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Preface
The occurrence of mass-transfer processes throughout the biological,
chemical, physical, and engineering fields is extremely widespread. Biologi-
cal involvements include respiration mechanisms and the oxygenation of
blood, kidney functions, and food and drug assimilation. A few engineer-
ing examples are the ablative cooling of space vehicles during reentry to
the atmosphere, the transpiration and film cooling of rocket and jet-engine
exhaust nozzles, and the separation of ores and isotopes. Chemical-
engineering applications arise in such processes as distillation, gas absorp-
tion, stripping, liquid and solid extraction, adsorption, crystallization, air
conditioning, water cooling, drying, ion exchange, sublimation, and
chromatography.

This book describes a representative selection of topics, many of which
are common to a wide variety of applications. Nevertheless, any text with
less than several thousand pages must inevitably omit more than it covers
in the enormous field of mass transfer. Indeed, entire books have been
written on some single process from among those listed above. It would
therefore be a simple matter to prepare an extensive list of “omissions,”
although one in particular should be mentioned. The field of mass transfer
in chemically reacting systems is not treated in this text because good
presentations of the subject are available in two recent books. They are
Mass Transfer with Chemical Reaction by G. Astarita (Elsevier, Amster-
dam, London, and New York, 1967)  and Gas-Liquid Reactions by P. V.
Danckwerts (McGraw-Hill, New York, 1970).

The approach throughout is from the diffusional or rate-process point of
view. The nature and diversity of mass-transfer processes are indicated in
Chapter 1, and Chapter 2 describes steady and unsteady-state molecular
diffusion under conditions often encountered in practice. The prediction of
molecular diffusivities in gases, liquids, and solids is discussed in Chapter
3. The concepts of individual and overall transfer coefficients are intro-
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viii  Preface

duced in Chapter 4, where some of the more prominent theories on
transfer mechanisms are also presented. Chapters 5 and 6 consider mass
transfer under laminar and turbulent flow conditions, mostly with known
velocity fields, and for a variety of external and internal flow systems. The
last three chapters are concerned with column and tower designs for
several gas-liquid and liquid-liquid processes where the details of the
velocity fields are unknown. Chapter 7 deals with continuous columns; the
first half of the chapter considers the location of the operating line in
various cases, for use in evaluation of the NTU relationships derived later
in the chapter. A provisional attempt is made in Chapter 8 to integrate
some of the many and diverse studies on droplet phenomena into a
coherent design procedure for perforated-plate extraction columns. The
approach is clearly amenable to refinement after further research. Rate
equations are applied in Chapter 9 to the design of cooling towers. Basic
concepts from the earlier parts of the book influence the formulation of the
last three chapters in ways which are outlined in Chapter 1. Examples
showing numerical computations appear throughout, and the unworked
problems at the end of each chapter-for solution by the reader-are
intended to consolidate and extend material in the text.

Results of digital-computer solutions to certain boundary-value prob-
lems are incorporated at appropriate places in the book (for example, when
considering mass transfer during laminar flow through tubes and between
parallel plates). However, in common with E. R. G. Eckert and R. M.
Drake (Analysis of Heat and Mass Transfer, Preface, McGraw-Hill, New
York, 1972)  I assume that the student is already familiar with the com-
puter programming techniques needed to obtain results from the relevant
equations, so that such programs have generally not been included. An
exception is the rather extensive computer program for perforated-plate
column design in Chapter 8. This facilitates the use of a complex design
procedure and would perhaps pose unusual difficulties if left to the
student.

The book would be suitable for use by either senior or graduate students
and should prove helpful to the practicing engineer. To this end the
derivation of important or representative relationships has been presented
in sufficient detail to enable a clear understanding and, I hope, an
avoidance of misapplication.

A. H. P. SKELLAND

L-exingion, Kentucky
June 1973
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Introduction

Diffusional mass transfer involves the migration of one substance through
another under the influence of a concentration gradient. The occurrence of
mass-transfer processes throughout the biological, chemical, physical, and
engineering fields is extremely widespread. Biological involvements include
respiration mechanisms and the oxygenation of blood, kidney functions,
and food and drug assimilation, Engineering examples are found in the
ablative cooling of space vehicles during reentry into the atmosphere, in
the transpiration and film cooling of rocket and jet-engine exhaust nozzles,
and in the separation of ores and isotopes. Chemical-engineering applica-
tions of mass transfer in separation processes involve the diffusional
transport of some component within a single phase or between two
immiscible phases which have been brought into contact to enable the
transfer of the component from one phase to the other. Components may
migrate from the bulk of one phase to the interface between phases and
remain there, as in adsorption or crystallization. Alternatively, penetration
of the interface may occur, followed by diffusion into the bulk of the other
phase, as in distillation, gas absorption, and liquid-liquid extraction.

The design of equipment for the diffusional separation of mixtures is
determined by two major considerations, namely, the distribution of com-
ponents between phases in a state of thermodynamic equilibrium, and the
rate at which mass transfer occurs under conditions prevailing in the
equipment.

In distillation intimate contact is promoted between saturated-vapor and
1



2 Introduction

boiling-liquid phases to facilitate the transfer of a less volatile component
from the vapor to the liquid and of a more volatile component in the
opposite direction. Gus absorption refers to the transfer of a soluble
component from a gas phase into a nonvolatile liquid absorbent. The
reverse process is called desorption or stripping. Transfer of solute between
two immiscible or partially miscible liquid phases occurs in liquid-liquid
extraction, whereas in solid-liquid extraction a liquid solvent is used to
dissolve a soluble solid component from its mixture with another insoluble
solid. In adsorption operations a gaseous or liquid mixture is separated by
preferential adsorption of some component on the surface of a solid.
Subsequent recovery of the adsorbed material is often effected by heating
or steaming. Crystallization is used to separate a crystalline solid from its
solution by inducing supersaturation. Air humidification and some forms of
air conditioning and water cooling involve the transport of water vapor
through an air stream which has been contacted with water. Dying
operations depend on the transport of both liquid and vapor within the
solid and of vapor in the drying gas. Clearly, many other examples could
be cited, such as ion exchange, sublimation, chromatography, and reverse
osmosis, all of which are linked by their common dependence upon
rate-process mass transfer.

A great diversity of equipment has evolved for carrying out these various
separation operations. In cases involving the contacting of a gas and a
liquid phase or of two liquid phases the equipment may generally be
classified as either a continuous or a stagewise contactor.

Continuous contactors usually consist of vertical columns, frequently
filled with some sort of packing. The two phases generally flow counter-
currently through the interstices in the packing, which is provided to
promote good contact for mass transfer between the phases. The necessary
column height to achieve a specified separation is a major design objective
in such equipment.

f

Stagewise contactors provide intermittent, rather than continuous, con-
tact between the phases. The stages often take the form of horizontal plates
or trays of varied design, arranged vertically above each other in a column.
The two phases usually flow countercurrently, mix together to allow
interphase mass transferlonla  given stage, and then separate and flow,
respectively, up and down to the next stages in the series. The design of
such contactors involves a determination of the number of stages needed
to effect a given separation of components in a phase, or of the separation
obtainable from an existing column with a fixed number of stages. i

The choice between continuous and stagewise contactors in a particular
situation is determined by such factors as the attainable stage efficiency,
capacity or scale of operation, corrosion problems, tolerable pressure drop,
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availability of performance data, and, of course, relative cost. Both types
of contactor are considered here in terms of rate-process mass transfer.
Other forms of phase-contacting equipment, including dryers, crystallizers,
mixer-settlers, and the like, are available in great variety. In all cases,
however, their performance is substantially dependent on relationships to
be presented here.

Transfer in solids may occur by mechanisms other than diffusion. Thus
in particulate solids with an extensive structure of large and varying pores,
liquid transport may take place under the influence of capillary forces in a
manner that is not directly proportional to the concentration gradient. In
fluids at rest, mass is transferred by purely molecular diffusion when a
concentration gradient is present. When convective movement exists in the
fluid, however, transfer occurs both by molecular diffusion and by bulk
motion of the whole mixture. The latter contribution to the mass-transfer
process depends on the details of the flow pattern within the fluid.
Knowledge of the relevant fluid dynamics is therefore essential to the
solution of any convective-mass-transfer problem. To keep the length of
the treatment within bounds, fluid-dynamical developments are here con-
fined to those aspects necessary to the case under consideration.

Forced-convection problems are those in which the flow field is imposed
by some device such as a pump or fan, or by the propulsion of a body
through a fluid. Natural or free convection arises, for example, under the
influence of a gravitational field acting on density differences associated
with variations in solute concentration or temperature.

It will be found that certain mass-, heat-, and momentum-transfer
processes are in some ways analogous when solute concentrations and
transfer rates are low. Under conditions of high mass flux, however, the
flow field is modified by velocity components associated with the mass
transfer, and this introduces significant differences between mass transfer
on the one hand and heat and momentum transfer processes without mass
transfer on the other. Mass-transfer coefficients that are restricted to low
concentrations and low transfer rates are usually marked with an asterisk
in this book.

Any text with fewer than several thousand pages must inevitably omit
more than it covers in the enormous field of mass transfer. Indeed, entire
books have been written on some single process from among those de-
scribed earlier. An encyclopedic survey of mass transfer is therefore not
feasible in one volume, although one omission in particular should be
mentioned. The study of mass transfer in chemically reacting systems is
not treated in this text, because good presentations of the subject are
already available in two recent books (Astarita, 1967; Danckwerts, 1970).

Design applications in the final three chapters are confined to the
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gas-liquid and liquid-liquid processes of distillation, gas absorption, strip-
ping or desorption, liquid-liquid extraction, humidification, and gas and
liquid cooling. Solid-fluid operations, such as adsorption, chromatography,
ion exchange, drying, and crystallization, are excluded, although some
related topics are dealt with in earlier parts of the book. These include
unsteady-state diffusion in bodies of several geometries and i factors in
packed and fluidized beds. The approach throughout is from the diffu-
sional or rate-process point of view. Design procedures in terms of the
nondiffusional aspects of material and energy conservation, subject to the
constraints of phase equilibrium, are to be found in texts by Smith (1963),
Henley and Staffin  (1963),  and Brian (1972).

The last three chapters contrast with situations in Chapters 2, 5, and 6 in
that the details of the hydrodynamics involved are much less well known.
Basic relationships and concepts from earlier chapters nevertheless contri-
bute significantly to the treatment in these areas, as outlined in the
following three paragraphs.

In Chapter 7, the four rate equations from Chapter 4, the two-film
theory (Chapter 4),  and the respective mechanisms of equimolal counter-
diffusion and unimolal unidirectional diffusion (Chapter 2) are all used in
formulating the expressions for the number of transfer units (NTU) in
distillation on the one hand and in absorption, stripping or desorption, and
extraction on the other. The concept of the additivity of resistances to mass
transfer between phases (Chapter 4) is then applied in obtaining the
relationships between overall and individual heights of transfer units
(HTUs) for the two different transport mechanisms. Evaluation of the
individual HTUs  requires a knowledge of the molecular diffusivities,
predictable according to Chapter 3.

