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Section 3: Mass Transfer 
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Modes of mass transfer 
 
1. Diffusion 

 1a. Molecular diffusion 
 1b. Knudsen diffusion (Gas) 
2. Convection 

 
 

Diffusion is more complicated than 
viscous flow or heat conduction 
because we have to deal with mixtures 
(more than one component) 
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Definitions of C, u, J 
1. Concentrations 

Mass 
concentration ρ j

mass of j
volume of solution

=
 

Molar 
concentration C

M
mole of j

volume of solutionj
j

j

= =
ρ

 

Mass fraction 
ω

ρ
ρ

ρ

ρ
j

j j

k
k

n

mass of j
total mass

= = =

=
∑

1
 

Mole fraction 
x

C
C

C

C

mole of j
total molesj

j j

k
k

n= = =

=
∑

1

 

 
The word “solution” means one phase 

gaseous, liquid or solid mixtures 
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2. Velocities and average velocities 
a. Various species move at different 

velocities.   
b. Let vj be the velocity of the species j 

relative to the stationary coordinate. 

c. The local mass average velocity is 
defined as: 

v
v v

v v
k k
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k
k

n

k k
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k
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k k
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∑
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∑ ∑

ρ

ρ

ρ

ρ
ρ
ρ

ω1

1

1

1 1  

Note that 

ρv total mass
volume

dis ce
time

= 




× 





tan
 is the local 

mass rate through a unit cross section 
placed perpendicular to the velocity v 

 
This mass average velocity is the local 

velocity one would measured by a pitot 
tube. 
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d. The local molar average velocity is 
defined as: 

v
C v

C

C v

C
C
C

v x v
k k

k
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k
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Note that 

Cv
total mole

volume
dis ce

time
* tan= 




× 



  is the 

local molar rate through a unit cross 
section placed perpendicular to the 
velocity v*. 
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3. Diffusion velocities 
In flow systems, very often that we are 

interested in the velocity of species j 
with respect to v or v*,  

rather than 

 with respect to the stationary 
coordinates. 

 
Here, we talk of the diffusion velocities, 

and there are two diffusion velocities: 
 

v v
diffusion velocity of species j
with respect to vj − ≡







  

and 

v v
diffusion velocity of species j
with respect to vj − ≡







*

*  
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There are two diffusion velocities.  In 
applications where we deal with molar 
flow, the diffusion velocities with 
respect to v* will be used. 

 

 
 

bulk 
velocity 

diffusion velocities 
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4. Mass and molar fluxes relative to 
stationary coordinates 

 
a. Mass flux 

n v
mass of species j

volume
dis ce

timej j j= = 




× 





ρ tan
 

which is the mass of species j transferred 
per unit time and per unit area 
perpendicular to the velocity vj. 

 
b. Molar flux 

N C v
mole of species j

volume
dis ce

timej j j= = 




× 





tan
 

which is the moles of species j transferred 
per unit time and per unit area 
perpendicular to the velocity vj. 
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5. Diffusive mass and molar fluxes 
a. Mass fluxes relative to the local mass 

average velocity 

( )j v vj j j= −ρ
 

 
b. Molar fluxes relative to the local molar 

average velocity 

( )J C v vj j j= − *
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6. Properties of diffusive fluxes 

j Jk
k

n

k
k

n

= =
∑ ∑= =

1 1

0 0;
 

Proof: 

By definition: 

( )J C v vk
k

n

k k
k

n

= =
∑ ∑= −

1 1

*

 

J C v v Ck
k

n

k k
k

n

k
k

n

= = =
∑ ∑ ∑= −

1 1 1

*

 

J C v v Ck
k

n

k k
k

n

= =
∑ ∑= −

1 1
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J k
k

n

=
∑ =

1
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C v

C

k k
k

n

* = =
∑

1
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J k
k

n

=
∑ =

1

0
 

This equation means that within the 
movement of the bulk fluid mixture, 
the sum of all the diffusive fluxes must 
be zero so that the pressure is 
maintained constant. 

 

For a binary mixture, we have: 

   J1 = - J2 

Two species move in the opposite direction 
(relative to the movement of the 
mixture). 
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7. Diffusive molar fluxes versus molar 
fluxes 

 
J N x Nk k k j

j

n

= −
=
∑

1  

Proof: 

( )J C v v C v C
C v

Ck k k k k k

j j
j

n

= − = − =
∑

* 1

 

( )J C v v C v C
C

C vk k k k k
k

j j
j

n

= − = −
=
∑*

1  

Therefore 

  
J N x Nk k k j

j

n

= −
=
∑

1  

This equation simply states that the 
diffusive molar flux of species j is equal 
to the molar flux minus its 
contribution in the total flux. 
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8. Diffusive mass flux versus mass flux 

j n nk k k j
j

n

= −
=
∑ω

1  
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Fick’s law of diffusion 
for binary mixtures 

 

Here, we first study the diffusion law for 
binary mixtures: The Fick’s law 

 
For multicomponent mixtures, the correct 

law is the Stefan-Maxwell’s law.  This 
is more complicated, and will be dealt 
with much later. 

 

1. The Fick’s law: 
The basic equation for Fick’s law for an 

isobaric and isothermal system is: 

  
J cD dx

dz1 12
1= −

 

which is the diffusive molar flux along the 
z direction. 
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Similarly, we can write an equation for 
the second species. 

J cD dx
dz2 21

2= −
 

But  
J J and x x1 2 1 20 1+ = + =  
we must have the following important 

relation: 

   D12 = D21 

Note:  The two diffusion equations are 
linearly dependent.  So only ONE is 
independent. 

 

For three dimensional coordinates, the 
general Fick’s law equation is: 

J cD x1 12 1= − ∇  
and  
J J1 2 0+ =  

Transport Phenomena 

2. Equation in terms of the molar flux 
The desired equation is: 

( )N J x N N1 1 1 1 2= + +  

 
 

 
 

 

( )N cD dx
dz

x N N1 12
1

1 1 2= − + +
 

Similarly, the equation for the species 2: 

( )N cD dx
dz

x N N2 21
2

2 2 1= − + +
 

These two equations are not linearly 
independent.  Thus, only ONE is 
needed, but here we have two fluxes. 

More about this later. 

