

Term	Variable	Units
Species molar flux	N",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	kmol/s·m ²
Species molar rate	$N_{A,s}$	kmol/s
Species mass flux	$n''_{A,s}$	$kg/s \cdot m^2$
Species mass rate	n _A	kg/s
Species molar concentration	C_A	kmol/m ³
Species mass concentration (density)	$\rho_{\scriptscriptstyle A}$	kg/m ³
Species molecular weight	\mathcal{M}_{A}	kg/kmol
Convection mass transfer coefficient	h_m	m/s
Binary diffusion coefficient1	D_{AB}	m ² /s

$h\left(T_{\infty}-T_{s}\right)=n_{A}''h_{fg}=h_{m}\left[\rho_{A,sat}\left(T_{s}\right)-\rho_{A,\infty}\right]h_{fg}$

 $\underbrace{ \begin{pmatrix} T_{\infty} - T_s \end{pmatrix} = \begin{pmatrix} h_m / h \end{pmatrix} \begin{bmatrix} \rho_{A,sat} \begin{pmatrix} T_s \end{pmatrix} - \rho_{A,\infty} \end{bmatrix} h_{fg} }_{\text{Steady-state}} \underbrace{ \begin{array}{c} \text{Obtained from heat/mass} \\ \text{Cooling} \end{array} }$

· With radiation from the interface and heat addition by other means,

 $q_{conv}'' + q_{add}'' = q_{evap}'' + q_{rad}''$