Chapter 8 again uses rate equations and the concept of additive resis-
tances (Chapter 4) to formulate overall mass-transfer coefficients from
individual coefficients describing extraction in perforated plate columns.
Various theoretical expressions for coefficients during droplet formation,
rise, and coalescence have been developed using the penetration theory
(Chapter 4),  and the disperse-phase coefficient during the free rise of
stagnant droplets is derived from the treatment of unsteady-state diffusion
in a sphere given in Chapter 2. The corresponding continuous phase
coefficient is obtained from relationships for spheres and spheroids pro-
vided in Chapter 6. The rate expressions during all stages of the process
utilize diffusivities obtainable from Chapter 3.

In Chapter 9, the wet-bulb temperature analysis involves individual
coefficients (Chapter 4),j  factors (Chapter 6),  and diffusivities (Chapter 3);
both individual and overall coefficients (Chapter 4) are used in formulating
the NTU and HTU expressions. Limitations on the use of constant overall
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coefficients in Chapters 7 and 9 are as prescribed in Chapter 4. In both
Chapters 7 and 9 the preference for design in terms of transfer units rather
than coefficients follows from demonstrations in earlier chapters (4, 5, and
6) of the substantial variations in coefficients with flow rate and, in some
cases, with concentration.

REFERENCES
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Molecular Diffusion

When the composition of a fluid mixture varies from one point to another,
each component has a tendency to flow in the direction that will reduce
the local differences in concentration. If the bulk fluid is either stationary
or in laminar flow in a direction normal to the concentration gradient, the
mass transfer reducing the concentration difference occurs by a process of
molecular diffusion. This mechanism, characterized by random movement
of individual molecules, contrasts with the bulk transport by eddies which
occurs in a turbulent fluid.

Consideration is first given to some of the ways in which concentration
and flux are defined.

Flux Definitions

A wide variety of methods for expressing the composition of multi-
component systems is in use, including mole or mass fraction, moles or
mass per unit volume, and moles or mass of component A per mole or unit
mass of non-A. The mass concentration or mass of component A per unit
volume of solution is denoted by pA,  and the mass fraction, pA/p, by wA.
The molar concentration (the number of moles of component A per unit
volume of solution) is written as c,, and the mole fraction, c~/c,  as x,. It
may be noted that “molal”  and “molar” refer to different definitions of
concentration in classical chemistry. However, both terms are also widely
used in a broader sense in the engineering literature to denote quantities
6
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Molecular Diffusion 7

and processes relating to moles. Among those using “molal” in this way
are Rohsenow and Choi (1961),  Bennett and Myers (1962),  Kay (1963),
Sherwood and Pigford  (1952)  and McCabe and Smith (1967),  whereas
those preferring “molar” include Bird, Stewart, and Lightfoot (1960),
Welty, Wicks, and Wilson (1969),  Oliver (1966),  and Foust et al. (1960).
The term “molal” is generally used in this text to mean “pertaining to
moles,” in accordance with the International Dictionary of Physics and
Electronics, 2nd ed., Van Nostrand, Princeton, N. J., (1961),  p. 761.

Attention is now directed to a nonuniform multicomponent fluid mix-
ture that is undergoing bulk motion and within which the various com-
ponents move with different velocities because of diffusional activity.
Some procedures are considered by which the component velocities may
be averaged to provide different definitions of the average fluid velocity.
Detailed developments of such relationships and the attendant expressions
for flux have been presented in the engineering literature by Bird (1956),
Bird, Stewart, and Lightfoot (1960),  Rohsenow and Choi (1961),  and
Bennett and Myers (1962).

The statistical mean velocity of component i in the x direction with
respect to stationary coordinates is written as z+,  so that the mass flux of
component i through a stationary surface normal to ui is piui.  For an
n-component system the mass-average velocity in the x direction is then
defined by

(2.1)

Another  form of mean velocity for the mixture is the molal-average velocity
in the x direction, given by the expression

u= a ,g ciui
I - l

(2.2)

Evidently u and U are approximately equal at low solute concentrations
in binary systems-a situation which has received extensive theoretical and
experimental study. The velocities u and U are also the same in nonun-
iform mixtures of compounds having the same molecular weight. Another
case in which the mass and molal average velocities are equal is the bulk
flow of a mixture with uniform composition throughout, regardless of the
relative molecular weights of the components.

The velocity of component i may clearly be defined in three frames of
reference. In relation to stationary coordinates it is ui, in relation to the
mass-average velocity it is ui- U, and in relation to the molal-average
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velocity it is ui- 17.  These various velocities lead to corresponding defini-
tions of mass fluxes in the x direction for component i as follows:

Relative to stationary coordinates, n, = piui (2.3)

Relative to the mass-average velocity, ii, = pi ( ui - u) (2.4)

Relative to the molal-average velocity, jiX = pi ( ui - U ) (2.5)

Similar definitions of molal fluxes  in the x direction can be written for
component i. Thus:

Relative to stationary coordinates, iViX  = ciui (2.6)

Relative to the mass average velocity, Ii, = ci( ui - U) (2.7)

Relative to the molal average velocity, JjX = ci( ui - U) (2.8)

These expressions enable ready development of the relationships be-
tween the various mass and molal fluxes. For example, to relate mass flux
ii, to mass flux n,, consider equations 2.1, 2.3, and 2.4:

i,=p,u,-p,u=n,--  z $ pilli
r-1

= n,  - wi  5  n,
i = l

and for a binary system of components A and B,

‘Ax = nAx -wA(nAx+n,x)

Summing equation 2.9 for all components gives

i$,k=O

or, for the binary system,

iAX+iBX=O

(2.9)

(2.10)

(2.11)

(2.12)
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To relate the mass flux j, to the mass flux n,,, consider equations 2.2,
2.3, and 2.5:

jix=piui-piU=nix-  $ ,$  CiUi

l-1

= nix - q $, Nix (2.13)

and for a binary system,

JAB = PAX -e+(~Ar+~Bx)=nAr-~A ( nAx  + 2%) c2’14)

since NAX MA = n,,  ; N,,  MB = n,,  . Summing equation 2.13 for all com-
ponents,

(2.15)

or, for the binary system,
. .

JAX  +JB~ =p(u-  U) (2.16)

From equations 2.1 and 2.3 for the binary system, n,,  + nBx = pu.
The development of the corresponding relationships between the mold

fluxes is summarized by equations 2.17 to 2.24 in Table 2.1. Other
relationships between the fluxes may be developed by analogous proce-
dures and for the coordinate directions y and z.

Now consider a binary mixture of nonreacting components A and B.
Suppose that the total mixture is flowing steadily with mass- and molal-
average velocities u and U in the x direction. If the composition is
nonuniform, molecular diffusion occurs within the mixture in accordance
with Fick’s first law. For steady one-dimensional transfer this diffusive flux
may be written as follows:

‘Ax = - D*,$ (2.25)

which is shown below to require constant density p.  More generally,

dw,
‘Ax = - PDAB~
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Table 2.1.  Development of some relat ionships between molal  f luxes N,, Z,, and JiX.

Eq. Eq.
zix=f(Nix) No. Jix  =f(Nix)  No.

Relevant
equat ions 2.1, 2.6, and 2.7 2.2, 2.6, and 2.8

F lw zix=ciui-c,u

-=NiX-  ; ,$ piui
I 1

= Nix - 2 ,$ nix
’ r=l

For binary Z,, = NAX
systems

Sum for all 5 Z&=C( U-U)
components i - l

For binary zAx+zBx=c(u-u)
systems

J,=c,u,-ciU

= Nix  - ; $ ciui
I=1

2.17 = Nix - xi 2 N, 2.21
i - l

JAX  =NA,

2 .18 - x,,(NAx  + Nsx) 2 .22

2 . 1 9  ,gi  J,=O 2.23

2.20 JAx+JBx=O 2.24

From equations 2.2 and 2.6: 2 NiX  = cU,  and for a binary system, N,, + NsX  = CU
i - l

which will be shown not to require constancy of p. In molal terms,

JAx=  -DAB% (2.27)

for which, it can be proved, constant total molar concentration c is
required. More generally,

JAx=  -cDAB% (2.28)

for which variation in c is permissible. In these expressions, p = pA  + oe,
c=cA  +cB,  and DAB= D,  is the molecular diffusivity in the binary system.

Whether p and c need to be constant is now considered using expres-
sions due to Mikic  (1970). Equation 2.1 may be written for the binary
mixture as

UP=UPA+UPB=UAPA+UBPB (2.29)
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Combining equations 2.4 and 2.25,

dP*
%P.4=uPd?4B~ (2.30)

and for component B,

(2.31)

Inserting equations 2.30 and 2.31 into equation 2.29 and dividing
throughout by DAB  = DBA  yields

dP‘4 dP, 4
-z+-=-=Odx dx

(2.32)

showing that equation 2.25 is restricted to constant density p. Equation
2.26 may be expanded to

dp,  DAB dp
lAx = - PDAB  x =-DAB~+pPa~

so that equations 2.30 and 2.31 become

dP, DAB  4
uA PA = uPA  - DAB dx-+-

p pGG

dp,  DBA  4
%PB  = uPB  - DBA  dx-+-

p pG

(2.33)

(2.34)

(2.35)

The combination of equations 2.29, 2.34, and 2.35 gives

dPA dP,
dx+dx=

The validity of this result indicates that
constant density.

An entirely analogous treatment may

4
z (2.36)

equation 2.26 does not require

be performed, begimnng with
equations 2.2 and 2.8, to show that equation 2.27 is confined to constant c,
whereas equation 2.28 is not.

It may be noted that for dilute mixtures of A in B the quantities p and c
are effectively constant throughout. In this case equations 2.26 and 2.28
simplify, respectively, to equations 2.25 and 2.27.
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Under steady-state conditions the concentration at a given point is con-
stant with time. Attention is here confined to nonreacting systems of two
components A and B, for which Fick’s first law of molecular diffusion may
be written for steady one-dimensional transfer with constant c as

Jaz= -DAB% (2.37)

where JAr and J,,  are the molal fluxes of A and B in the z direction
relative to the molal average velocity of the whole mixture, the latter being
with respect to stationary coordinates; z is the distance in the direction of
diffusion; cA  and c, are the molar concentrations of A and B; and DAB
and DBA are the molecular diffusivities of A in B and of B in A,
respectively. Now for a perfect gas,

PA PE
CA=z’ CE=RT

so that equations 2.37 and 2.38 become

JA*-Eg!.g

D B A  dPB
JB~  = - RT x

(2.4)

(2.41)

Consider first the general case in which a steady total or bulk flow is
imposed upon the fluid mixture in the direction in which component A is
diffusing. The magnitude of this molal flux of the whole mixture relative to
stationary coordinates is NAr  + NBr  . The fluxes of components A and B
relative to stationary coordinates are now each the resultant of two vectors,
namely the flux caused by the bulk flow and the flux caused by molecular
diffusion. Whereas these two vectors are in the same direction for com-
ponent A, they are clearly in opposite directions for component B. The
total flux of component A relative to stationary coordinates, then, is the
sum of that resulting from bulk flow and that due to molecular diffusion;
for a gaseous mixture this is

D A B  dp,
NAz=(NAz+NBz)~-~~
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This relationship is another expression of equation 2.22 given earlier in
Table 2.1. Assuming constant DAB,

(2-43)

Integrating for constant NAZ, NBr,

l-u+YNPA,lp)

l-(l+Y)(pA,/p)
I

(2.44)

where y= N,,/N,,. Equation 2.44 reduces to two special cases of molecu-
lar diffusion which are customarily considered. In equimolal counterdiffu-
sion, component A diffuses through component B, which is diffusing at the
same molal rate as A relative to stationary coordinates, but in the opposite
direction. This process is often approximated in the distillation of a binary
system. In unimolal unidirectional diffusion, only one molecular species-
component A-diffuses through component B, which is motionless relative
to stationary coordinates. This type of transfer is frequently approximated
in the operations of gas absorption, stripping or desorption, liquid-liquid
extraction, and adsorption.