J cD dx
dz1 12

1= −
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For three dimensional coordinates, the 
general equation involving molar 
fluxes is: 

( )N cD x x N N1 12 1 1 1 2= − ∇ + +  

 
 

 
 

 
 

 
 
 

 
 

 
 

diffusive term: 
resulting from 
concentration 
gradient, 
superimposed on 
the bulk flow 

convective term: 
resulting from the 
bulk motion of the 
fluid 
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For rectangular coordinates, the 
equations in component form are: 

( )N cD dx
dx

x N Nx x x, , ,1 12
1

1 1 2= − + +
 

( )N cD dx
dy

x N Ny y y, , ,1 12
1

1 1 2= − + +
 

( )N cD dx
dz

x N Nz z z, , ,1 12
1

1 1 2= − + +
 

 

 
For cylindrical coordinates, the equations 

in component form are: 

( )N cD dx
dz

x N Nz z z, , ,1 12
1

1 1 2= − + +
 

( )N cD dx
dr

x N Nr r r, , ,1 12
1

1 1 2= − + +
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3. Diffusion coefficient 
a. Units 

D
m

12

2

≡








sec  

b. Order of magnitude 
 

State Order of magnitude (cm2/sec) 

Gas 0.1 - 1 

Liquid 1××××10-7 - 1××××10-5 

Solid 1××××10-12 - 1××××10-7 

 
c. Temperature and pressure dependence 
For gases at low density, D increases with 

T and decreases with pressure. 
For liquids and solids, D increases with 

temperature. 
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Stefan-Maxwell’s law for 
multicomponent mixtures 

 

The Stefan-Maxwell equation derived for 
multicomponent gases at low density 
is: 

( )
− ∇ =

−

=
∑c x

x N x N
Di

j i i j

ijj

n

1  

for i=1, 2, 3, ..., n-1, as only (n-1) above 
equations are linearly independent.  
This can be proved by summing the 
above with respect to i from 1 to n. 

 
Another form of the Stefan-Maxwell 

equation is: 

( )
− ∇ =

−

=
∑c x

x J x J
Di

j i i j

ijj

n

1  
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Theory of D for low 
density gases 
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Procedures for binary 
mixtures 

 

Similar to those we learnt earlier for 
momentum and energy transfers. 

Steps 1 to 4: involve draw a physical 
diagram and a thin shell with surfaces 
perpendicular to transport directions. 

Step 5: Set up mass balance equation of 
the thin shell 

( )Rate of
mass in

Rate of
mass out

Rate of mass
production

Accummulation






 −







 +







 =  

Taking the shell as thin as possible will 
yield a first order differential equation 
in terms of molar flux. 

Step 6: Apply the Fick’s law 

( )N cD dx
dz

x N N1 12
1

1 1 2= − + +
 

or in three dimensional coordinates 
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( )N cD x x N N1 12 1 1 1 2= − ∇ + +  

Depending on the physical system, N2 
must be determined based on the 
physical ground.  We see this in a 
number of simple examples. 

Step 7: Impose physical constraints 
Step 8: Solve for concentration 

distribution 
Step 9: Solve for desired quantity, such as 

average concentration, molar fluxes. 
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Boundary conditions 
 
Generally, there are five boundary 

conditions: 
B.C. of the first kind: 

Concentration is specified at the boundary 
B.C. of the second kind: 
Molar flux is specified at the boundary 

B.C. of the third kind: 
Molar flux into the medium is the same as 

the flux through a stagnant film 
surrounding the medium 

B.C. of the fourth kind: 
Concentrations and fluxes are continuous 

across the interface of two adjoining 
media. 

B.C. of the fifth kind: 

Molar flux is equal to the surface reaction 
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Simple problems 
 
1. Diffusion in a Stefan tube 

2. Dissolution of a spherical object 
3. Diffusion with heterogeneous reaction 

at surface 
4. Diffusion with homogeneous reaction 
5. Diffusion into a falling film 

6. Gas absorption from a rising bubble 
7. Diffusion and reaction in a porous 

catalyst 
8. Transient diffusion through a polymer 

film 
9. Transient diffusion in a finite 

environment 
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Diffusion in a Stefan tube 
 

 
 

 
 
 

 
 

 
 

Physical system 
1. Liquid 1 in the tube 

2. Gas 2 flowing across the mouth of the 
tube 

3. Gas 2 is nonsoluble in liquid 1 
 

component 1 

component 2 

0 

z1 

z2 

z 

z+dz 
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Step 5: Shell mass balance 

( )Rate of
mass in

Rate of
mass out

Rate of mass
production

Accummulation






 −







 +







 =  

 

 

S N S N
z z z

⋅ − ⋅ + =
+1 1 0 0
∆  

 
Taking the shell as thin as possible: 

  − =dN
dz

1 0  

which simply states that the molar flux is 
constant along the tube. 

Step 6: Apply the Fick’s law 

( )N cD dx
dz

x N N1 12
1

1 1 2= − + +  

 
 

is equal to zero as the species 2 is 
nonsoluble in liquid 1.  This is 
called the bootstrap condition. 
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Thus, we solve for N1 in terms of the 
concentration gradient. 

N cD
x

dx
dz1

12

1

1

1
= −

−  

Substitute this into the mass balance 
equation: 

− =dN
dz

1 0  

we get 

d
dz

cD
x

dx
dz

12

1

1

1
0

−






 =

 

For constant total pressure and constant 
diffusion coefficient, we have: 

d
dz x

dx
dz

1
1

0
1

1

−






 =

 

which is a second-order differential 
equation in terms of mole fraction. 
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Step 7: Physical constraint 
The two boundary conditions are: 

 

z z x x
p
P

= = =1 1 1 0
1
0

; ,  

z z x x L= =2 1 1; ,  

 
Step 8: Concentration distribution 

d
dz

cD
x

dx
dz

12

1

1

1
0

−






 =

 

that is 
cD

x
dx
dz

K cons t12

1

1
11−

= ( tan )  

and hence 

cD
x

K z K12
1

1 2
1

1
ln

−






 = +  

vapor 
pressure 

total 
pressure 
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Here, we have two constants K1 and K2, so 
apply the two boundary conditions: 

@ ; ln
,

z z cD
x

K z K=
−









 = +1 12

1 0
1 1 2

1
1  

@ ; ln
,

z z cD
x

K z K
L

=
−









 = +2 12

1
1 2 2

1
1  

Solving for K1 and K2, we get: 

K cD
z z

x
x L

1
12

2 1

1 0

1

1
1

=
−

−
−









ln ,

,  

K cD
x

cD z
z z

x
xL L

2 12
1

12 1

2 1

1 0

1

1
1

1
1

=
−









 −

−
−
−









ln ln

,

,

,  

Thus, the concentration profile is: 
( ) ( )

1
1

1
1

1

1 0

1

1 0

1 2 1
−
−









 =

−
−











− −
x

x
x
x

L

z z z z

,

,

,

/
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Step 9: Molar flux 
The quantity of interest is the molar flux 

from the liquid surface (evaporation 
rate): 

N cD
x

dx
dz1

12

1

1

1
= −

−  

Where should we evaluate the above 
derivative to obtain the evaporation 
rate?  At the liquid surface? 

Answer: 
It is fine at the liquid surface if we wish to 

obtain the molar flux from the liquid, 
BUT in this problem it can be 
evaluated anywhere as the molar flux 
is constant along the tube. 

 
During the integration for the 

concentration profile, we see that: 
cD

x
dx
dz

K12

1

1
11−

=  
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Thus, the evaporation rate is: 

N cD
z z

x
x

L
1

12

2 1

1

1 0

1
1

=
−

−
−









ln ,

,  

This is the desired relation. 

