
Laminar Flow over a flat Plate – The Blasius

Solution

Consider the laminar flow of an incompressible Newtonian fluid over a flat
plate. Since the flow is laminar, it is reasonable to seek a steady solution to
the governing equations, and since the plate is flat, the pressure gradient will
be zero. The resulting governing equations are,
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where we have also neglected viscous dissipation.
In order to simplify the set of governing equations, we introduce a stream

function
u ≡ ∂ψ

∂y
(4)

v ≡ −∂ψ
∂x

(5)

Subsitituting 4 and 5 into 1,

∂2ψ

∂xy
− ∂2ψ

∂xy
≡ 0 (6)

we see that conservation of mass is identically satisfied if we use a stream
function to define our velocity components. The stream function is a clever
device which implicity enforces mass conservation (continuity). It is also a very
convenient way to visualize fluid flows. For these reasons, the stream function
is frequently employed in two dimensional fluid mechanics problems.

Next, we want to simplify the momentum equation, and we do this by pos-
tulating that there exists some scaling parameter which will reduce all of the
local velocity profiles to a single curve. If we can find such a parameter, our two
dimensional problem will become a one dimensional problem and will be much
more ammenable to analytic solution. Such a scaling, or similarity parameter
has been found, and is given by
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η = y

√
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νx

(7)

Now, define a non-dimensional stream function using our similarity param-
eter,

f(η) =
ψ

U∞
√
νx/U∞

(8)

Next, we need to cast our momentum equation, Equation 2 in terms of our
similarity parameter, η. We shall convert each term in sequence, and then put
them together.
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From Equation 8,
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√
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U∞
f(η) (10)

and from the definition to η,
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Accordingly, Equation 9 simplifies to

u = U∞
df

dη
(12)

Next, consider the v velocity.

v = −∂ψ
∂x

(13)

This is a little involved to evaluate, since

ψ = U∞

√
νx

U∞
f(η) (14)

so,
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Simplifying,

v =
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√
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Similarly, for ∂u/∂x,
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and for ∂u/∂y
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And finally, for ∂2u/∂y2

∂2u

∂y2
=
U2
∞
νx

∂3f

∂η3
(24)

Substituting each of these terms into the boundary layer momentum equa-
tion, Equation 2, we find a third order ordinary differential equation in f,

2
d3f

dη3
+ f

d2f

dη2
= 0 (25)

Or, in simplified notation,

2f ′′′ + ff ′′ = 0 (26)

where
f is out non-dimensional stream function,

f ′ =
u

U∞

and

f ′′ =
∂u

∂y

√
νx

U∞

1
U∞

related to shear stress (27)
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Boundary Conditions

In order to solve this equation, we need to impose boundary conditions on it.
It is a third order differential equation, and therefor we need three boundary
conditions. This is easy to do in our original variables,

u(x, 0) = 0 (28)
v(x, 0) = 0 (29)

u(x,∞) = U∞ (30)

The first condition corresponds easily through Equation to

u(x, 0) = 0 −→ f ′(0) =
df

dη

∣∣∣∣
η=0

= 0

The second tells us that there is mass flow through the plate, and so this
corresponds to the stream function being 0 (or another constant for that matter).

v(x, 0) = 0 −→ f(0) = 0

The final boundary condition is a little more problematic

u(x,∞) = U∞ −→ f ′(∞) =
df

dη

∣∣∣∣
η=∞

= 1

Let’s explore this boundary condition, and determine how to satisfy it.
Download the file blas0.m from the website. This is a matlab function that
implements the above differential equation in a form that matlab can use with
its ODE solvers.

Let’s try solving the equation with various boundary conditions and find
the case that works for our physics. Not only do we have the problem that the
location corresponding to η =∞ is unclear, but the ODE solvers integrate from
initial conditions only. We have two initial conditions, (f(0) = 0), f;(0) = 0) but
we need to convert a third boundary condition to an initial condition for f”(0).
We will do this by trial and error.

etai = 0;
etaf = 6.8;
[eta1,y1] = ode45(’blas’,[etai etaf],[0 0 0.1]);

look at the data returned by the solver

whos eta1
whos y1

Note that the function has returned a vector for η and a matrix with three
columns for y1. The first column is f, the second column is f’ and the third
column is f”. Let’s plot these

4



figure
plot(eta1,y1(:,1),’r-’)
hold on
plot(eta1,y1(:,2),’g-’)
plot(eta1,y1(:,3),’b-’)
xlabel(’\eta’)
ylabel(’f, f‘, f‘‘ ’)
legend(’f’,’f‘’,’f‘‘’)

Note that f’ is our non-dimensional velocity profile, and should go from 0
to 1. In the figure you generated, f’ does not come close 1. Repeat the process
trying using f”(0) = 0.2 and check again.

etai = 0;
etaf = 6.8;
[eta2,y2] = ode45(’blas’,[etai etaf],[0 0 0.2]);
figure
plot(eta2,y2(:,1),’r-’)
hold on
plot(eta2,y2(:,2),’g-’)
plot(eta2,y2(:,3),’b-’)
xlabel(’\eta’)
ylabel(’f, f‘, f‘‘ ’)
legend(’f’,’f‘’,’f‘‘’)

This is better, but still not quite there. Lets increase f”(0) again.

etai = 0;
etaf = 6.8;
[eta3,y3] = ode45(’blas’,[etai etaf],[0 0 0.332]);
figure
plot(eta3,y3(:,1),’r-’)
hold on
plot(eta3,y3(:,2),’g-’)
plot(eta3,y3(:,3),’b-’)
xlabel(’\eta’)
ylabel(’f, f‘, f‘‘ ’)
legend(’f’,’f‘’,’f‘‘’)

This appears to be the correct value – the velocity profile starts at 0 and
increases to 1. It reaches 1 very close to η = 5.0. This is the accepted value for
the edge of the boundary layer.