Steady-State Equimolal  Counterdiffusion in Gases

In this case the total molal flux with respect to stationary coordinates is
zero, so that NAr  = - NBr. Then from equations 2.40, 2.41, and 2.42,

NAt=JAr=  -NBr=  -JBZ (2.45)

but

Therefore
pA  +pB  = P = constant (2.46)

dP,i ‘h-
dz=- dz

and from equations 2.40, 2.41, and 2.45,

(2.47)

DA,=D,=D (2.48)
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At steady state NAr and N,, are constants, so that equations 2.40, 2.45,
and 2.48 may be combined and integrated for constant D to give

Y4*=-j& (PA1  -P.42)

where z is ~~-2,;  pA, and pA2  are the partial pressures of A at z, and z2,
respectively. Equation 2.49 is alternatively obtainable from equation 2.44
after applying L’Hopital’s rule for y = - 1.

Equations 2.40, 2.45, and 2.49 demonstrate that the partial-pressure
distribution is linear in the case of steady-state equimolal counterdiffusion.

Steady-State Unimolal Unidirectional Diffusion in Gases

In this case the flux of component B in one direction because of the bulk
flow is equal to the flux of B in the opposite direction because of molecular
diffusion. Component B is therefore motionless in relation to stationary
coordinates, and N,,  equals zero. Setting y equal to zero in equation 2.44
and recalling that P-p, =pB,

(2.50)

which may be written as

where

PB2  -PSI

IJBLM= In  ( PB~/PBI  >

The increase in transfer-by the factor P/p,,,-due  to bulk flow in the
direction of diffusion of A is indicated by a comparison between equations
2.49 and 2.51.

Equation 2.50 demonstrates that the partial-pressure distribution is non-
linear in the case of steady-state unimolal unidirectional diffusion.

Illustration 2.1.

Two large vessels are connected by a truncated conical duct which is 2 ft
in length and has internal diameters of 8 and 4 in., respectively, at its
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replaced by z’ in equation 2.95. Show that the local concentration of solute
(A) is then

Compare this result with equation 2.105, which corresponds to a different
coordinate system. Integrate the above expression over O(  z’(2a  and
obtain equation 2.106.

2.10 Consider the unsteady-state molecular diffusion of component A in
a semi-infinite medium, O<z < co. The process is described by equation
2.93, and the boundary conditions are c, (0, t) = c;,  c, (z,O) = 0. Use the
Laplace transform with respect to time to obtain the solution giving cA  at
any z and t as

[Note: This problem has been solved frequently throughout the literature
-see, e.g., Perry (1963),  pp.244 and 10-6.1

2.11 A wet slab of wood measuring 6 x 8 x 2 in. is dried in a stream of air
with low, constant humidity. The edges of the slab are sealed, and drying
occurs by evaporation at the two large surfaces, which are supplied with
liquid moisture by diffusion from within the slab. If the equilibrium
moisture content under these conditions is 5 mass percent and the moisture
content falls from an initial uniform value of 35 mass percent to an
average of 20 percent in 8 hr, determine the effective diffusivity of
moisture in the wood. It will be assumed that moisture diffusion is the
rate-controlling process, that diffusivity is independent of direction and
concentration, and that shrinkage can be ignored.

For the same initial and final average moisture contents, how much
drying time would be required by the following bodies made from the
same wood when dried in a similar manner?

(a) A brick-shaped body measuring 3 x 2 x + in., with one of its smallest
faces sealed against transfer.

(b) A solid sphere with a diameter of 1 in.
(c) A cylindrical rod with a diameter of 1 in. and a length of 12 in. with

one end sealed.

2.12 Plot the moisture concentration profile in the sphere and in the slab
of Problem 2.11 after 8 hr of drying:
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(a) Using equations 2.80 and 2.105.
(b) Using Figures 10.3 and 10.4 in Perry (1963),  p. 10-6.
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Molecular Diffusivities

The theory of molecular diffusion has been the subject of extensive
investigation because of its close relationship to the kinetic theory of gases.
Detailed reviews are available (Crank, 1956; Jest,  1960; Bird, 1956;
Hirschfelder et al., 1954; Barrer,  1941), and Reid and Sherwood (1966)
have provided a valuable critical comparison of the various correlations
which have been presented for the prediction of diffusivities in gases and
liquids, including electrolytes and nonelectrolytes under a variety of condi-
tions.

The purpose here is not to review molecular-diffusivity theory, but
instead to assemble predictive correlations necessary for the application of
relationships given in other chapters.

DIFFUSIVITIES  IN GASES

The kinetic theory of gases, in which molecules are regarded as rigid
spheres experiencing elastic collisions, has resulted in several theoretical
expressions of the following form for the binary system A + B:

(3.1)

49



SO Molecular Diffusivities

where MA and MB are the molecular weights of A and B, T is in OK,  p is
the total pressure in atmospheres, and d is the distance in centimeters
between the centers of unlike molecules on impact.

Various theoretical values have been assigned to the constant b, for
example by Maxwell (1890),  Jeans (1921),  Chapman (1918)  and Suther-
land (1894). After comparing the available correlations, Reid and
Sherwood (1966) recommend the following expression at pressures below
20 atm:

(3.2)

This equation originates from the Chapman-Enskog kinetic theory and
attempts to allow for attractive and repulsive forces between the molecules.
Here T is in OK,  P in atmospheres, DAB  in cm2/sec,  and a,,  in Angstrom
units. The Lennard-Jones potential function is frequently used to
approximate the intermolecular potential field for a molecule of A and a
molecule of B. The “collision integral” S2D,AB is then determined by the
temperature and by k,T/eA,,, where kB is Boltzmann’s constant and the
Lennard-Jones “force constants” ?? AB and uA, are estimated by the follow-
ing combining rules:

I

(3.3)

The quantities cA/kB,  es/kg,  a,, and us may be obtained from Table 1 in
the Appendix. (Those that are not listed may be estimated by means of the
relations at the foot of the table.) Substitution in equations 3.3 and 3.4
gives cAB/ICB  and uA~;  Q;~,,AB is next found as the value corresponding to
kBT/~AB in Table 2 of the Appendix. Insertion in equation 3.2 then yields
DA B ’ The average error between diffusivities calculated from equation 3.2
and 114 measured values in 65 binary systems at various temperatures was
7.5% (Reid and Sherwood, 1966).

Three semiempirical relationships for estimating diffusivity appear in
Table 3.1. Equation 3.5 contains atomic diffusion volume increments, u,
which are to be summed for each component using values listed in Table 3
of the Appendix. The units used in these equations must be as given in the
table of nomenclature at the end of this chapter. It is recommended that
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Table  3.1. Semiempir ical  relat ionships for  diffusivi ty  in  binary gas mixtures  at  low
pressures.”

Equat ion
number Equat ion

Average
err06 Reference

3.5’ DAB= 0 O0100T7/4.
qmdi’3+  cBd”l’

j/-G 6.9% Fy;l;;  al.

3.6 DA,,= 0.0150T’.81
8.5% Chen and

P(T,Tc,) 0.1-m  ( p7;4 + pi4  )2
Othmer-

I
1 . 2 3 (1962)

-+$-
i B

12.6% Othmer and-.
Chen
(1962)

3.7 DAR=  (2.52x  lO’)j.~*:‘~illl

a Units  as  given in the table of  nomenclature must  be used.
’ From comparisons by Reid and Sherwood (1966) with the same 114 measure-
ments  used to  tes t  equat ion 3.2.
’ Atomic diffusion volume increments, v, to be summed for each component, are
listed in Table 3 of the Appendix, after Fuller et al. (1966).

estimation of DAB be made either by equation 3.2 or 3.5, although more
extensive tabulation of o  is needed to enhance the range of applicability of
the latter expression.

If an experimental value of diffusivity at a temperature T, is available,
the diffusivity for the same system at T2  may be estimated by-means  of a
relationship that follows from equation 3.2:

3’2  Fb,AB)T,
mb4Bb2

(3.8)

Illustration 3. I

Estimate the binary diffusivity for naphthalene vapor-air at a temperature
of 0°C and a total pressure of 1 atm. Compare predictions from equations
3.2, 3.5, 3.6, and 3.7 with the experimental value of 0.0513 cm’/sec  (Perry,
1963, 14-23).

Use equation 3.8 to convert the experimental value to that correspond-
ing to a temperature of 45°C.
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SOLUTION. Call naphthalene component A, and air component B. Con-
sider first the evaluation of equations 3.2 to 3.4.

The critical constants of naphthalene are as follows:

TcA = 748.4”K; V, = 408 cm3/gm-mole

(Reid and Sherwood, 1966, p. 576). Table 1 of the Appendix gives
cAA/kB =0.75  TcA =0.75(748.4OK)=  561.5’K and cBB/kB  = 78.6”K.Then  from
equation 3.3,

kBT 273-=

cAB &Ej@zj-

The corresponding value of G?D,AB is obtained from Table 2 of the
Appendix as 1.273.

Table 1 of the Appendix shows that uA = 3 Via/’ = i(408)1/3  = 6.18 A and
oB=3.711A.  Then from equation 3.4, a,,  = $(6.18+3.711)=4.945  A.
Substituting in equation 3.2,

D _ 0.0018583(273)3’2

AB - (1) (4.945)*(  1.273) ILZG

= 0.0553 cm’/sec

The evaluation of equation 3.5 requires the following diffusion volume
increments, taken from Table 3 of the Appendix:

For naphthalene (A)= C, sHs,

Carbon:
Hydrogen:
Aromatic rings:

10x 16.5 = 165
8x 1.98 = 15.84
2x(-20.2) = -40.4

(xv), = 140.44

For air (B), (Xv), = 20.1.

Substituting in equation 3.5,

DAB=

0.00100(273)7’4

(I)[ (140.44)“3+(20.1)“3]

= 0.0605 cm*/sec
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Insertion of appropriate values in equation 3.6 gives

DAB=
0.0150(273)  ‘J’

(l)[ (748.4)(132.5)]“.1405[  (408)“.4+  (90.52)“.4]2

=0.0538  cm*/sec.