 
If the gas 2 is sweeping past the mouth 

fast enough, the concentration of the 
species 1 at the mouth will be 
effectively zero; hence the evaporation 
rate is: 

N
cD

z z x1
12

2 1 1 0

1
1

=
− −









ln

,  

Written in terms of pressure, we get: 

( )N
P RT D

z z p Pi
1

12

2 1
0

1
1

=
− −









/
ln

/  
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The total molar rate is: 

( )N N
P RT D

z z p Pi
1 2

12

2 1
0

1
1

+ =
− −









/
ln

/  

 
We note that the molar flux of the species 

2 is: 
 

 

( )

N cD dx
dz

x
P RT D

z z p Pi

2 12
2

2
12

2 1
0

1
1

0

= − +

− −






 =

/
ln

/
 

 

 
 

 
 

0 

diffusive flux 
down the tube 

convective flux 
up the tube 
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Drop in liquid level 
Due to evaporation, the liquid level will 

drop, and to determine this drop in 
level versus time, we have to do the 
mass balance equation around the 
liquid. 

( ) ( )d Sz
dt

SM
P RT D

z z p P
L1

1
12

2 1 1
0

1
1

ρ
= −

− −








/
ln

/  

The initial condition is: 
t=0;     z1 = z10 

Integration gives the solution: 

[ ] ( )
( )

z z t z z

M P RT D
p P

t
L

2 1
2

2 10
2

1 12

1
02 1

1

− − − =

−


















( )

/
ln

/ρ  

The time it takes to empty the tube is: 

( )
( )

t
z z z

M P RT D
p PL

*

/
ln

/

=
− −

−


















2
2

2 10
2

1 12

1
02 1

1ρ
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Example: 
Species 1:  Carbon tetrachloride 

Species 2:  Air 
R = 82.05 cm3-atm/mole/K 
Operating conditions 
P = 760 mmHg 

T = 273 K 
Species characteristics 

p1
0 = 33 mmHg 

M1 = 154 g/mole 

ρρρρL = 1.59 g/cc 

D12 = 0.0636 cm2/sec 
Tube height and initial liquid level 
z2 = 40 cm 

z10 = 25 cm 
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Answer: 
t* = 651 days 

 
Reasons for this extremely long time 

required to empty the tube: 
a. low vapor pressure 

b. very long diffusion path in the tube 
c. very low diffusion coefficient 

 
 

Conclusion: 
Diffusion is a very slow process.  It is 

always advisable to speed up this 
process.  One way of doing is to reduce 
the diffusion path length. 

Achievable in practice by mixing. 
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More about Stefan tube 
 
Summary: 

( )N
P RT D

z z p Pi
1

12

2 1
0

1
1

=
− −









/
ln

/  

 
If we ignore the bulk flow term in the 

Fick’s law equation, that is 

( )N cD dx
dz

x N N1 12
1

1 1 2= − + +  

 
 

then the evaporation flux will be: 

( ) ( )
N

P RT D p P
z z1

0 12 1
0

2 1

=
−

/ /
 

 

ignore this 
convective term 

compared with 
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To show how much error when the 
convective term is neglected, we use 
the example of benzene evaporation at 
6 and 60 0C, and compute: 

  
N
N

p P
p P

i

i

1

1
0

0

0

1
1

=
−







ln

/
/  

Data 
p1

0 = 37 at 6 0C,  395 mmHg at 60 0C. 

 

T (0C) N1/N1
0 

6 1.025 

60 1.41 

 
For low temperature, the convective flux 

can be ignored but for high 
temperature it can not be ignored as 
error is 41%. 
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Dissolution of a sphere 
 
Sparingly soluble sphere in a surrounding 

fluid of infinite extent. 
 

 
 
 

 
 

 
 

 
The object (species 1) dissolves in 

surrounding fluid 2 with the solubility 
of C10. 

 
Step 5: Shell mass balance 

r 
dr 

2R 
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The mass balance equation around the 
thin shell at r and having a thickness 
of dr is: 

( ) ( )4 4 0 02
1

2
1π πr N r N

r r r
− + =

+ ∆  

Divide the equation by 4ππππ∆∆∆∆r, and take the 
limit of the result when ∆∆∆∆r approaches 
zero, we get 

( ) ( ) ( )lim
∆

∆

∆r

r r r
r N r N

r
d
dr

r N
→

+
−

= − =
0

2
1

2
1 2

1 0  

 
 

 
 
 

 
 

Step 6: Fick’s law equation: 
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( )N cD dx
dr

x N N1 12
1

1 1 2= − + +  

 

 
 

 
Thus, the mass balance equation will 

become: 

d
dr

r cD dx
dr

2
12

1 0




=

 

 
Step 7: Physical constraints 

r=R (surface of object);   C1 = C10  

r  →→→→ ∞∞∞∞;      C1 = 0 

 

 
Step 8: Concentration distribution 

can be taken as zero as the 
species 1 (object) is only 
sparingly soluble in liquid 2 
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C C R
r1 10=  

 

Step 9: Dissolution rate 

N D C
Rr R1

12 10
=

=  

To increase the dissolution rate: 
 1. smaller object 

 2. larger solubility 
 3. larger diffusivity 
 

 
 

 
 

 
If we define the mass transfer coefficient as: 
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( )N k Cr R m1 10 0=
= −  

Matching this with the solution obtained 
from first principles, we get: 

k R
D

m ( )2 2
12

=
 

 

 
 
 

 
 

this is known as the 
Schmidt number, 
which is equal to 2 for 
stagnant environment 
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Diffusion with 
heterogeneous reaction 

 

 
 
 

 
 

 
 

 
 

 
 
 

 
We let: 

turbulent in 
bulk fluid 

stagnant film 

catalytic surface 
reaction 
nA →→→→ An 

A 

An z 

0 

L 
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 The species A as 1 
 The species An as 2 

 
According to the surface chemical reaction, 

we must have: 

   N1 = - n N2 
This is the bootstrap condition, needed in 

addition to the Fick’s law equation. 
 

Recall that the bootstrap condition in the 
last example of the Stefan tube is: 

   N2 = 0 

 
 

 
 
 

Step 5: Shell mass balance equation 
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− =dN
dz

1 0  

 

Step 6: Fick’s law 
The Fick’s law equation is: 

( )N cD dx
dz

x N N1 12
1

1 1 2= − + +  

But the bootstrap relation is: 

N
n

N2 1
1= −  

Thus, solving for N1 in terms of the 
concentration gradient gives: 

( )N cD
n

n
x

dx
dz1

12

1

1

1
1

= −
−

−







  

 

Substitute this Fick’s law into the mass 
balance equation, we have: 
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( )
d
dz

cD
n

n
x

dx
dz

12

1

1

1
1

0
−

−





























=
 

 

Step 7: Physical constraints 
The boundary conditions will be at two 

ends of the stagnant film: 

z x x
z L N kcxz L z L

= =
= =

= =

0 1 10

1 1

;
;  

where L is the thickness of the film. 

