EXAMFLE 18.3-1

Diffusion with a Slow
Heterogencous
Reaction

SOLUTION

Rework the problem just considered when the reaction 2A — B 1s not instantaneous at the cat-
alytic surface at z = &. Instead, assume that the rate at which A disappears at the catalyst-
coated surface is proportional to the concentration of A in the fluid at the interface,

N,\, = k’r’f,\ -— k::’.‘Iﬂ (183—10)

in which &/ is a rate constant for the pseudo-first-order surface reaction.

We proceed exactly as hefare, except that B.C. 2 in Fq. 18 3-7 must he replaced hy
Naz
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B.C.2% atz — 8§, x4 — (18.3-11)

N.. being, of course, a constant at steady state. The determination of the integration constants

from B.C. 1 and B.C. 2’ leads to
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Frum this we evaluate (dx,/dz)|,- and substitute it into Eq. 18.3-2, to get
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This is a transcendental equation fur Ny, as a function of x4, kY, (%45, and 8. When &/ is large,
the logarithm of 1 — 3(N,,,/k|c) may be expanded in a Taylor series and all terms discarded
but the first. We then get
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INote once again that we have obtained the rate of the combined reaction and dittusion process.
Note also that the dimensionless group 9 4,/k16 describes the effect of the surface reaclion ki-
netics on the overall diffusion-reaction process. The reciprocal of this group is known as the

second Damkohler number' Da" = k16 /9 4p. Evidently we get the result in Eq. 18.3-9 in the limit
as Da'' > 0.

g ){k, large) (18.3-14)
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EXAMFLE 19.1-1

Diffusion, Convection,
and Chemical Reaction®

Absorption of chlarine hy cyclohexene. Chlarine can he ahsarhed from Cl,—air mixtures by
olefins dissolved in CCl,. It was found® that the reaction of Cl, with cyclohexene (C,H,) is
second order with respect to Cl; and zero order with respect to CgHjp. Hence the rate of disap-
pearance of Cl, per unit volume is ki’ (where A designates C1,).

Rework the problem of §18.4 where B is a CH,;~CCl; mixture, assuming that the diffu-
sion can be trcated as pseudobinary. Assume that the air is cssentially insoluble in the
CeH.—CClL, mixture. Let the liquid phase be sutticiently deep that L can be taken to be infinite.

{a) Show that the concentration profile is given by
A kg:‘-‘,qu 2
—_— = - T -
% |:1 6% 15 z] (18B.5-1)

(b) Obtain an expression for the rate of ahsarption of Cl, by the liquid

{e) Suppnse that a snhstance A dissolves in and reacts with substance B so that the rate of dis-
appearance of A per unit volume is some arbitrary function of the concentration, f(cs). Show
that the rate of absorption of A is given by

€y
Noasloo = ﬁa@“_’. " Headc. (18B.5-2)
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Use this result to check the result of (b).

with the heat of reaction.

Liquid Fig, 19.1-1. Simultaneous diffusion, convection, and chemi-
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In Fig. 19.1-1 we show a system in which a liquid, B, moves slowly upward through a slightly
soluble porous plug of A. Then A slowly disappears by a [irst-order reaction after il has dis-
solved. Find the steady-state concentration profile c,(z), where z is the coordinate upward
from the plug. Assume that the velocity profile is approximately flat across the tube. Assume
further that c,g is the solubility of unreacted A in B. Neglect temperature effects associated



EXAMPLE 19.4-2

Concentration Profile
in a Tubular Reactor

SOLUTION

A catalytic tubular reactor is shown in Fig. 19.4-2. A dilute solution of solute 4 in a solvent §
is in fully developed, laminar flow in the region z < 0. When it encounters the catalytic wall
in the region 0 = ¢ = L, sulule A is instautaneously and irreversibly rearranged to an isomer
B. Write the diffusion equation appropriate for this problem, and find the solution for short
distances into the reactor. Assume that the flow is 1sothermal and neglect the presence ot B.

For the conditions stated above, the flowing liquid will always be very nearly pure solvent 5.
The product ol ,; can be considered constant, and the diffusion of A in S can be described by
the steady-state version of Eqg. 19.1-14 (ignoring the presence of a small amount of the reaction
product B). The relevant cquations of change for the system are then

T . &c 14 (. dca) , dca
Continuity of A: V= %Ag[, = (r Fr_) 5 o _55_’?_2__] (19.4-18)
g __dae 1d/( dv
Motion: 0= ey + o 7 (r - ) (19.4-19)

We make the usual assumption that axial diffusion can be neglected with respect to axial con-
vection, and therefore delete the dashed-underlined term (compare with Eqs. 10.8 11 and 12).
Fquation 19.4-19 can be solved to give the parabolic velacity profile vir) = v, .11 — (r/R)].
When this result is substituted into Eq. 19.4-18, we get
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Fig. 19.4.2. Ronindary ronditions for a tubular reactor.
This is to be solved with the boundary conditions
B.C. 1: atz =10, Cqa = Cap (19.4-21)
BC.2: atr = R, e, =10 (19.4-22)
B.C. 3: atr =10, = finite (19.4-23)

For short distances z into the reactor, the concentration c, differs from ¢, only near the wall,
where the velocity profile is practically lincar. Hence we can introduce the variabley = R — r,
neglect curvature terms, and replace B.CC. 3 by a fictitious boundary condition at y = = (see
Example 12.2-2 for a detailed discussion of this method of treating the entrance region of the

tubce).
The retormulated problem statement is then
yadca _ . s
2::"2 max p A= QAS '}Hz (19.4-24)
with the boundary conditions
B.C. 1. alz — 0, C4 = Cag (19.4-25)
B.C. 2 aty =0, ca =0 (19.4-26)
B.C. 3: aty = =, Ca = Cag (19.4-27)



This problem can be solved by the method of combination of independent variables by seeking
a salution of the form ¢, /e, = fim), where n = (y/R)(2v__ . R*/99,.2)'"°. One thus anbtains the
ordinary differential equation f” + 37’f' = 0, which can be integrated to give (see Eq. C.1-9)
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