The viscosity of air at 0°C and 1 atm is 0.017 cP,  so that equation 3.7 is
written for this case as

I .23

DAB = (2.52 x 107) (0.017)2.74

= 0.0469 cm*/sec

The error between these respective predictions and the experimental
value of 0.0513 cm*/sec  is defined as

percentage error =
(DAB)predicted-  (DAB)experimenta~  x 1oo

( DAB  ) experimental

The resulting errors are + 7.8, + 17.9, + 4.9, and - 8.6 percent for equa-
tions 3.2, 3.5, 3.6, and 3.7, respectively

Estimation of the diffusivity at 45°C requires evaluation of the collision
integral QD,,, at this temperature.

kBT  - 273+45 =1 515
hB 210 .

The corresponding Q2,  AB is found in Table 2 of the Appendix to be
1.193. From equation 3.8,

(DAB),,.,=0.0513 3’2  1 273
1 .

1193  = 0.0687 cm*/sec



54 Molecular Diffusivities

An alternative allowance for the influence of temperature upon diffusiv-
ity is provided by equation 3.6 as

so that

1.81

= 0.0675 cm2/sec

DIFFUSIVITIES IN LIQUIDS

Different theoretical approaches to the description of diffusion in liquids
have been made, depending upon whether the systems are electrolytic or
nonelectrolytic. The available prediction procedures must therefore be
divided into those suitable for nonelectrolytes and those suitable for
electrolytes; for the latter, relationships are unfortunately scarce. Most
studies have been devoted to the estimation of diffusivities in very dilute
solution, although some progress has been made towards allowance for the
substantial variations that occur with increasing concentration of the
diffusing solute.

The experimental methods available for the measurement of molecular
diffusivity are well reviewed by Johnson and Babb (1956),  Tyrell (1961)
Jost (1960),  and, more briefly, by Nienow (1965).

Nonelectrolytes

Several correlations for d’lute  solutions are available; a choice may be
made on the basis of the accuracy needed and the availability of
relevant physical data.

Dilute Solutions

The kinetic theory of liquids is of course much less advanced than that of
gases, and this has hampered fundamental developments. There are two
well-known theoretical approaches to diffusional theory for nonelectro-
lytes. Eyring’s theory of absolute reaction rates treats the molecules of the
liquid as being in a quasicrystalline lattice in which “holes” are scattered,
the process having some of the characteristics of diffusion in a solid.
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Agreement between the theory and experiment is poor, but the following
theoretical relationship is indicated (Jost, 1952, p. 472):

* =f (molal volume of mixture) (3.9)

The hydrodynamical theory was initiated by Einstein, who applied
Stokes’ law to describe the drag on large, spherical solute molecules (A)
moving through a continuum of small solvent molecules (B). The equation
obtained is

D‘4Ldb kB-=-
T 6rrA

where k, is Boltzmann’s constant and rA  is the radius of a molecule of A.
The expression breaks down, however, for smaller solute molecules.

Progress on the basis of statistical-mechanical theory is reviewed by
Reid and Sherwood (1966).

The lack of widespread quantitative success with the theoretical
approaches has led to the development of several semiempirical re-
lationships based on equations 3.9 and 3.10. Table 3.2 presents a collection
of 10 such expressions, in which A is the solute, B is the solvent, and DAB
is in cm2/sec.  It is important to note that the equations are for use with the
units of each term as prescribed in the table of nomenclature at the end of
this chapter. Some of these correlations are more successful in one class of
application than another, and this has occasioned the classification of
errors in prediction as shown.

The parameter 5 in the Wilke-Chang equation 3.11 is an “association”
factor for the solvent. The uncertainty involved in assigning values to 5 for
new solvents not covered in the original investigation has resulted in
efforts to eliminate this factor from the correlation. To this end, Table 3.2
shows relationships that attempt to allow for intermolecular association
forces by introducing functions of the latent heats of vaporization. Allow-
ance for the ratio of solvent size to solute size is made in some cases by
introducing the term V,, / V,, .

Specific difficulties have been found in the prediction of diffusivity when
water is the solute. For example, discrepancies between measured values
and those predicted by the first three equations of Table 3.2 may reach 250
percent. Olander (1961) postulates that polymerization of the water may
account for this anomaly. His attempt to rectify this situation is repre-
sented by equation 3.15, which is based on a score of data points from nine
systems. In this regard, equation 3.20 was found to give acceptable results



T&k  3.2. semiempirical  relationships for diffusivity in very dilute binary solutions of non -
electrolvtes.~

EqUtiOll

number Restriction Equation

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

Exclude
water as
solute

Do,,pAB  7 . 4 X  10-s(&UB)“2-=
T Vii6

For unassociated solvents, 4 = 1.0; for water, [ = 2.6;
for methanol, I- 1.9; for ethanol [=  1.5.

Exclude
wateras D:B-n[&]=8*2x10-s[  l+($)“‘][&]
solute

Special solvent cases: water, V,  <  V,,, Ks25.2~  10-s;
benzene, V,  <2V&,  K-18.9X 10-s;
other solvents, V,  ~2.5V,,~,  K-  17.5x  10m8.

Exclude
water as
SOlUk

Aqueous
solutions
OdY

Water as
solute

General

14x 10-5
D:B-  ~0.6  , I. I AH,,T/AH..~

b.4  CL&T

Tin=
14.0x  10-s
& v;y

General

-

Do,BPB- -4.4~ *O--8(  $)I’“( s)“’
T

Do,BPB- 3
T

Generai D”,,pB 8.5 x 10-8h4;lz
-x

T v;pjp  ;
%>1.5
‘bA

GQiUliC

solvents
I/3

vbB+-
vbA

(1  Units as given in the table of nomenclature must be used.
b Numbers in parentheses show how many measurements are compared with prediction.
’ Compartsons  by Reid and Sherwood (1966) with fiied sets of data.
’ Comparisons by authors with various sets of data.



Table 3.2. (continued)

Average erro@

Organic Water as Water as Equation
solvents solvent solute Overall Reference number

27% (53’) 11% @Y) Up to 200-250% 10% (285’) Wilke and Chang 3.11
(1955)

25% (53’) 11% (46’) Up to 200-250% - Scheibel(l954) 3.12

28% (53’) 11% (46’) Up to 200-250%

- 11%(4@)  -

- - No anomalies (2od)

26% (42c) 12% (32=) 12% (7d)

- - No anomaliese~f

15%(&)  9%(16d)  -

18%(14d)  - 26% (6d)c,g

16%(573  - See belowh

20% (120”) Othmer and Thakar
(1953)

- Othmer and Thakar
(1953)

- Olander (1961)

13% ( 1153 Sitaraman et al.
(1963)

15.5% (213d) King et al. (1965)

13.5% (76’) Reddy and Doraiswamy
(1967)

20.5% (2od) Reddy and Doraiswamy
(1967)

- Lusis and Ratcliff
(1968)

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

c Unsatisfactory for high or,.
f Error - - 72% for water in glycerol.
s Error = 100% for water in ethylene glycol.
h Acceptable results in most cases, provided that water is assumed to diffuse as a tetramer.
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in the majority of cases when applied to water as a solute in organic
solvents, provided that water was assumed to diffuse as a tetramer. For

organic acids diffusing in organic solvents (excluding alcohols), equation
3.20 showed an average error of 9.9 percent with respect to 18 measure-
ments when the acid was assumed to diffuse as a dimer, in contrast with
44.5 percent when it was assumed to diffuse as a monomer. Acids
appeared to diffuse as monomers, however, in methanol, butanol, and
ethylene glycol. This is also usual when organic acids diffuse in water.
Lusis and Ratcliff (1968) discuss further problems that arise in the predic-
tion of the diffusivity when strong interactions occur between solute and
solvent molecules and when long straight-chain hydrocarbon molecules are
undergoing diffusion. Special problems arise when complexes are formed,
as in the case of iodine-aromatic solutions (W&e and Chang, 1955).

Six of the ten correlations for DAoB in Table 3.2 have appeared in the
decade 1960-1970. More time for further extensive testing must elapse
before a final selection from among them can be made, although some
guidance on the relative effectiveness of these expressions has been indi-
cated. It is to be anticipated that further relationships will appear, pending
the development of a more complete theory of the liquid state. In the
meantime, tentative recommendations on the basis of the evidence com-
piled in Table 3.2 are as follows:

For diffusion in organic solvents, use equation 3.12, 3.18 (when applic-
able), or 3.20. When water is the solvent, use equation 3.14. When water is
the solute, use equation 3.15, in conjunction with equation 3.11. The latter
result could be checked by applying equation 3.20 in the manner pre-
scribed, and also by the use of equations 3.16 and 3.17.

The relationships in Table 3.2 have generally not been extensively tested
outside the temperature range 10 to 30°C.
Illustration 3.2.

Estimate the diffusion coefficient for carbon tetrachloride in very dilute
solution in benzene at 25°C. Compare predictions from equations 3.11,
3.12, 3.13, 3.16, 3.17, 3.18, and 3.20 with the experimental value of
1.92 X IO- 5 cm2/sec [Horrocks, J. K., and E. McLaughlin, Trans. Faraday
Sot.  58, 1357, (1962)].

Convert the experimental value to that corresponding to a temperature
of 40°C.
SOLUTION. Carbon tetrachloride is designated component A, and ben-
zene component B. The molal volumes of these two components at their
normal boiling points are estimated from the LeBas atomic volumes
(Perry, 1963, p. U-20)  as

VbA = 101.2 cm3/gm-mole, V,, = 96 cm3/gm-mole.

J
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(Calculations are to slide-rule accuracy throughout.)
In equation 3.11

,uAB=0.6 cP, T=298’K,  M,=78.11

Do = (7.4x10-8)[1(78.11)11'2  298 =204X10-5cm2,sec
A B

( 101.2)“.6 t-10.6 ’

In equation 3.12,

V,, <2Vb,,  so K= 18.9~ 1O-8

Do = (18.9x10-‘)298
A B 0.6( 101.2)“3

=2.015x  IO-’ cm’/sec

In equation 3.13,

pL’B = 0.65 cP, /.I,,,~  = 0.894 CP

AH,,= 8100 cal/gm-mole, AH,,,r = 10,500 cal/gm-mole

Do = 14x 10-5
AB ( 101.2)“‘6(0.65)  (0.894)1~‘~8100~“o~500

= 1.486 X lo- 5 cm*/sec

In equation 3.16,

pB = 0.6 cP, AHA = 46.42 cal/gm,  AH, = 94.14 cal/gm

D&=5.4( lo-*) (78.11)“‘(94.14)“‘(298)

0.6(  101.2)“‘5(46.42)o’3
16x 1o-5 cm2,sec

In equation 3.17,

AHmA  = 7135 cal/gm-mole, AH,,,B = 7355 cal/gm-mole

D;,=4.4(10-8) (&)I”( z)‘“( ff.) =2.2X lop5 cm2/sec

In equation 3.18 (selected because VbB/ V, < 1.5),

Do = 10(10-8)(78.11)1’2 298
c-1AB ( 101.2)1’3(96)1’3  Oh

=2.065x IOe5 cm2/sec
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In equation 3.20

Do = 8.52(  lo-‘)
A B (96)‘/’ [ le4’( &)“‘+ &] ( f?)