 
The surface chemical reaction rate is: 

kcx moles of A reacted
area of catalyst timez L1 =

≡
−  

Observing the boundary condition at the 
surface of the catalyst, we see that 
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when k →→→→ ∞∞∞∞ (very fast chemical 
reaction), the surface concentration of 
the species 1 will be practically zero. 

 

Thus, the boundary condition at the 
surface in the case of fast reaction is: 

z L x z L
= =

=; 1 0  

 

We will now solve for the case of fast 
reaction first, and then return to the 
case of finite reaction later. 

 

 
 

 
 

 
Step 8: Concentration distribution 
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Recall the mass balance equation 

( )
d
dz

cD
n

n
x

dx
dz

12

1

1

1
1

0
−

−





























=
 

Integrating once:  

( )
cD
n

n
x

dx
dz

K12

1

1
1

1
1

−
−









=
 

Integrating once more: 

( )cD
n x n

n
n

K z K12
1

1 2
1

1 1
1ln

/
( )

− −








 =

− +  

 

Two unknown constants of integration 
with two boundary conditions. 

 
Apply the boundary conditions: 
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( )

@ ;

ln
/

z

cD
n x n

K

=

− −








 =

0

1
1 112

10
2  

 

@ ; ( )z L n
n

K L K= − + =1 01 2  

from which we can solve for K1 and K2. 

 
The concentration distribution: 

( ) ( ) ( )

1
1

1
1

1 10

1

−
−







 = −

−









−n
n

x
n

n
x

z L/

 

This equation shows how the 
concentration of the species 1 will 
distribute itself in the stagnant film. 

The distribution of the species 2 is simply: 
   x2 = 1 - x1 

 
Step 9: Reaction rate 
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To calculate the reaction rate, we simply 
calculate the Fickian flux at the 
catalytic surface. 

( )N cD
n

n
x

dx
dzz L

z L

1
12

1

1

1
1=

=

= −
−

−







  

But remember that during the integration, 
we have: 

( )N cD
n

n
x

dx
dz

Kz L

z L

1
12

1

1
1

1
1=

=

= −
−

−









= −
 

that is: 

[ ]N
n n cD

L n x nz L1
12

10

1 1
1 1= =

−
− −











/ ( )
ln

( ) /  

This flux at the surface is exactly the same 
as the chemical reaction rate. 
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What do we observe from this? 

 
The chemical reaction rate is: 

 1. independent of the reaction rate 
(system is diffusion controlled) 

 2. a function of the diffusivity 
 3. inversely proportional to the film 

thickness 
 4. proportional to the total 

concentration, c 
 5. a function of the bulk mole fraction  

 
 

 
 

Now we turn to the case when the 
chemical reaction is finite. 
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Step 8’: Concentration distribution 

Recall the mass balance equation and the 
boundary conditions are: 

( )
d
dz

cD
n

n
x

dx
dz

12

1

1

1
1

0
−

−





























=
 

z x x
z L N kcxz L z L

= =
= =

= =

0 1 10

1 1

;
;  

Integrating the mass balance once:  

( )
cD
n

n
x

dx
dz

K12

1

1
1

1
1

−
−









=  

Integrating once more: 

( )cD
n x n

n
n

K z K12
1

1 2
1

1 1
1ln

/
( )

− −








 =

− +  

Apply the boundary conditions: 
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( )

@ ;

ln
/

z

cD
n x n

K

=

− −








 =

0

1
1 112

10
2  

 
@ ; ,z L K kcx L= = −1 1  

The concentration distribution is: 

( )ln
( ) /

/
( ), ,1 1

1 1
11 0

1

1

12

− −
− −









 = − − ⋅

n x n
n x n

n
n

kx
D

zL

 

where x1,L is still an unknown mole 
fraction at the catalytic surface.  It is 
determined by setting z = L 

( )ln
( ) /

/
( ),

,
,

1 1
1 1

11

1 0 12
1

− −
− −









 =

− ⋅








n x n
n x n

n
n

kL
D

xL
L  

which is a nonlinear algebraic equation in 
terms of the mole fraction at the 
catalytic surface. 
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Knowing the mole fraction at the catalytic 
surface 

( )ln
( ) /

/
( ),

,
,

1 1
1 1

11

1 0 12
1

− −
− −









 =

− ⋅








n x n
n x n

n
n

kL
D

xL
L  

the chemical reaction rate can be obtained 
from: 

[ ]
( )N

n n cD
L

n x n
n x n

kcx

z L
L

L

1
12 1

1 0

1

1 1 1
1 1= =

− − −
− −











=

/ ( )
ln

( ) /
/

,

,

,
 

 

 
What do we observe here? 

 We see that the nonlinear algebraic 
equation for x1,L involves a 
dimensionless group 

  
kL
D

chemical reaction rate
diffusion rate12







 ≡
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Case 1:  If this group is very large, that is 
the chemical reaction rate is much 
larger than the diffusion rate, we get: 

    x1,L = 0 
and the chemical reaction rate is: 

[ ]
( )N

n n cD
L n x nz L1

12

1 0

1 1
1 1= =

−
− −











/ ( )
ln

/,  

which is exactly the equation we obtained 
earlier for fast reaction. 
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Case 2:  When the dimensionless group is 
less than unity, that is the reaction is 
very slow compared to the diffusion 
rate, we have: 

    x1,L = x1,0 

Thus, the chemical reaction rate is: 
   N1 = kcx1,0 

The chemical reaction in the case of fast 
diffusion is dominated entirely by 
chemical kinetics. 
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Diffusion & 
homogeneous reaction 

 

What we have seen so far: 
1. Diffusion with bulk flow in a Stefan 

tube 
2. Diffusion with chemical reaction at 

catalytic surface. 
 

Now we deal with diffusion and 
homogeneous reaction within the 
medium.   

The difference between this and the last 
two examples is the appearance of the 
reaction term in the mass balance 
equation, in contrast to the second 
example where the reaction term 
appears in the boundary condition. 
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Physical system 
1. Gas A dissolves sparingly in liquid B 

2. Dissolved A reacted with B, following 
a first order kinetics with expression 

moles of A reacted
volume time

kC
−






= 1  

3. Isothermal system 

4. Let species A be 1, and species B be 2 

z 

Gas A 

Dissolved A 

z=0 

z=L 

shell 
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Gas solubility (King, 273) 
 

@ 1 atm and 20 0C 
 

Gas mole fraction 
SO2 
Cl2 
H2S 
CO2 
C2H4 
CO 

0.03 
0.0017 
0.002 
0.00062 
0.0001 
0.000018 

 
Solubility, in general, increases linearly 

with pressure and decreases with 
temperature. 

