CC (x, t ≤ 0) = CC,i = 0 and T (x, t ≤ 0) = Ti, suddenly

subjected to a surface potential, CC (0, t > 0) = CC,s and T (0, t > 0) = Ts.  The heat transfer situation
corresponds to Case 1, Section 5.7, from which the following relations were obtained.

Mass transfer Heat transfer

Rate equation

′′ = −j D  
 C

 xC AB
c∂

∂
′′ = −q k 

 T

 xx
∂
∂

Diffusion equation
∂

∂
∂
∂

∂
∂ x

 
 C

 x D
 

 C

 t
14.84C

AB

C�
��

�
�� = 1 ∂

∂
∂
∂ α

∂
∂ x

 
 T

 x
 

 T

 t
     2.15�

��
�
�� = 1

Polential distribution

C  x,  t C

0 C
C C,s

C,s

� �−
−

=
T x,  t T

T T
erf

x

2 t
     5.58s

i s

� �
� �

−
−

=
�

�
��

�

�
��α 1 2/

C  x,  t

C
erfc

x

2 D  t

C

C,s AB

� �
� �

=
�

�
��

�

�
��1 2/

Continued …..



PROBLEM 14.46 (Cont.)

Flux

See Part (c) ′′ =
−

q t
k T T

t
    5.58s

s i� � � �
� �πα 1 2/

(b) Using the concentration distribution expression above, with L = 1 mm, t = 1 h and

DAB = 3 × 10
-11

 m
2
/s, find the concentration ratio,

C  1 mm,  1 h

C
erfc

0.001 m

2 3 10  m s 3600 s

C

C,s -11 2

� �

	 

=

× ×

�

�

�
�
�

�

�

�
�
�

=
/

.
/1 2

0 0314 <

(c) From the heat flux expression above, the mass flux of carbon can be written as

′′ =
−

=−

−
−n

D  

 D  t
 D  tC,s

C Fe C,s

C Fe
c,s C Fe

ρ

π
ρ π

0

1 2
1 2� �

� �
� �/

// <

The mass per unit area entering the plate over the time period follows from the integration of the rate
expression

( ) ( ) ( )
t t

0 0

1/ 2 1/ 2-1/2
C C,s C,s AB C,s C Fem  t n  dt  D /  t  dt 2  D  t/ρ π ρ π−′′ ′′= = =∫ ∫



PROBLEM 14.47

KNOWN:  Thickness, initial condition and bottom surface condition of a water layer.

FIND:  (a) Time to reach 25% of saturation at top, (b) Amount of salt transfer in that time, (c) Final
concentration of salt solution at top and bottom.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional diffusion, (2) Uniform total mass density, (3) Constant DAB.

ANALYSIS:  (a) With constant ρ and DAB and no homogeneous chemical reactions, Eq. 14.37b
reduces to

2
A A
2 AB

1
.

D tx

ρ ρ∂ ∂=
∂∂

with the origin of coordinates placed at the top of the layer, the dimensionless mass density is

( ) A A,s A
m

i A,i A,s A,s
x ,Fo 1

ρ ργ ργ
γ ρ ρ ρ

∗ ∗ −
= = = −

−

Hence, ( )m,10, Fo 1 0.25 0.75.γ ∗ = − =   The initial condition is ( )x ,0 1,γ ∗ ∗ =  and the boundary

conditions are

( )m
x 0

0 1, Fo 0
x

γ γ
∗

∗
∗

∗
=

∂ = =
∂

where the condition at x 1∗ =  corresponds to Bim = ∞.  Hence, the mass transfer problem is
analogous to the heat transfer problem governed by Eq. 5.34 to 5.37.  Assuming applicability of a one-
term approximation (Fom > 0.2), the solution is analogous to Eq. 5.40.

( ) ( )2
1 m 11C exp Fo cos x .γ ς ς∗ ∗= −

With m 1Bi , / 2 1.571ς π= ∞ = =  rad and, from Table 5.1, C1 ≈ 1.274.  Hence, for x 0,∗ =

( )2
m,10.75 1.274exp 1.571 Fo = −  

( ) ( )2
m,1Fo ln 0.75/1.274 / 1.571 0.215.= − =

Hence,

( )22
8

1 m,1 9 2AB

1 mL
t Fo 0.215 1.79 10 s 2071days.

D 1.2 10 m / s−= = = × =
×

<

Continued …..



PROBLEM 14.47 (Cont.)