=2.15x lo-’ cm2/sec

The errors in these predictions with respect to the experimental value of
1.92X 10m5  cm2/sec are defined as in Illustration 3.1. The resulting errors
are +6.25, +4.95,-22.6,  +12.5,  +14.6,  +7.5, and + 12 percent for
equations 3.11, 3.12, 3.13, 3.16, 3.17, 3.18, and 3.20, respectively.

Equations 3.10 to 3.12 and 3.17 to 3.20 suggest that the quantity
DjBpB/T is constant for a given liquid system. This relationship is found
to be only approximately true but will be used here to estimate the
diffusivity DjB at 40°C (313°K):

pB =0.5 CP at 40°C or 313”K,

In binary systems, such as those considered so far, only one diffusivity
need be defined. The situation is more complex in multicomponent sys-
tems because of interactions between the flows of the various species, and
these complications increase with increasing departure of the system from
ideality. The special case of diffusion of a dilute species in a mixture of two
solvents has been considered by Cullinan and Cusick (1967a) in a treat-
ment confined to completely miscible, nonassociated liquid systems. They
note that, although the flux of the dilute component is in this case
dependent only on its own gradient, the diffusivity is not directly related to
any binary diffusion coefficient. The expression obtained for the diffusivity
of the dilute species A is in terms of the limiting binary diffusivities at
“infinite” dilution and two thermodynamic factors:

The binary diffusivities at “infinite” dilution, D$p Die, D&s, and Daoc,
may be estimated by one of the correlations given above, and the ther-
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modynamic factors are calculated by the following relationships:

vc( 1 -D&/D;,) Do
aABC=

VA - vB ' I I-AS  >0.25
' - Die

(3.22)

or

vc D,o,
ffABC=I/, I I

l--
DZC

< 0.25
A

(3.23)

and

aACB=
v~(l-Di~/Dg~,)  l-D&  >025

v-,-v,  '
I -ID:B .

(3.24)

or

vB
aACB=F,

A
(3.25)

where VA, V,,  and V, are the molal volumes of components A, B, and C
in the liquid state at the temperature and pressure of the mixture. Agree-
ment was found between equation 3.21 and a limited amount of experi-
mental data.

A simpler and somewhat more effective relationship for dilute solute A
in mixed solvents B and C was subsequently offered by Leffler and
Cullinan ( 197Ob) :

(3.26)

where ~l;p~c,  the viscosity of the solution, is essentially that of the solvent
mixture B and C.

Five relationships for the prediction of diffusivity in concentrated binary
solutions of nonelectrolytes are given in Table 3.3. Equation 3.27 expresses
the concentration dependence of diffusivity in terms of the activity coef-
ficient of the solute, yA, and the viscosities of water and the solution, pB
and pAB. Gosting and Morris (1949) found that this equation accurately
described their measurements of diffusivities in aqueous sucrose solutions
at 1 and 25°C at concentrations below 6 gm/lOO ml.
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Equation 3.28 for ideal solutions expresses a linear variation of the
quantity DA pAB with composition at a given temperature. This relationship
also provides at least a crude approximation to the dependence of diffusiv-
ity on concentration in the measurements by Gamer and Marchant (1961)
on associated compounds in water. The totally miscible solutes studied
were ethanediol, propane 1: 2 dial, and glycerol, for which the highly
nonlinear variations in diffusivity over the full range of solute concentra-
tion were respectively about 5-, 9-, and IOO-fold.

The extension of equation 3.28 to nonideal solutions is effected by the
introduction of the activity coefficient of the solute, giving equation 3.29.
In the case of miscible liquids the term dlny,/dlnx, may be evaluated
from vapor-liquid equilibrium data in the manner described in thermo-
dynamics texts. Thus for ideal vapors

dlnx., dlv,1+-c-
dlnx, dlnx,

where p, is the partial vapor pressure of the solute in solution. Limitations
on the applicability of equation 3.29 have been indicated by Kincaid,
Eyring, and Steam (1944),  and Vignes (1966) shows systems for which the
expression is not valid.

The substantial level of agreement between the empirical equation 3.30
(Vignes, 1966) and many experimental data prompted Cullinan (1966,
1968) to attempt a partially theoretical derivation of the expression. This
development was expanded by Cullinan and Cusik (1967b) to yield a
predictive theory for composition-dependent diffusivities in multi-
component systems that are completely miscible and free from association.
The latter contribution has been the subject of further discussion by
Vignes (1967) and Cullinan (1967).

Equation 3.30 was modified by Leffler and Cullinan (137Oa) to give
improved correlation by incorporating the viscosity of the solution and of
the pure components, resulting in equation 3.31.

The concentration and temperature dependence of liquid diffusivities
has been treated by Gainer (1970) on the basis of absolute rate theory in a
manner which does not require thermodynamic data.

Hansen (1967) has provided solutions to the diffusion equation (Fick’s
second law) for cases in which the diffusivity varies exponentially with
concentration. The results were used to correct measurements of diffusivity
for solvents in polymer films.

The effects of concentration on diffusivities as indicated by statistical-
mechanical theory have been summarized by Reid and Sherwood (1966, p.
546). Further development of this approach is needed, and at present the
resulting relationships, while satisfactory for binary ideal solutions, are not



64 Moledar  Diffusivitks

reliable for nonideal systems or those in which molecular association is
significant.

When considering a new system it is desirable to check whether it is
included in the tabulation prepared by Johnson and Babb (1956) of
experimentally measured diffusivities in nonelectrolytic solutions. In the
absence of experimental values, equations 3.30 and 3.31 appear to be the
currently preferred relationships for estimating the effect of concentration
on diffusivity.

Illustration 3.3

The following experimental values are available for the diffusivity of very
dilute hexane (A) in carbon tetrachloride (B) and of very dilute carbon
tetrachloride in hexane at 25°C:

DjB  = 1.487 X IO-‘cm’/sec

DL = 3.858 X 10V5cm2/sec

[D. L. Bidlack and D. K. Anderson, J.  Phys. Chem., 68, 3790, (1964)].
Use equations 3.29, 3.30, and 3.31 to predict the diffusivity at all

intermediate compositions, and compare the results with experimentally
measured values.

SOLUTION. If experimental measurements of DAB  and Di, had not been
available it would, of course, have been necessary to predict these quanti-
ties from one of the relationships utilized in Illustration 3.2. (For example,
equation 3.12 yields the following estimates: DjB  = 1.12X low5 cm2/sec;
D&  = 3.79 X lo-’ cm2/sec.)

Activity coefficients were measured and correlated as a function of
composition for this system at 20°C by S. D. Christian, E. Neparko, and
H. E. Affsprung [J.  Phys.  Chem., 64, 442 (1960)].  The correlation was
adjusted to 25°C by Bidlack and Anderson (1964) to give

dlw,1+-=
dlnx,

1 - 0.354x,x,

Solution viscosities are required as a function of composition at 25°C for
use in equations 3.29 and 3.31; measurements by Bidlack and Anderson
(1964) appear in Figure 3.1, which includes the values

pA  = 0.2958 cP, pB = 0.8963 CP
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x A  = Mole Fraction  Hexane

Figure 3.1. Viscosity of hexane-carbon tetrachloride solutions at 25°C (Bidlack  and Ander-
son, 1964).

In equation 3.29, when xA =0.4,

dlny,1+-
dlnx,

= l-0.354(0.4)(0.6) -0.915

pAs=o.511  CP (from Figure 3.1)

(3.858 x lo- ‘)0.2958 (1.487 x lo- ‘)0.8963
298 - 298

+
( 1.487 x 10-5)0.8963

298 (0.915)

= 2.25 X 10d5 cm*/sec
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Figure 3.2. Comparison between experimental and predicted diffusivities as a function of
composition for the system hexane-carbon tetrachloride at 25°C.

Additional values for other x,  are calculated in the same way and
appear as the curve in Figure 3.2.
In Equation 3.30, when x,  = 0.4,

@4Lnc= (1.487~ 10-5)0.6(3.858x  10-5)o’4(0.915)=  1.99~ 10d5 cm2/sec

Values for other x,  are plotted in Figure 3.2. In equation 3.31, when
x,  = 0.4,

PAonc= A[ (1.487x 10-5)0.8963]o.6[  (3.858x 10-5)0.2958]o~4(0.915)

= 2.24 x lop5 cm2/sec

Figure 3.2 again shows further values corresponding to other x,.

t
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Figure 3.3. Comparison between experimental and predicted diffusivities as a function of
composition for the system methyl ethyl ketone-carbon tetrachloride at 25°C.

Many systems have a minimum in the plot of diffusivity versus binary
composition. Leffler and Cullinan (1970) examined some such systems, in
which both equations 3.30 and 3.31 fitted the data closely and with about
the same degree of precision, as exemplified by Figure 3.3. Much poorer
agreement was obtained, however, in the system acetone-carbon
tetrachloride and with mixtures of n-alkanes.

Electrolytes

Molecules of an electrolyte in solution dissociate into cations and anions
which, because of their smaller size, diffuse more rapidly than the undis-
sociated molecules. Despite differences between the sizes of the positive
and negatively charged ions, however, both types diffuse at the same rate,
so that the electrical neutrality of a given solution is preserved.
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Dilute Solutions

The diffusivity of strong electrolytes at infinite dilution may be calculated
from an equation obtained by Nemst (1888) on the assumption of com-
plete dissociation:

Dj=8.931n10-‘“T(  &)( e) (3.32)

where

0: = diffusivity of the molecule, cm’/sec,
It = cationic conductance at infinite dilution,mho/equivalent,
1: = anionic conductance at infinite dilution, n&o/equivalent,
l”, + I! = electrolyte conductance at infinite dilution, mho/equivalent,

Z+ = absolute value of cation valence,
z _ = absolute value of anion valence,
7’=  absolute temperature, “K.

A useful tabulation of ionic conductances at infinite dilution in water at
25°C is given in Perry (1963, p. l&24),  for use in equation 3.32. Diffusivi-
ties at temperatures other than 25°C may be estimated with the aid of the
following relationship:

l;c=Z&+a(t-25)+b(t-25)2+c(t-25)3 (3.33)

Values of a, b, and c for some of the more common ions are tabulated in
Perry (1963, p. 14-24).

Diffusivities of weak electrolytes in water were measured by Bidstrup
and Geankoplis (1963). The experiments were for concentrations up to 0.1
N in the carboxylic acid series-formic, acetic, propionic, butyric, valeric,
and caproic acids. Their resulting correlation, which was shown to be
equally applicable to the corresponding a-amino carboxylic acids, is simply
the Wilke-Chang equation 3.11 but with the constant 7.4 replaced by 6.6.
The average deviation between 25 experimental results and values so
calculated was 23.7 percent.