 
 

 
 



Transport Phenomena 

Step 5: Shell mass balance 

( )Rate of
mass in

Rate of
mass out

Rate of mass
production

Accummulation






 −







 +







 =  

 

 

( ) ( ) ( )SN SN S z kC
z z z1 1 1 0− − =

+∆
∆  

 

Divide the shell mass balance by S∆∆∆∆z, and 
then take the limit when ∆∆∆∆z →→→→ 0: 

− − =dN
dz

kC1
1 0  

 
 

 
 

 
 

chemical reaction 
appearing in the mass 
balance equation 
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Step 6: Fick’s law 
Apply the Fick’s law 

 
 

 

( )N cD dx
dz

x N N1 12
1

1 1 2= − + +  

Thus 

N D dC
dz1 12

1= −  

Substitute this into the mass balance 
equation, we get: 

D d C
dz

kC12

2
1

2 1 0− =  

This is a typical form of simultaneous 
diffusion and reaction equation. 

 

 

negligible 
because A is 
sparingly 
soluble in B 
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Step 7: Physical constraints 
At the gas-liquid interface, we have the 

solubility condition: 
@ z = 0;  C1 = C10 (solubility) 

For constant T and P, this solubility is a 
constant. 

 
The other boundary condition is at the 

bottom of the liquid pool. 
At the bottom, mass can not penetrate,  

thus: 
@ z = L;  N1 = 0 

Using the Fick’s law at this point (z=L), we 
have: 

@ ;z L N D dC
dzz L

z L

= = − =
=

=
1 12

1 0
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Step 8: Concentration distribution 

 

C
C

z
L

kL
D

kL
D

1

10

2

12

2

12

1

=

−



























cosh

cosh  

Note that the three parameters of the 
system, namely  

 1. reaction rate constant, k 
 2. depth of the liquid pool, L 

 3. diffusion coefficient, D12 
are grouped together. 
 

It is dimensionless.  It is known as the 
Damkohler* number (1937).  

Da kL
D

=
2

12  

*: German chemist (1908-1944) 
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The solution: 

( )
C
C

z
L

Da

Da
1

10

1
=

−











cosh

cosh  

The good thing about the dimensionless 
group is that systems having the same 
value of the dimensionless will behave 
identically. 

 
 
 

 
 

 
 

 
 

 

z=0 

z=L 

C10 
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Step 9: Mass transfer 
To calculate the mass transfer of A (gas 

absorption rate) into the liquid B, we 
simply apply the Fick’s law and 
evaluate at the gas-liquid interface. 

 

( )

N D
dC
dz

N
C D

L
Da Da

N
C D

L
kL
D

kL
D

z
z

z

z

1 0 12
1

0

1 0
10 12

1 0
10 12

2

12

2

12

=
=

=

=

= −

= ⋅

= ⋅










tanh

tanh
 

 

This is the gas absorption rate per unit 
interfacial area. 
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Let’s have a look at the Damkohler 
number: 

( )
( )Da kL

D
L D

k
diffusion time
reaction time

= ≡ ≡
2

12

2
12

1
/
/  

There are two extreme cases: 

Case 1:  
 When Da << 1, the diffusion time is 

very short compared to the reaction 
time. 

Case 2: 
 When Da >> 1, the diffusion time is 

much larger than the reaction time. 
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Case 1: Da << 1 
 This means that dissolved A will have 

time to penetrate throughout the 
liquid B before reaction could take 
place.  One expects: 

   C1(z) = C10 
 and  

   N1 = LkC10 
To prove this expectation, we take the limit 

of the solution 

lim
Da z

N
C D

L
Da LkC

→ =
= =

0 1
0

10 12
10  

In this case, there is no diffusivity term as 
the system is kinetically controlled 

 

Also the limit of the concentration 
distribution will give: 

   C1 (z) = C10 
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Case 2: Da >> 1 
In this case, the reaction is so fast, so the 

penetration of the dissolved A can not 
go far into the liquid pool. 

 

The gas absorption rate is: 

lim
Da z

N C D
L

Da C k D
>> =

= = ⋅
1 1

0

10 12
10 12  

Observation: 
1. Rate is proportional to the solubility 

2. Rate is proportional to square root of 
chemical reaction rate 

3. Rate is proportional to square root of 
diffusivity 

4. Rate is independent of the depth of the 
liquid pool (is this expected?). 

 
This case is the diffusion-controlled case. 
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Before we leave this example, there is a 
quantity that engineers use to quantify 
the influence of diffusion. 

This is the ratio of the true absorption 
rate to the ideal absorption rate (in the 
absence of diffusion): 

( )
η = = =











=

=

N

N

Da

Da

kL
D

kL
D

z
no diffusion

z

1 0

1 0

2

12

2

12

tanh
tanh

 

This ratio is known as the effectiveness 
factor. 

 

 
 

 
 

 
 

1 

0.1 

0.01 

0.001 

0.1 1 100 

ηηηη 
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Diffusion into a falling film 
 
All the examples: 

 1. Diffusion Stefan tube 
 2. Diffusion & heterogeneous rxn 
 3. Diffusion & homogeneous rxn 

deal only with diffusion and bulk flow 
induced by the mass transfer. 

 
Now we deal with mass transfer caused by 

diffusion and forced convection.  
 
Gas absorption in a falling liquid film. 
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x x+dx 

z 

z+dz 

Gas A 

Liquid B 

D 

W 

L 
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Step 5: Shell mass balance 

( )Rate of
mass in

Rate of
mass out

Rate of mass
production

Accummulation






 −







 +







 =  

 

 

( ) ( ) ( ) ( )W zN W xN W zN W xNx x z z x x x z z z
∆ ∆ ∆ ∆

∆ ∆, , , ,1 1 1 1

0 0

+ − +

+ =

+ +

 

 
where 

Nx,1 is the molar flux in the x-direction 
Nz,1 is the molar flux in the z-direction 

 
 
In the limit of very thin shell 

∂
∂

∂
∂

N
x

N
z

x z, ,1 1 0+ =  
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Step 6: Fick’s law 
1. The molar flux in the x-direction 

 ( )N D C
x

x N Nx x x, , ,1 12
1

1 1 2= − + +∂
∂  

 Since most gases dissolve sparingly in 
liquid, that is the bulk flow term 
(second term) is negligible compared 
to the diffusive term, i.e. 

  N D C
xx ,1 12

1≈ − ∂
∂  

 The flux in the direction into the bulk 
liquid to controlled by diffusion. 
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2. The molar flux in the z-direction 

 ( )N D C
z

x N Nz z z, , ,1 12
1

1 1 2= − + +
∂
∂  

 By definition of the flux: 

 N C v N C vz z z z, , , ,;1 1 1 2 2 2= =  

 the above equation will become: 

 ( )N D
C
z

x C v C vz z z, , ,1 12
1

1 1 1 2 2= − + +
∂
∂  

 Rearrange the above equation as: 

( )N D
C
z

x
C v C v

C C
C Cz

z z
,

, ,
1 12

1
1

1 1 2 2

1 2
1 2= − +

+
+







 +

∂
∂  

But 

 
C v C v

C C
v xz z

z
1 1 2 2

1 2

, , ( )
+
+







 =  

 
 

 
Thus, the molar flux in the z-direction is: 

liquid bulk 
velocity 
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 N D
C
z

v x Cz z, ( )1 12
1

1= − +
∂
∂  

The second term is simply the convection 
flux term, and we could have written 
that term without going through the 
first principles. 