(b) The change in the salt mass within the water is

( ) ( ) L
A A 1 A,i A A,i A0

M M t M dV A dxρ ρ ρ∆ = − = ∫ − = ∫
Hence,

( )L
A A,s A A,s0

M / dxρ ρ ρ′′∆ = ∫

( )1
A A,s 0

M L 1 dxρ γ ∗ ∗′′∆ = −∫

( ) ( )1 2
A A,s 1 m 110

M L 1 C exp Fo cos x dxρ ς ς ∗ ∗ ′′∆ = − −  ∫

( )2
A A,s 1 m 1 11M L 1 C exp Fo sin / .ρ ς ς ς ′′∆ = − −  

Substituting numerical values,

( )
( )2

3
A

1.274exp 1.571 0.215 1
M 380 kg/m 1 m 1

1.571rad

  −   ′′∆ = − 
 
 

2
AM 198.7 kg /m .′′∆ = <

(c) Steady-state conditions correspond to a uniform mass density in the water.  Hence,

( ) ( ) 3
A A A0, L, M / L 198.7 kg /m .ρ ρ ′′∞ = ∞ = ∆ = <

COMMENTS:  (1) The assumption of constant ρ is weak, since the density of salt water depends
strongly on the salt composition.

(2) The requirement of Fom > 0.2 for the one-term approximation to be valid is barely satisfied.



PROBLEM 14.48

KNOWN:  Temperature distribution expression for a semi-infinite medium, initially at a uniform

temperature, that is suddenly exposed to an instantaneous amount of energy, ′′Q  J / mo
2� �.

Analogous situation of a silicon (Si) wafer with a 1-µm layer of phosphorous (P) that is placed in a
furnace suddenly initiating diffusion of P into Si.

FIND:  (a) Explain the correspondence between the variables in the analogous temperature and
concentration distribution expressions, and (b) Determine the mole fraction of P at a depth of 0.1 mm
in the Si after 30 s.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional, transient diffusion, (2) Wafer approximates a semi-infinite
medium, (3) Uniform properties, and (4) Diffusion process for Si and P is initiated when the wafer
reaches the elevated temperature as a consequence of the large temperature dependence of the
diffusion coefficient.

PROPERTIES:  Given in statement:  DP-Si = 1.2 × 10
-17

 m
2
/s; Mass densities of Si and P: 2000 and

2300 kg/m
3
; Molecular weights of Si and P: 30.97 and 28.09 kg/kmol.

ANALYSIS:  (a) For the thermal process illustrated in the schematic, the temperature distribution is

T x,  t T
Q

c t
exp x ti

o 2� �
� �

� �− = ′′ −
ρ πα

α
1 2

4
/

/ (HT)

where Ti is the initial, uniform temperature of the medium.  For the mass transfer process, the P
concentration has the form

C x,  t
M

 D  t
exp x  D  tP

P,o

P Si

2
P Si� �

� �
� �=

′′
−

−
−

π 1 2
4

/
/ (MT)

where ′′MP,o  is the molar area density (kmol/m
2
) of P represented by the film of concentration CP

and thickness do.

The correspondence between mass and heat transfer variables in the equations HT and MT involves
the following conditions.  The LHS represents the increase with time of the temperature or

concentration above the initial uniform distribution.  The initial concentration is zero, so only the CP
(x, t) appears. On the RHS note the correspondence of the terms in the exponential parenthesis and in
the denominator.  The thermal diffusivity and diffusion coefficient are directly analogous; this can be
seen by comparing the MT and HT diffusion equations, Eq. 2.15 and 14.84.  The terms ′′Q co / ρ  and

′′MP,o  for HT and MT represent the energy and mass instantaneously appearing at the surface.  The

product ρc is the thermal capacity per unit area and appears in the storage term of the HT diffusion
equation.  For MT, the “capacity” term is the volume itself.

Continued …..



PROBLEM 14.48 (Cont.)

(b) The molar area density (kmol/m
2
) of P associated with the film of thickness do = 1 µm and

concentration CP,o is

′′ = ⋅ =M C d dP,o P,o o P P oρ / M� �

′′ = × × −M  kg / m  kmol / kg  mP,o
32000 30 97 1 10 6/ .� �

′′ = × −M  kmol / mP,o
26 458 10 5.

Substituting numerical values into the MT equation, find

C  mm,  30 s
 kmol / m

1.2 10  m s 30 s
exp 0.0001 m  m s 30 sp

2

-17 2
201

6 458 10
4 12 10

5
2 7.

.

/
/ . /� �

� �
� � � �= ×

× × ×
− × × × �

��
−

−

π

C  kmol / mp
3= 0 08188.

The mole fraction of P in the Si wafer is

x C C CP P Si P Si Si= =/ / /ρ M� �

x  kmol / m  kg / m  kmol / kgP
3 3= 0 08188 2300 28 09. / / .� �

xP = × −2 435 10 5. <