Illustration 3.4.
Estimate the diffusivity of potassium chloride in water at infinite dilution
and a temperature of 18.5”C.
SOLUTION. The ionic conductances at infinite dilution are adjusted to a
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temperature of 185°C with the aid of equation 3.33 and values tabulated
in Perry (1963, p. l&24):

(1o,),,,~.,=73.5O+1.433(18.5-25)+O.OO4O6(18.5-25)2

-0.0000318(  18.5-25)3

= 64.36 n&o/equivalent

(Z~),,,,,,=76.35(18.5-25)+O.Oo465(18.5-25)2-O.oooO128(18.5-25)3

= 66.55 n&o/equivalent
and in equation 3.32,

(64.36) (66.55)D,o=8.931x10-10(291.5)  6436+6655  I .
1 . . I( )I+ I = 1  7x  1o- 5 cm2,sec

Experimental and predicted variations in diffusivity with concentration
for this system are compared in Illustration 3.5.

Concentrated Solutions

Diffusivities of electrolytes at higher concentrations may be estimated from
a semiempirical equation proposed by Gordon (1937):

(3.34)

where

Dj is calculated from equation 3.32,
m = molality,
c’~  = number of gm-moles of water per cm3 of solution,
VB = partial molal volume of water in solution, cm3/gm-mole,
pB = viscosity of water,
pAB = viscosity of solution,
yT = mean ionic activity coefficient based on molality.

Harned and Owen (1950) and Glasstone (1947) provide tabulations of
ye as a function of m for several-aqueous solutions, and a method for
estimating partial molal volumes V, is described by Lewis and Randall
(1923). Equation 3.34 has been found valid up to concentrations of more
than 2 N in some systems (Reid and Sherwood, 1966, p. 563).
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The effects of ion hydration in nonassociated electrolyte solutions have
been examined by J. N. Agar in an extension of the earlier treatment for
nonelectrolytic systems by Hartley and Crank (1949). The resulting expres-
sion is

x [ 1+0.018m(  !$4)] E (3.35)

The definitions beneath equation 3.34 apply here, and in addition,

n’ = “hydration number,” namely, the number of moles of water
transported with the ions of one mole of solute.

v = number of ions formed from one molecule of solute.

D*H,O = self-diffusion coefficient of water, 2.43 X 10v5 cm2/sec  at
25°C.

02 = 0: corrected for electrophoretic effects. [According to Hall,
Wishaw, and Stokes (1953),  Da may be replaced by Dj with
only slight error.]

Equation 3.35 was applied by Hall, Wishaw, and Stokes (1953) and by
Wishaw and Stokes (1954) to aqueous solutions of various inorganic
electrolytes. It was shown that, with n’ values of 2.8 for LiCl, 0.6 for
NH&l,  and 2.5 for LiNO,, the equation reproduced measurements of
(0, L, within 1 to 2 percent up to 4 molal for LiCl, 7 molal for NH&l,
and 2 to 3 molal for LiNO,. In the case of NH,NO,,  however, it was found
necessary to invoke the concept of ion-pair formation in order to fit their
results by further modification of equation 3.35.

The evaluation of diffusivities in solutions of partially dissociated weak
electrolytes requires allowance for the contributions due to the ions and
the undissociated electrolyte molecules. These effects were averaged by
Vitagliano and Lyons (1956) to obtain an expression for simple univalent
electrolytes in the form
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where

(Y  = degree of dissociation,
D,  = diffusivity of the undissociated molecule,
F = Faraday, 96,500 coulombs/gm  equivalent,
R = gas constant, 8.314 joules/(gm-mole)(°K).

A relationship drawn from the Onsager  and Fuoss theory (1932) was
utilized by Vitagliano and Lyons (1956) to evaluate I, and I-, the
equivalent ionic conductances.  At infinite dilution (a = 1, 1 + ma In y% /am
= 1) , equation 3.36 reduces to the Nernst equation 3.32, written for
univalent electrolytes. The relationship was applied with success to the
weak electrolyte system acetic acid-water, for which good activity data
and accurate values of (Y  are available at various concentrations.

Experimental measurements of liquid diffusivities, upon which these
correlations are based, have been largely confined to the temperature
range 10 to 30°C.

The relationships presented above are of course only to be used in the
absence of experimentally measured values. The selection of a correlation
for use evidently depends on the system in question, the availability of
necessary data, and the accuracy required. A comprehensive tabulation of
experimental diffusivities for nonelectrolytes has been compiled by John-
son and Babb (1956). Similar extensive data for electrolytes are given by
Harned and Owen (1958) and by Robinson and Stokes (1959).

Illustration 3.5.

Estimate the diffusivity of potassium chloride in water as a function of
concentration at a temperature of 18S”C.

SOLUTION. Estimations are made using equation 3.34, and the evaluation
of each term on the right-hand side of that expression is considered in turn.

EVALUATION OF DA. The term 0,” was calculated to be 1.7 x IO-’
cm2/sec  in Illustration 3.4.

EVALUATION OF 1 + ma ln y t /am. Values of the mean activity coefficient
y* for this system at 18.5”C  are interpolated from the table on p. 558 of
Harned and Owen (1950) and plotted against molality in Figure 3.4. The
slope of the curve is measured at various m and used in the relationship

malny, m aYk
am =y am

The results appear in Table 3.4.
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0 .78  i - -I

0 . 62

0 .58

t-n=  Moloi i ty  o f  KCI

Figure 3.4. Mean activity coefficient yk versus molality of aqueous potassium chloride
solutions at 18.5%.

i
EVALUATION OF CIB. For a solution of density p it is evident that I

100%
cs= (lOOO+mM,)M,

where A is the solute, B is the solvent, and m is the molality of the solution
(i.e., the number of gram-moles of solute per kilogram of solvent). The
densities of aqueous solutions of potassium chloride at 18.5”C  were graphi-
cally interpolated from Perry (1963, p. 3-76). Reciprocal values-used in
the computation of v,-are plotted against composition in Figure 3.5.
Values of CL  are listed in Table 3.4.

EVALUATION OF vB. The partial specific volumes of water in aqueous
KC1 solutions of various concentrations were determined by the graphical
method of tangent intercepts, as described by Lewis and Randall (1923).
For example, at a potassium chloride concentration of 20 mass percent in
Figure 3.5, the tangent intercept at zero KC1 is 0.993 cm3 per gram of
water. This is the partial specific volume of water in an aqueous soiution
containing 20 mass percent KC1 at 18S”C. The corresponding partial



Table 3.4. Terms in equation 3.34 for the computation of (DA)conc  in aqueous solutions of KC1 at
18.5”C  (Illustration 3.5).

M a s s  %
KC1 1 2 4 8 1 2 1 6 20 24

Normality N 0.1349 0.271 0.549 1.125 1.735 2.37 3.04 3.74

Mola l i ty  m 0.1353 0.2735 0.5585 1.166 1.830 2.555 3.355 4.24

1 +malny,/lim 0.9206 0.8950 0.8911 0.9044 0.9377 0.9951 1.0372 1.0634

C’B 0.0552 0.055 1 0.0546 0.0537 0.0527 0.0515 0.0504 0.049 1

vii 18.02 18.02 18.02 18.02 18.02 17.94 17.88 17.84

lb/hB 1.002 1.007 1.011 1.019 1.019 1.010 0.996 0.975

(DJconc  (lo5  cm*/sec) 1.575 1.540 1.552 1.616 1.710 1.851 1.948 2.015
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Figure 3.5. Specific volumes of aqueous potassium chloride solutions
function of composition at 18S”C.

molal volume is obtained as 18(0.993)  or 17.88 cm3 per gram-mole of
water. Table 3.4 contains values of vB corresponding to other solute
concentrations.

EVALUATION OF /+,LB/pAB. These ratios at 185°C were interpolated from
the tabulation in the International Critical Tables, Vol. V, (1929),  p. 17, and
are shown in Table 3.4.

Consider, for example, the calculation of (DA)conc  for an aqueous solu-
tion containing 8 mass percent KCl.

W,  = (mass percentage) / 100

lOoOw, 80
m= MA(l-wA)  = 74.56(0.92)

= 1.166
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From Figure 3.4,

y* =0.594,  ay-c- = -O.&I87
am

malny,
‘+  am

,1+m aY*-=l+E(-0.0487)=0.9044
Y,am .

lOOO(  1.0505)
“= [ lOOO+ 1.166(74.56)]  18

= 0.05375 gm-mole H,0/cm3  of solution

where 1.0505 gm/cm3 is the density of the 8 mass percent KC1 solution at
18.5”C from Figure 3.5.

v, = 18 x (the ordinate intercept of the tangent

at 8 mass percent KCl, Figure 3.5)

= 18( 1.001) = 18.02 cm3/gm-mole

PBt-1 = 1.019
p,4B  18S”C

Substituting in equation 3.34,

@?4Lonc= 1.7x lOP(O.9044)
0.0537:(  18.02) (1*019)

=1.616X lop5 cm*/sec

Estimations for other concentrations are listed in Table 3.4 and plotted
in Figure 3.6 for comparison with the experimental measurements of B. W.
Clack [Proc. Phys. Sot.  (Lond.) 36, 313 (1924)].  The agreement between
experimental and predicted values is evidently good over the whole range
of concentration up to saturation, including the location of the minimum 1
in the curve at about 2.2 mass percent KC1 (0.3 N).

It may be noted that the correction factor ()~~/p~,,)/c~  vB did not
depart greatly from unity throughout the calculation, being 1.007 at 1 mass
percent of KC1 and increasing to 1.111 at 24 mass percent KCl. The
corresponding range of the term l/~‘~  r, was 1.003 to 1.14.

Figure 3.7, due to Gordon (1937),  shows additional comparisons be-
tween diffusivities predicted by equation 3.34 (solid lines) and experi-
mental measurements on various systems. The abscissa is in terms of
concentration expressed as the square root of normality.
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DIFFUSIVITIES IN SOLIDS

Mass transfer of fluids through a solid may be exceptionally complex. In
the case of solids which are particulate or which contain large pores, the
mass flux may not be proportional to the concentration gradient and may
even be against it. This arises when capillary forces are opposed to a liquid
concentration gradient. Nevertheless, diffusion relationships are frequently
applied to experimental measurements to obtain an empirical effective
diffusivity characteristic of that particular fluid and solid structure. The
reader is referred to the books by Jost (1960) and Barrer (1941) on this
subject.

N O M E N C L A T U R E

A,B
a,b,c
b

C’B
D, Do, DA, Dam

DAC) Dm DCB

Da
D*H,o

D DT,TI’

Du

d

F
aHA, AH,

'li,T,  AH,,

AHmA, AH,,,,

Components.
Constants in equation 3.33.
Constant in equation 3.1.
Number of gm-moles of water per cm3 of solution.