 

Usually, the diffusion term in the z 
direction is much smaller in 
magnitude than the convection term, 
except in cases where the flow velocity 
is very slow. 

 
Thus, the molar flux in the z direction is: 

N v x Cz z, ( )1 1≈  

 

 
 

Substitute the two fluxes equations  
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N D C
xx,1 12

1≈ − ∂
∂ ; N v x Cz z, ( )1 1≈  

into the mass balance equation, we get: 

D C
x

v x C
zz12

2
1

2
1∂

∂
∂
∂

= ( )  

This is the typical form of diffusion-
convection equation. 

 
Recall the conduction-convection equation 

in a tube is: 

α ∂
∂

∂
∂

∂
∂

1
r r

r T
r

v x T
zz






= ( )  

If we deal with heat conduction-
convection in a parallel plate system, 
we will have: 

α ∂
∂

∂
∂

2

2

T
x

v x T
zz= ( )  

An extreme similarity 
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Now coming back to our mass balance 
equation: 

D
C
x

v x
D

C
z12

2
1

2

2
11

∂
∂

∂
∂

= − 

















max  

in which we have used the velocity 
distribution from the results of 
momentum analysis done earlier. 

 

 
 

 
All this equation says is that the amount 

of dissolved A diffusing in the x 
direction is balanced by the amount of 
A carried downstream by the fluid. 

 
 
 

 

diffusion term 
in x direction 

convection term 
in z direction 
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Step 7: Physical constraints 
1. At entrance of the liquid film: 

 @ z = 0;  C1 = 0 
 

2. At the gas-liquid interface: 
 @ x = 0;  C1 = C10 (solubility) 

 Solubility is constant for a given 
temperature and pressure in the gas 
phase. 

 

3. At the liquid-solid surface, there is no 
penetration of mass in the x-direction: 

 @ x = D;   Nx,1 = -D12dC1/dx = 0 
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Step 8: Concentration distribution 
The mass balance equation together with 

the three boundary conditions can be 
readily solved by the separation of 
variables method.   

 
However, we will deal with the case of 

short contact time, that is dissolved 
only travels a short distance into the 
bulk liquid 
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Because of the short contact time, the 
dissolved molecules A will not travel 
far into the bulk, so: 

 1. they will experience only the 
velocity vmax  

 2. the solid surface seems like too far 
away from them. 

 
The mass balance and BCs for this short 

contact time situation are: 

 D
C
x

v
C
z12

2
1

2
1∂

∂
∂
∂

≈ max  

 @ z = 0;  C1 = 0 

 @ x = 0;  C1 = C10 

 @ x →→→→∞∞∞∞;  C1 = 0 

This set of equations is simpler than the 
original set, and it can be readily 
solved by the method of combination 
of variables   ⇒⇒⇒⇒  Analytical Solutions 
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In this method, the concentration 
distribution of dissolved A behaves 
like: 

  
C f

x
z1 = 



  

 instead of  

  ( )C g x z1 = ,  

 
The solution is: 

C C erf x
D z v1 10

12

1
4

= −




















/ max  

where erf is the error function. 

 
This solution is analytical and compact, 

and is useful in obtaining quantities 
such as mass transfer rate. 
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The error function is defined as: 

erf z e dxx
z

( ) = −∫2 2

0π  

and it has the following properties: 
 1. erf(0) = 0;  

 2. erf(∞∞∞∞) = 1 

 3. ( )d
dz

erf z e z( ) = −2 2

π  

 

 
You have encounterred the error function 

when dealing with heat transfer into a 
semi-infinite object. 
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Step 9: Desired quantities 
The molar flux into the bulk liquid can be 

calculated from the Fick’s law: 

N D C
xx x

x
,1 0 12

1

0
=

=

= −
∂
∂  

that is: 

N C
D v

z
moles of A absorbed

erfacial area timex x,
max

int1 0 10
12

=
=

−








π  

 
Observation 

1. This molar flux is decreasing with 
respect to distance x as the driving 
force  is lower. 

2. This flux is infinite @ z = 0, because of 
the infinite driving force at that point. 

 Infinite flux?  Does this worry us? 
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Answer: 
No it should not worry us, because  we are 

interested in the amount of moles 
absorbed over a certain length of the 
film, which is: 

M W N dz W C
D v

z
dz

M WL C
D v

L

x x

L L

1 1 0
0

10
12

0

1 10
124

= =

=

=∫ ∫,
max

max( )

π

π
 

 
Observation 

The mass transfer is proportional to: 
 1. solubility 

 2. square root of the diffusivity 
 3. the width of the film 

 4. square root of the length 
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and it is inversely proportional to  
 5. square root of the exposure 

(contact) time between the gas and 
liquid.  The exposure time is 

    
L

v max
 

 
Another quantity of interest is the average 

exit concentration.  It is defined as: 

   F C Mexit⋅ =1 1,  
where F is the volumetric flow rate, which 

is: 

  ( ) ( )F WD v WD v= = 2
3 max  

Thus 

  C C
D L

D v
exit1 10

12
2

3
,

max

= ⋅
π  
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Observation of the average exit conc. 

 C C
D L

D v
exit1 10

12
2

3
,

max

= ⋅
π  

Rearrange it as follows: 

 
( )
( )C C

L v
D D

exit1 10 2
12

3
,

max/
/

= ⋅
π  

But 
  L/vmax = exposure time 

  D2/D12 = diffusion time 
This means that how much we have at the 

exit depends on the ratio of these two 
time scales, i.e. 

 C C
osure time

diffusion time
exit1 10

3
,

exp
= ⋅

π  
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Gas absorption from rising bubble 
 
 

 
 

 
 
 

 
 

 
 

 
 

 
 
 

Gas A 

Liquid B 

D 

vt 

dissolved A 
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The physical situation of gas absorption 
from a rising bubble is very 
complicated, but 

we can apply the result of the previous 
analysis into this problem: 

Average
molar flux

M
WL

C
D v

L






 = =1

10
124 max

π  

 
In the context of the rising bubble, we 

have the following variable 
transformation. 

 
Falling film Rising bubble 
vmax vt 
L D 

 
where vt is the terminal velocity, and D is 

the bubble diameter. 
Thus, the average molar flux out of the 

bubble is: 
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N C

D v
D

t
1 10

124
=

π  

 
To find out how quick the bubble would 

deplete, we do a mass balance around 
a bubble, i.e. 

