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PDEs in Chemical Engineering

� PDEs in chemical engineering arise problems 
where we need to know the variation of more 
than 1 variable.

� Examples:
�Non-steady 1-dimensional problems
�2-dimensional steady problems 
�Non-steady 3-dimensional problems

� We will look at three types of transport 
phenomena in this course
�Mass transport
�Heat transport 
�Momentum transport in Fluid mechanics
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Coordinate systems

� The choice of coordinate system is based on 
the geometry of the problem
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Heat in Cylindrical and Spherical 
Coordinates

� General Expression:

� Cylindrical coordinates:

� Spherical coordinates:
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Example: Cooling of a Ball Bearing

� In the manufacture of 
ball bearings, the final 
cooling is done in a 
water bath

�How long must the 
ball bearings be in the 
bath for cooling

�Find the PDE 
T(position, time)
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What are we Modeling?

� We are wanting to 
find the temperature 
distribution within
the ball bearing

� Don’t care about the 
bulk fluid, other than 
for the heat transfer 
coefficient (h)

� h gives us a 
boundary condition
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Choose Coordinate system

� If we chose Cartesian or cylindrical 
coordinates, we would have a hard time 
defining the boundary conditions

�So, we choose spherical

�Equation applies within the sphere only (a 
solid. Therefore, no convection
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�Temperature is a function of time and 
position: T(t,r,θ,φ)

�Think about the geometry of the problem
�Heat exiting the sphere in all directions 

(symmetrically). We are assuming that h is 
constant across the surface of the sphere

�Therefore, there is no dependence of θ,φ
on T.

� T(t,r):
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� This equation is much easier to solve than the 
original expression.

� We always want to work with the simplest
expression possible
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Fundamental Relationships (Heat)

� Fourier’s Law of Heat Diffusion:

� For constant cv and density:

� Units (Flux of Energy):
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Fundamental Relationships (Mass)

� Fick’s Law of Mass Diffusion:

� For constant density:

� Units (Mass Flux):
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Fundamental Relationships (Momentum)

� Newton’s Law of Viscosity
(Momentum Diffusion):

� For constant density:

� Units (Momentum Flux):
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Mass Transport Equation with Rxn.

� Here, the source is the result of chemical 
reaction w.r.t. A

� DAB is the diffusion of A in into of B
� Reaction term is S = –kCA for a 1st order 

irreversible reaction
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Example: Diffusion in a Tube with Rxn.

� Diffusion of A into B occurs in a tube initially filled with B

� Find the unsteady solution
� Rxn: A+B→C
� The geometry of this problem suggests that we should 

derive our equations in cylindrical coordinates. 

r θ

z

CA = 100mol/m3 CA= 0
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Diffusion in a Tube

�Applying cylindrical coordinates
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�Assumptions
�Velocity is negligible.
�No dispersion in the theta direction. This makes 

sense based on the directions of the driving 
forces. 
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Boundary Conditions

� The boundaries of a 
system are those points in 
space for which something 
is known

� The number of boundary 
conditions is determined 
by the order of the 
differential

� For time, we normally have 
1st order PDE in time. 

� This requires an initial 
condition

in time I.C. 1
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Boundary Conditions

� Dirichlet Boundary condition:
� Exact value of a function is given on a boundary

� Neumann Boundary Condition: 
� The exact value of a function’s derivative is given on a 

boundary
� Often, seen when the flux of a conserved quantity is 

given at a boundary. Found when a boundary is 
insulated or impermeable to fluxes.

� Robin or Mixed Boundary Condition: 
� A linear combination of the value of a function and its 

derivative is given
� This commonly occurs when a boundary condition 

involves convective heat, mass and/or momentum 
transfer.
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Diffusion in a Tube Boundary Conditions

�1 IC, two BCs in both r and z
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Diffusion in a Tube (revised)

�Really, it does not make sense that there 
would be a driving force in the r direction 
based on the fact that the ends are at 
constant concentrations everywhere.

�Also the BCs in r are suggesting a trivial 
solution or a sigmoidal curve (not likely)

�So, we can simplify the equations further
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Diffusion in a Tube Boundary Conditions 
(revised)
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Diffusion in a Pipe II

�The transport equations for diffusion can 
be derived utilizing a control volume 
approach (as in the derivation last Thurs.)

�This technique may be easier than 
crossing off terms.

�However, we need to understand the 
problem before setting up the differential 
element
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Control Volume

�No variation in the 
theta direction

� Integrate from 0 to 
2π

�Resulting ‘tube’ is 
the control volume

r

r + ∆r

z z + ∆z
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Assumptions

�No velocity in r or theta directions.
�This can also be stated: Velocity in the z 

direction dominates
�No diffusion in the theta direction
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Simplification

�Divide by constants in front of the 
accumulation term

�Note that the r in the last two terms of the 
equation are not equivalent
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Simplification

�Take the limit as the ∆r and ∆z go to zero
�First 2 terms are easy.
�For last two:

Remember that r is evaluated at two 
different locations so it doesn’t cancel
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Diffusion of O2 into a stagnant film

�Oxygen dissolves into and reacts 
irreversibly with aqueous sodium sulfate 
solution

�Find the concentration of O2 in the medium
�Gas solubility at the interface is denoted 

as CA*
�Reaction rate of O2: ra=k(CA)n
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Diffusion of O2

� First part of the path, 
the oxygen molecule 
diffuses

� Subsequently, the 
molecule reacts 
according to the 
kinetics

� If the concentration of 
O2 is the same 
everywhere on the 
surface, there will be 
no driving force in 
the x and y directions

z
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Diffusion in the z direction

�Choose an area of 1 m2

(shaded area below)
�Perform a mass balance O2 on the 

differential element

z

rraa==k(Ck(CAA))nn

JA
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Boundary conditions

�1 I.C and 2 B.Cs
(in z) required

�2nd B.C indicates  
no change in O2
at infinity or that 
there is no 
driving force to 
mass transfer
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