(Volumetric) molecular diffusivity; in very dilute solu-
tion; of species A ; of A in B; of A in C; of B in C; of
C in B; cm2/sec.  [Note: 3.88 X D in cm2/sec  gives D
in ft2/hr.]
0: corrected for electrophoretic effects-equation 3.35.
Self-diffusion coefficient of water, 2.43 x 10e5 cm2/sec
at 25°C.
Molecular diffusivities at temperatures T, and T2,
cm*/sec.
Molecular diffusivity of the undissociated molecule,
cm2/sec.
Distance between centers of unlike molecules on im-
pact, cm.
Faraday, 96,500 coulombs/gm equivalent.
Latent heats of vaporization of A and B at their normal
boiling temperatures, cal/gm.
Latent heats of vaporization of solvent (B) and of
water at temperature T, cal/gm-mole.
As AH,, AH,, but in cal/gm-mole.
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kB
I0+

1: + IO

MA,MB
m
n’

P

PA

R

‘A

T

Tc,  TcA, TcB
t

VB

‘bA,  ‘bB

V

xA,xB,xC

I+

Z-

a

LyABC,  ‘YACB

YA

Yt
‘AB

PAB~PABC

Pair

pB?k

Pair

Boltzmann’s constant.
Cationic  conductance at infinite dilution, mho/equiva-
lent.
Anionic conductance at infinite dilution, mho/equiva-
lent.
Electrolyte conductance at infinite dilution,
mho/equivalent.
Molecular weights of components A and B.
Molality.
“Hydration number,” the number of moles of water
transported with the ions of one mole of solute.
Total pressure, atm.
Partial vapor pressure of the solute in solution, atm.
Gas constant; in equation 3.36 the units are 8.314
Joules/@-n -mole)(’  K).
Radius of a molecule of A.
Absolute temperature, “K.
Critical temperature; of A; of B, “K.
Temperature, “C.
Partial molal volume of water in solution, cm3/gm-
mole.
Molal volumes of pure liquid components A and B at
their normal boiling temperatures, cm3/gm-mole.
Critical volume; of components A and B, cm3/gm-
mole.
Atomic diffusion volume increment.
Mole fractions of A, B, and C.
Absolute value of cation valence.
Absolute value of anion valence.
Degree of dissociation.
Thermodynamic factors; see equations 3.21 to 3.25.
Activity coefficient of the solute, A.
Mean ionic activity coefficient based on molality.
Lennard-Jones force constant, equation 3.3.
Viscosity of the solution, cP.
Viscosity of air at temperature of interest, cP.
Viscosity of solvents B and C, cP.
Viscosity of air at temperature of interest, cP.
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replaced by z’ in equation 2.95. Show that the local concentration of solute
(A) is then

Compare this result with equation 2.105, which corresponds to a different
coordinate system. Integrate the above expression over O<z’<2a  and
obtain equation 2.106.

2.10 Consider the unsteady-state molecular diffusion of component A in
a semi-infinite medium, O(z < co.  The process is described by equation
2.93, and the boundary conditions are cA(O,t)=  c:, c,(z,O)=O.  Use the
Laplace transform with respect to time to obtain the solution giving cA  at
any z and t as

2/2mi
e-@de

I

[Note: This problem has been solved frequently throughout the literature
-see, e.g., Perry (1963),  pp.24 and 10-6.1

2.11 A wet slab of wood measuring 6 X 8 x $ in. is dried in a stream of air
with low, constant humidity. The edges of the slab are sealed, and drying
occurs by evaporation at the two large surfaces, which are supplied with
liquid moisture by diffusion from within the slab. If the equilibrium
moisture content under these conditions is 5 mass percent and the moisture
content falls from an initial uniform value of 35 mass percent to an
average of 20 percent in 8 hr, determine the effective diffusivity of
moisture in the wood. It will be assumed that moisture diffusion is the
rate-controlling process, that diffusivity is independent of direction and
concentration, and that shrinkage can be ignored.

For the same initial and final average moisture contents, how much
drying time would be required by the following bodies made from the
same wood when dried in a similar manner?

(a) A brick-shaped body measuring 3 x 2 X t in., with one of its smallest
faces sealed against transfer.

(b) A solid sphere with a diameter of 1 in.
(c) A cylindrical rod with a diameter of 1 in. and a length of 12 in. with

one end sealed.

2.12 Plot the moisture concentration profile in the sphere and in the slab
of Problem 2.11 after 8 hr of drying:
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(a) Using equations 2.80 and 2.105.
‘(b) Using Figures 10.3 and 10.4 in Perry (1963),  p. 10-6.
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Molecular Dif f usivities

The theory of molecular diffusion has been the subject of extensive
investigation because of its close relationship to the kinetic theory of gases.
Detailed reviews are available (Crank, 1956; Jost, 1960; Bird, 1956;
Hirschfelder et al., 1954; Barrer, 1941)  and Reid and Sherwood (1966)
have provided a valuable critical comparison of the various correlations
which have been presented for the prediction of diffusivities in gases and
liquids, including electrolytes and nonelectrolytes under a variety of condi-
tions.

The purpose here is not to review molecular-diffusivity theory, but
instead to assemble predictive correlations necessary for the application of
relationships given in other chapters.

DIFFUSIVITIES  IN GASES

The kinetic theory of gases, in which molecules are regarded as rigid
spheres experiencing elastic collisions, has resulted in several theoretical
expressions of the following form for the binary system A + B:



SO Molecular Diffusivities

where MA and MB are the molecular weights of A and B, T is  in  OK, P is

the total pressure in atmospheres, and d is the distance in centimeters
between the centers of unlike molecules on impact.

Various theoretical values have been assigned to the constant b,  for
example by Maxwell (1890),  Jeans (1921),  Chapman (1918)  and Suther-
land (1894). After comparing the available correlations, Reid and
Sherwood (1966) recommend the following expression at pressures below
20 atm:

(3.2)

This equation originates from the Chapman-Enskog kinetic theory and
attempts to allow for attractive and repulsive forces between the molecules.
Here T is in OK,  P in atmospheres, DAB  in cm*/sec,  and a,,  in Angstrom
units. The Lennard-Jones potential function is frequently used to
approximate the intermolecular potential field for a molecule of A and a
molecule of B. The “collision integral” Q,,,,  is then determined by the
temperature and by kBT/cAB, where kB is Boltzmann’s  constant and the
Lennard-Jones “force constants” ?? AB and uAB are estimated by the follow-
ing combining rules:

(3.3)

'A,=,+A +uB) (3.4) i

The quantities ??A/kB, cB/kg, u,, and uB may be obtained from Table 1 in
the Appendix. (Those that are not listed may be estimated by means of the
relations at the foot of the table.) Substitution in equations 3.3 and 3.4
@es  EAB/kB and OAB; aD,,, is next found as the value corresponding to
kBT/cAB in Table 2 of the Appendix. Insertion in equation 3.2 then yields
DAB' The average error between diffusivities calculated from equation 3.2
and 114 measured values in 65 binary systems at various temperatures was
7.5% (Reid and Sherwood, 1966).

Three semiempirical relationships for estimating diffusivity appear in
Table 3.1. Equation 3.5 contains atomic diffusion volume increments, u,
which are to be summed for each component using values listed in Table 3
of the Appendix. The units used in these equations must be as given in the
table of nomenclature at the end of this chapter. It is recommended that

fi
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‘Ibble 3.1. Semiempir ical  relat ionships for  diffusivi ty  in  binary gas mixtures  at  low
pressuresP

Equat ion
number Equat ion

Average
erroP Reference

3.5’ DAB= 0 O0100T7/4’
P[  (zu)y3+  (mu);“]’

6.9% Fuller et al.
(1966)

3.6 DAB= 0.0150T1.s1
P( TcA  TcB)o.14o5(  Vz4+ V:;“)’

j/a 8 . 5 %  Che;ef

-,  1.23 (1962)

11,~ [GF?~  )
3.7 DA,=  (2.52x 107)~u2:74

. . -

12.6% Othmer and
I  .  - . .

1
(VJy+  vg)‘

1
Chen
(1962)

u  Units  as  given in the table of  nomenclature must  be used.
b  From comparisons by Reid and Sherwood (1966) with the same 114 measure-
ments  used to  tes t  equat ion 3.2.
’ Atomic diffusion volume increments, u, to be summed for each component, are
listed in Table 3 of the Appendix, after Fuller et al. (1966).

estimation of DAB  be made either by equation 3.2 or 3.5, although more
extensive tabulation of 2) is needed to enhance the range of applicability of
the latter expression.

If an experimental value of diffusivity at a temperature T, is available,
the diffusivity for the same system at T2 may be estimated by means of a
relationship that follows from equation 3.2:

Illustration 3.1

Estimate the binary diffusivity for naphthalene vapor-air at a temperature
of 0°C and a total pressure of 1 atm. Compare predictions from equations
3.2, 3.5, 3.6, and 3.7 with the experimental value of 0.0513 cm2/sec  (Perry,
1963, 14-23).

Use equation 3.8 to convert the experimental value to that correspond-
ing to a temperature of 45°C.



52 Molecular Diffusivities

SOLUTION. Call naphthalene component A, and air component B. Con-
sider first the evaluation of equations 3.2 to 3.4.

The critical constants of naphthalene are as follows:

TcA = 748.4”K; V, = 408 cm3/gm-mole

(Reid and Sherwood, 1966, p.  576). Table 1 of the Appendix gives
cA/kB  =0.75 TcA =0.75(748.4”K)  = 561.5”K and cBB/kB  =78.6’K.Then  from
equation 3.3,

kBT 273-=
EAB jlyGzg%i$

z&l.3

The corresponding value of S2D,AB is obtained from Table 2 of the
Appendix as 1.273.

Table 1 of the Appendix shows that uA = 8 Vja/” = g(408)1/3  = 6.18 A and
aB=3.711A.  Then from equation 3.4, uAB= )(6.18+3.711)=4.945  A.
Substituting in equation 3.2,

D

AB

= 0.0018583(273)3’2

(1) (4.945)‘( 1.273)

= 0.0553 cm*/sec

The evaluation of equation 3.5 requires the following diffusion volume
increments, taken from Table 3 of the Appendix:

For naphthalene (A)= C, aHs,

Carbon: 10x 16.5 = 165
Hydrogen: 8x 1.98 = 15.84
Aromatic rings: 2X(-20.2) = -40.4

ml4 = 140.44

For air (B), (Xu), = 20.1.

Substituting in equation 3.5,

DAB=
0.00100(273)7’4

(1) [ (140.44)“3+  (20.1)“3]2

I1
i’
‘i

= 0.0605 cm*/sec
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Insertion of appropriate values in equation 3.6 gives

= 0.0538 cm2/sec.

The viscosity of air at 0°C and 1 atm is 0.017 cP, so that equation 3.7 is
written for this case as

1.23

DAB = (2.52 x 10’) (0.017)2.74

= 0.0469 cm2/sec

The error between these respective predictions and the experimental
value of 0.0513 cm2/sec  is defined as

percentage error =
(DAB)predicted-  (DAB)expetimental  x 1oo

tPm)experimental

The resulting errors are +7.8, + 17.9, +4.9, and - 8.6 percent for equa-
tions 3.2, 3.5, 3.6, and 3.7, respectively

Estimation of the diffusivity at 45°C requires evaluation of the collision
integral a,,,,  at this temperature.

515kBT- 273+45+
cAB 210 *

The corresponding Q2, AB is found in Table 2 of the Appendix to be
1.193. From equation 3.8,

(D,,),,.,=0.0513 3’2 1 273
1 .