( )d
dt

D p
RT

D C D v
D

tπ π
π

3
0 2

10
12

6
4






 = −

 

where p0 is the bubble pressure. 
 

 
But the terminal velocity vt is a function of 

bubble diameter, as shown below: 

   
v g D

t =
∆ρ 2

18µ  

So the mass balance equation of a bubble 
is: 
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dD
dt

D C
p RT

D g= − ⋅






2 4

18
10

0

12

/ π µ
∆ρ

 

This is a first-order ODE in terms of 
diameter D.  The initial condition is: 

@ t = 0;    D = D0 (initial size) 

 
Integrate the above equation, we get: 

D D t= −0 γ  

where 

γ
π µ

=








C
p RT

D g10

0

124
18/
∆ρ

 

This equation will describe how the 
bubble diameter changes with time. 

 

 
The time it takes for the bubble to 

disappear is: 
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t D* = 1
0γ  

 
The time it takes for the bubble to 

disappear is not of too much interest to 
engineers.  What we want is the height 
required for the bubble to disappear. 

 

This height can be calculated from: 

H v dtt

t

= ∫
0

*

 

But 

[ ]v g D g D tt = = −∆ρ ∆ρ2

0

2

18 18µ µ
γ

 

 

Therefore, the height can be calculated as 
follows: 
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H g D=















∆ρ
18

1
5 0

5 2

µ γ
/

 

or 

H g
D

p RT
C

D=






 ⋅








 ⋅






 ⋅

π
µ30 2 12

0

10
0
5 2∆ρ / /

 

 
Observation: 
The height required to rid of bubble is 

proportional to: 
 1. D0

5/2 

 2. bubble pressure, p0 
 3. square root of density difference 
and is inversely proportional to: 

 4. square root of diffusivity 
 5. solubility 
Example: 
Chlorine gas absorption in water. 
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 D12  = 1.55 x 10-8 ft2/sec 

 ρρρρ  = 59.4 lb/ft3 

 µµµµ  = 6.73 x 10-4 lb/ft/sec 

 g  = 32.17 ft/sec2 

 
 p0  = 1 atm 

 R  = 0.73 atm-ft3/lbmole/R 
 T  = 528 R 
 

 D0  = 0.00328 ft 
 C10  = 0.01412 lbmole/ft3 

 
The height required is 

    2  
 

The height is 2 cm.  It is so short because 
of the small size of the bubble. 
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If the initial bubble size is 1 cm, the height 

required is 6.6 m! 
This is to show that how quick the height 

will increase with the bubble size.  
Remember the functional dependence 
on the bubble size is 

    D5/2 
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Equations of change for 
binary mixtures 

 
1. Mass units 
We apply the law of conservation of mass 

to an element of volume ∆∆∆∆x∆∆∆∆y∆∆∆∆z, fixed 
in space and through which a mixture 
(species 1 and 2) is flowing.   

 
Also in this volume, there is a chemical 

reaction per unit volume: 

  r r
g produced
cm1 2 3&

sec
≡

−




  
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The mass balance equations are: 

( )∂ρ
∂

1
1 1t

n r+ ∇• = ,   ( )∂ρ
∂

2
2 2t

n r+ ∇ • =  

where n1 and n2 are mass flux of 1 and 2. 
 

Summing the two equations, we get: 

( ) ( )( )∂ ρ ρ
∂

1 2
1 2 1 2

+
+ ∇ • + = +

t
n n r r  

But 

r r conservation of mass1 2 0+ = ( )  
and 

( )( ) ( )( ) ( )∇ • + = ∇ • + = ∇ •n n v v v1 2 1 1 2 2ρ ρ ρ  

we have the following equation of 
continuity for the mixture: 

( )∂ρ
∂

ρ
t

v+ ∇ • = 0
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The mass balance equations written in 
terms of the mass flux are not useful in 
getting the concentration profiles. 

SO 
We have to use the relationship between 

the mass flux and the mass conc. 

 ( )n D n n1 12 1 1 1 2= − ∇ + +ρ ω ω  

 ( )n D n n2 12 2 2 1 2= − ∇ + +ρ ω ω  

and get: 

( ) ( )∂ρ
∂

ρ ρ ω1
1 12 1 1t
v D r+ ∇ • = ∇ • ∇ +  

( ) ( )∂ρ
∂

ρ ρ ω2
2 12 2 2t
v D r+ ∇ • = ∇ • ∇ +  

Summing these two equations, we get: 

( )∂ρ
∂

ρ
t

v+ ∇ • = 0
 

which is the total mass balance. 
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1. Mole units 
We have obtained necessary equations 

written in mass units.  Now let apply 
the same procedure to obtain the mass 
balance in mole units. 

 
The chemical reaction rates per unit 

volume are: 

 R R
moles produced

cm1 2 3&
sec

≡
−





  

 

The mass balance equations are: 

( )∂
∂
c
t

N R1
1 1+ ∇ • =  

( )∂
∂
c
t

N R2
2 2+ ∇ • =  

where N1 and N2 are molar flux vectors of 
1 and 2. 
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Summing the two equations, we get: 

( )( )∂
∂
c
t

N N R R+ ∇ • + = +1 2 1 2  

But 

( )( ) ( )( ) ( )∇ • + = ∇ • + = ∇ •N N c v c v cv1 2 1 1 2 2
*

 

we have the following equation of 
continuity for the mixture: 

( )∂
∂
c
t

cv R R+ ∇ • = +*
1 2  

Since moles are generally not conserved, 
R1 + R2 is not zero unless one mole of 
species 2 is produced for every mole of 
species 1 consumed (or vice versa). 
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Now we relate the molar fluxes in terms of 
the mole fractions, using: 

( )N cD y y N N1 12 1 1 1 2= − ∇ + +  

( )N cD y y N N2 12 2 2 1 2= − ∇ + +  

we get: 

( ) ( )∂
∂
c
t

c v cD y R1
1 12 1 1+ ∇ • = ∇ • ∇ +*

 

( ) ( )∂
∂
c
t

c v cD y R2
2 12 2 2+ ∇ • = ∇ • ∇ +  

 
Summing the two equations, we have: 

( )∂
∂
c
t

cv R R+ ∇ • = +*
1 2  
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Special case: Constant mixture density & D 
 

The starting equations are: 

( ) ( )∂ρ
∂

ρ ρ ω1
1 12 1 1t
v D r+ ∇ • = ∇ • ∇ +  

( ) ( )∂ρ
∂

ρ ρ ω2
2 12 2 2t
v D r+ ∇ • = ∇ • ∇ +  

At constant density of the mixture, the 
above equations become: 

( ) ( )∂ρ
∂

ρ ρ1
1 12

2
1 1t

v D r+ • ∇ = ∇ +  

( ) ( )∂ρ
∂

ρ ρ2
2 12

2
2 2t

v D r+ • ∇ = ∇ +  

in which we have used the continuity 
equation for a constant density 
mixture: 