We can now use our definition of η to determine the edge of the boundary
layer setting y=δ, the boundary layer thickness.

5.0 = δ

√
U∞
νx

(31)
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or,

δ =
5.0x√
Rex

Where
Rex =

U∞x

ν

Now, from our single solution, we can determine the velocity profile anywhere
in a laminar boundary layer simply by scaling this solution.

y =
η√
U∞
νx

and the velocity is scaled from its definition.

u = f ′U∞

Let us consider an airflow with U∞ = 3.0m/s, ν = 1.5 × 10−5m2/s. Let us
plot the velocity profile at three different locations on the plate, x=0.25, 2 and
3 m.

We will create a matlab function to convert the Blasius solution to dimen-
sional form. Save the following in a text file called blasvel.m. Note that the
comments are helpful, but not absolutely necessary.

function [u, v, y] = blasvel(f,eta,x,uinf,nu)
%function [u, v, y] = blasvel(f,eta,x,uinf,nu)
%
% J.G. Pharoah, Queen’s University, February 2003
%
% This function returns the u and v velocity components based on the Blasius solution of
% laminar flow over a flat plate with zero pressure gradient
%
% f,eta are returned by the function blasius
% x is the desired x location on the plate
% uinf is the free stream velocity
% nu is the kinematic viscosity

u = f(:,2)*uinf; % Equation 7.12 Incropera and DeWitt
v = 1/2 *sqrt(nu*uinf/x)*(eta.*f(:,2) - f(:,1)); % Equation 7.13 Incropera and DeWitt
y = eta/sqrt(uinf/(nu*x));

We can now use this function with our solution above. To look at the velocity
profile at x=1m type

[u,v,y] = blasvel(y3,eta3,1.0,3.0,1.5e-5);
figure
plot(u,y)
xlabel(’u [m/s]’)
ylabel(’y [m]’)
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Now lets repeat this for the three locations and place them on a single plot
in a nice way.

nu = 1.5e-5;uinf=3.0
uscale = 6;
x = 0.25;
[u,v,y] = blasvel(f,eta,x,uinf,nu); % Compute the velocity profiles at x=0.25

figure;
plot(x+u/uscale,y,’r.-’);hold on
plot([x x],[0 max(y)],’r’)

x=1.0;
[u,v,y] = blasvel(y3,eta3,x,uinf,nu); % Compute the velocity profiles at x=1.0
plot(x+u/uscale,y,’g.-’);hold on
plot([x x],[0 max(y)],’g’)

x=2.0;
[u,v,y] = blasvel(y3,eta3,x,uinf,nu); % Compute the velocity profiles at x=2.0
plot(x+u/uscale,y,’m.-’);hold on
plot([x x],[0 max(y)],’m’)

xtemp = 0:.1:2.5; Rex = uinf*xtemp/nu;
delta = 5*xtemp./sqrt(Rex);
plot(xtemp,delta)

xlim([0 2.5]);

plot([0.25 0.25+1/uscale],[.02 .02],’k’)
text(0.25+(1/uscale)/2,0.021,’1 m/s’,’HorizontalAlignment’,’Center’)
ylabel(’y [m]’);xlabel(’x [m]’);title(’Developing Laminar Boundary Layer’)
text(1.25,0.024,’U_{\infty} = 3.0 m/s, \nu = 1.5 x 10^{-5} m^2/s’,’HorizontalAlignment’,’Center’)

We can also investigate the shear stress on the plate, which will tell us how
much drag there is on the plate. The shear stress is given by Newton’s law of
viscosity (for a Newtonian fluid).

τwall = µ
du

dy

∣∣∣∣
y=0

.

Notice the strong parallel between momentum transport (through shear
forces), and heat transfer. The shear stress is related to the velocity gradi-
ent, which is very clearly related to f” in our Blasius solution. Since we need
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to evaluate the velocity gradient at the surface of the plate, it is f”(0) = 0.332
that will give is related to shear stress.

The skin friction coefficient is the non-dimensional wall shear (note the dif-
ferent definition compared to friction factors),

Cf =
τwall

1/2ρU2
∞

Cf can calculated by manipulating the non-dimensional variables in the
Blasius solution to yield,

τwall = 0.332U∞
√
ρµU∞/x

or
Cf (x) = 0.664Re−1/2

x

Now, we can use this data to solve the energy equation and solve convective
heat transfer over a flat plate. At some point, however the flow will become
turbulent, and these relations will no longer hold.
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