( )∇ • =v 0  
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Furthermore, if we divide the mass 
balance equations by their molecular 
weights, we get: 

( ) ( )∂
∂
c
t

v c D c R1
1 12

2
1 1+ • ∇ = ∇ +  

( ) ( )∂
∂
c
t

v c D c R2
2 12

2
2 2+ • ∇ = ∇ +  

This equation is used for: 
1. dilute liquid solutions at constant T 

and pressure. 
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Special case: Constant c & D 

 

The starting equations are: 

( ) ( )∂
∂
c
t

c v cD y R1
1 12 1 1+ ∇ • = ∇ • ∇ +*

 

( ) ( )∂
∂
c
t

c v cD y R2
2 12 2 2+ ∇ • = ∇ • ∇ +  

At constant c and D12, they become: 

( ) ( )∂
∂
c
t

v c D c R
c
c

R R1
1 12

2
1 1

1
1 2+ • ∇ • = ∇ + − +*

 

( ) ( )∂
∂
c
t

v c D c R
c
c

R R2
2 12

2
2 2

2
1 2+ • ∇ • = ∇ + − +*

 

in which we have used the continuity 
equation for the mixture: 

( )∂
∂
c
t

cv R R+ ∇ • = +*
1 2  

 

These eqns are used for low density gases 
at constant T and pressure. 

0 because of constant c 
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Special case: No reaction & zero velocity 

 

In this case, the mass balance equations 
are: 

∂
∂
c
t

D c1
12

2
1= ∇
 

∂
∂
c
t

D c2
12

2
2= ∇

 

which are now well known in the 
literature as the Fick’s second law of 
diffusion. 

 
These equations are valid in: 

1. Solids or stationary liquids 
2. equimolar, counter-diffusion of gas 
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Equations of change for 
multicomponent systems 

 

The equation of continuity for each species 

( ) ( )D
Dt

v j ri i i iρ ρ= − ∇ • − ∇ • +  

for i=1,2, ..., n. 

Here, ri is the mass rate of reaction per 
unit volume, i.e. 

r
i

i

n

=
=∑

1
0

 

which is the law of conservation of mass. 

 
Also, according to the definition of the 

diffusive fluxes: 

j
i

i

n

=
=∑

1
0
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Summing the individual mass balance 
equations wrt i=1,...,n, gives: 

( )∂ρ
∂

ρ
t

v+ ∇ • = 0  

which is the continuity eqn for mixture 

 

For fluids of constant mass density ρρρρ, the 
continuity equation of the mixture is: 

( )∇ • =v 0  
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Unsteady state 
evaporation 

 

Take the example of Stefan tube. 
Liquid A:  Species 1 

Gas B:  Species 2 
 
1. Mass balance equations: 
Carrying out the mass balance on an 

element, we get the following two 
equation for species 1 and 2: 

∂
∂

∂
∂

∂
∂

∂
∂

c
t

N
z

c
t

N
z

1 1 2 2= − = −;  

 
Adding the two equations gives the total 

mass balance: 

  
( )∂

∂
∂

∂
c
t

N N
z

= −
+1 2
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2. Evaluation of total flux 

Since the system is at constant pressure, 
the total mass balance eqn become: 

   
( )∂

∂
N N

z
1 2 0
+

=  

which simply means that N1 + N2 is a 
function of time only, that is: 

 ( )N N f t N N1 2 1 0 2 0+ = = +( ) , ,  

At the liquid-gas interface (z=0), gas B is 
not soluble, i.e. N2,0 = 0; hence 

  ( )N N N1 2 1 0+ = ,  

Using the Fick’s law equation, we have: 

 
N cD

y
y
z z

1 0
12

1 0

1

01,
,

= −
− =

∂
∂  

Thus, the total flux is: 
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N N N cD
y

y
z z

1 2 1 0
12

1 0

1

01
+ = = −

− =
,

,

∂
∂  

3. The Fick’s law equation 

Substitute the total flux to the Fick’s law 
equation, we get: 

N cD y
z

y cD
y

y
z z

1 12
1

1
12

1 0

1

01
= − +

−










=

∂
∂

∂
∂,  

 
4. The final form of governing equation 

Finally, put this Fick’s law into the mass 
balance equation, we have: 

∂
∂

∂
∂

∂
∂

∂
∂

y
t

D y
z

D
y

y
z

y
zz

1
12

2
1

2
12

1 0

1

0

1

1
= +

−










=,  

The initial and boundary conditions are: 
@ t = 0;  y1 = 0 

@ z = 0;  y1 = y1,0 

@ z →→→→ ∞∞∞∞;  y1 = 0 
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5. Combination of variables 
Introduce: 

Y y
y

Z z
D t

= =1

1 0 124,

;
 

the mass balance will become: 

d Y
dZ

Z dY
dZ

2

2 2 0+ − =( )ϕ  

subject to: 
@ Z = 0;  Y = 1 

@ Z = ∞∞∞∞;  Y = 0 

where ϕϕϕϕ is: 

ϕ ∂
∂

= −
− =

1
2 1

1 0

1 0 0

y
y

Y
Z z

,

,  

We have reduced a partial differential 
equation to a second order ODE! 
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6. Solution for concentration profiles: 
Solution is: 

( )
( )Y

erf Z
erf

=
− −
+

1
1

ϕ
ϕ  

Remember that ϕϕϕϕ is still an unknown.  
Differentiate the above equation 

( )[ ]
( )

dY
dZ

Z

erf
= −

− −

+
2

1

2

π

ϕ

ϕ

exp
 

Substitute this into 

ϕ ∂
∂

= −
− =

1
2 1

1 0

1 0 0

y
y

Y
Z z

,

,
 

to get: 

( )
1 1 1

11 0
2y erf e,

= +
+π ϕ ϕ ϕ  
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This is a nonlinear equation in terms of ϕϕϕϕ, 
and it can be solved for a given y1,0. 

 
7. The evaporation rate: 
From the Fick’s law 

N cD
y

y
z z

1 0
12

1 0

1

01,
,

= −
− =

∂
∂  

Written in terms of Y and Z: 

N
cy

y
D

t
Y
Z z

1 0
1 0

1 0

12

01 4,
,

,

= −
− =

∂
∂  

We then finally get: 

N c D
t

moles evaporated
area time1 0

12
, = ≡

−






ϕ
 

The rate of volume of evaporation is: 

c dV
dt

Ac D
t

1 12= ϕ  

Integrating will give: 
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V A D t1 124= ϕ  

 
8. Diffusivity determination 

The useful equation is: 

V A D t1 124= ϕ  

The volume of evaporation can be 
measured as function of time.  Thus, a 
plot of V1/(2A) versus square root of 
time will give a slope: 

   ϕ D12  

from which the diffusivity can be 
calculated. 

 

Note: Again we see the square root of time 
dependence.  This is the property of 
diffusion process. 
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