1193  = 0.0687 cm2/sec
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An alternative allowance for the influence of temperature upon diffusiv-
ity is provided by equation 3.6 as

1.81

so that

(D,,),,.,=O.O513
( 1
g ‘.‘I  =0.06X  cm2/sec

DIFFUSIVITIES IN LIQUIDS

Different theoretical approaches to the description of diffusion in liquids
have been made, depending upon whether the systems are electrolytic or
nonelectrolytic. The available prediction procedures must therefore be
divided into those suitable for nonelectrolytes and those suitable for
electrolytes; for the latter, relationships are unfortunately scarce. Most
studies have been devoted to the estimation of diffusivities in very dilute
solution, although some progress has been made towards allowance for the
substantial variations that occur with increasing concentration of the
diffusing solute.

The experimental methods available for the measurement of molecular
diffusivity are well reviewed by Johnson and Babb (1956)  Tyrell (1961),
Jost (1960),  and, more briefly, by Nienow (1965).

Nonelectrolytes

Several correlations for dilute solutions are available; a choice may be
made on the basis of the accuracy needed and the availability of
relevant physical data.

Dilute Solutions

The kinetic theory of liquids is of course much less advanced than that of
gases, and this has hampered fundamental developments. There are two
well-known theoretical approaches to diffusional theory for nonelectro-
lytes. Eyring’s theory of absolute reaction rates treats the molecules of the
liquid as being in a quasicrystalline lattice in which “holes” are scattered,
the process having some of the characteristics of diffusion in a solid.
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Agreement between the theory and experiment is poor, but the following
theoretical relationship is indicated (Jost, 1952, p. 472):

DABPB- = f (molal volume of mixture)
T

The hydrodynamical theory was initiated by Einstein, who applied
Stokes’ law to describe the drag on large, spherical solute molecules (A)
moving through a continuum of small solvent molecules (B). The equation
obtained is

(3.10)

where k, is Boltzmann’s constant and rA  is the radius of a molecule of A.
The expression breaks down, however, for smaller solute molecules.

Progress on the basis of statistical-mechanical theory is reviewed by
Reid and Sherwood (1966).

The lack of widespread quantitative success with the theoretical
approaches has led to the development of several semiempirical re-
lationships based on equations 3.9 and 3.10. Table 3.2 presents a collection
of 10 such expressions, in which A is the solute, B is the solvent, and DiB
is in cm2/sec.  It is important to note that the equations are for use with the
units of each term as prescribed in the table of nomenclature at the end of
this chapter. Some of these correlations are more successful in one class of
application than another, and this has occasioned the classification of
errors in prediction as shown.

The parameter 6 in the Wilke-Chang equation 3.11 is an “association”
factor for the solvent. The uncertainty involved in assigning values to 5 for
new solvents not covered in the original investigation has resulted in
efforts to eliminate this factor from the correlation. To this end, Table 3.2
shows relationships that attempt to allow for intermolecular association
forces by introducing functions of the latent heats of vaporization. Allow-
ance for the ratio of solvent size to solute size is made in some cases by
introducing the term V,,/ V, .

Specific difficulties have been found in the prediction of diffusivity when
water is the solute. For example, discrepancies between measured values
and those predicted by the first three equations of Table 3.2 may reach 250
percent. Olander (1961) postulates that polymerization of the water may
account for this anomaly. His attempt to rectify this situation is repre-
sented by equation 3.15, which is based on a score of data points from nine
systems. In this regard, equation 3.20 was found to give acceptable results



Tahfe  3.2. Semiempirical relationships for diffusivity in very dilute binary solutions of non -
electrolytes.”

Equation
number Restriction

3.11 Exclude
water as
Solute

DoABpAB  7 . 4 x  lo-s(&)“*PP
T V$”

For unassociated solvents, t = 1 .O; for water, 6 = 2.6;
for methanol, I = 1.9; for ethanol I = 1.5.

3.12

3.13

3.14

3.15

3.16

Exclude
water as
solute

Aqueous
solutions
OdY

Water as
solute

General

3.17 General

3.18 -

3.19 Generai

3 . 2 0 OrganiC
solvents

Exclude
wateras Dkr-K[ &]=8*2x10-s[ l+( $y][ A]

Special solvent cases: water, V,  <  V,,, Ks25.2~  10-s;
benzene, V,  <2V,,,  K= 18.9~ 10-s;
other solvents, V,  <2.5V,,,  K= 17.5 X 10-s.

Do,,,,,,,=(D~~ti~~s.,, ‘y2.3

GB -5.4YlOj $;“:$s:)a=

GBPB___ -4.4x  lo-s( !L)““( E?)“’
T

GBPB 10 x lo-%;/*
-=

T vpv;p  ;
+.5

D”ABpB  8.5x  lo-‘&f;/*PP
T v,pvy  ; 6‘4

?>1.5

D>BPB-=8.52~lO-~V&j  ,.,( %y+  $1T

a Units as given in the table of nomenclature must be used.
* Numbers in parentheses show how many measurements are compared with prediction.
c Comparisons  by Reid and Sherwood (1966) with fixed sets of data.
d Comparisons by authors with various sets of data. i
56



Table 3.2. (continued)

Average errop

organic Water as Water as Equation
solvents solvent solute Overall Reference number

27% (53’) 11% QRY) Up to 200-250% 10% (285’) Wilke and Chang 3.11
(1955)

25% (53’) 11% (46’) up to200-250%  - Scheibel(1954) 3.12

28% (53’) 11% (46’) Up to 20&250%

- 11%(46=) -

- - No anomalies (2od)

26% (42c) 12% (32’) 12% (7d)

- - No anomalie&

15%(w)  9%(163 -

18%(14d)  - 26% (Sdr,g

16%(57d)  - see bclowh

20% (120“) Othmer and Thakar
(1953)

- Othmer and Thakar
(1953)

- Olander (1961)

13% (1 15d) Sitaraman et al.
(1963)

15.5% (213d) King et al. (1965)

13.5% (76d) Reddy and Doraiswamy
(1967)

20.5% (2od) Reddy and Doraiswamy
(1967)

- Lusis and Ratcliff
(1968)

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

e Unsatisfactory for high pa.
‘Error- - 72% for water in glycerol.
s Error = 100% for water in ethylene glycol.
’ Acceptable results in most cases, provided that water is assumed to diffuse as a tetramer.

57
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in the majority of cases when applied to water as a solute in organic
solvents, provided that water was assumed to diffuse as a tetramer. For
organic acids diffusing in organic solvents (excluding alcohols), equation
3.20 showed an average error of 9.9 percent with respect to 18 measure-
ments when the acid was assumed to diffuse as a dimer, in contrast with
44.5 percent when it was assumed to diffuse as a monomer. Acids
appeared to diffuse as monomers, however, in methanol, butanol, and
ethylene glycol. This is also usual when organic acids diffuse in water.
Lusis and Ratcliff (1968) discuss further problems that arise in the predic-
tion of the diffusivity when strong interactions occur between solute and
solvent molecules and when long straight-chain hydrocarbon molecules are
undergoing diffusion. Special problems arise when complexes are formed,
as in the case of iodine-aromatic solutions (Wilke and Chang, 1955).

Six of the ten correlations for Dis in Table 3.2 have appeared in the
decade 1960-1970. More time for further extensive testing must elapse
before a final selection from among them can be made, although some
guidance on the relative effectiveness of these expressions has been indi-
cated. It is to be anticipated that further relationships will appear, pending
the development of a more complete theory of the liquid state. In the
meantime, tentative recommendations on the basis of the evidence com-
piled in Table 3.2 are as follows:

For diffusion in organic solvents, use equation 3.12, 3.18 (when applic-
able), or 3.20. When water is the solvent, use equation 3.14. When water is
the solute, use equation 3.15, in conjunction with equation 3.11. The latter
result could be checked by applying equation 3.20 in the manner pre-
scribed, and also by the use of equations 3.16 and 3.17.

The relationships in Table 3.2 have generally not been extensively tested
outside the temperature range 10 to 30°C.
Ilhstration 3.2.

Estimate the diffusion coefficient for carbon tetrachloride in very dilute
solution in benzene at 25’C.  Compare predictions from equations 3.11,
3.12, 3.13, 3.16, 3.17, 3.18, and 3.20 with the experimental value of
1.92X  10e5 cm2/sec [Hoi-rocks, J. K., and E. McLaughlin, Trans. Faradqv
Sot.  58, 1357, (1962)].

Convert the experimental value to that corresponding to a temperature
of 40°C.
SOLUTION. Carbon tetrachloride is designated component A, and ben-
zene component B. The molal volumes of these two components at their
normal boiling points are estimated from the LeBas atomic volumes
(Perry, 1963, p. U-20)  as

VbA = 101.2 cm3/gm-mole, V,, = 96 cm’/gm-mole.

. I
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(Calculations are to slide-rule accuracy throughout.)
In equation 3.11

,uAB=0.6 cP, T=298”K,  M,=78.11

Do = (7.4X lo-‘)[ 1(78.11)]“’  298
A B

( 101.2)“.6
(-)=2.04X  lop5 cm2/sec0.6

In equation 3.12,

Do = (18.9x10-*)298
A B

0.6(  101.2)“3
=2.015X 10e5 cm*/sec

In equation 3.13,

p;=O.65  cP, p,,,,=O.894  CP

AHBT = 8 100 cal/gm-mole, AH,,,, = 10,500 cal/gm-mole

Do = 14x 10-5
AB ( 101.2)“.6(0.65)  (0.894)‘~‘~8’oo”‘o~500

= 1.486 X lop5 cm2/sec

In equation 3.16,

pB = 0.6 cP, AHA = 46.42 cal/gm,  AH, = 94.14 cal/gm

02,  = 5.4( lo- “) (78.11>“‘(94.14)“‘(298)

0.6(  101.2)“‘5(46.42)o’3
16x lo-5  cm2,sec

In equation 3.17,

AH,, = 7135 cal/gm-mole, AHmB =7355 cal/gm-mole

DiB=4.4(  lo-‘) (&)‘“( %)I’*(  +$.)=2.2X 1O-5 cm2/sec

In equation 3.18 (selected because V,,/ V,,  < 1.5),

Do = 10(l.0-8)(78.11)“2 298
t-1AB ( 101.2)“3(96)*‘3  o*6

= 2.065 X I Op5 cm2/sec
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In equation 3.20

Do = 8.52(10-‘)
AL? (9(j)‘/3 [ lv4’(  i%)“‘+  ii%]  (%)

=2.15x 10m5  cm”/sec

The errors in these predictions with respect to the experimental value of
1.92 X 10m5  cm2/sec are defined as in Illustration 3.1. The resulting errors
are +6.25,  +4.95,-22.6,  +12.5,  +14.6,  +7.5, and +12 percent for
equations 3.11, 3.12, 3.13, 3.16, 3.17, 3.18, and 3.20, respectively.

Equations 3.10 to 3.12 and 3.17 to 3.20 suggest that the quantity
D’&&T is constant for a given liquid system. This relationship is found
to be only approximately true but will be used here to estimate the
diffusivity DiB  at 40°C (313°K):

pB =0.5 CP at 40°C or 313”K,

DiB  at 40°C=  1.92~ lo-’
(fwki)= 2.42 X lop5 cm2/sec

In binary systems, such as those considered so far, only one diffusivity
need be defined. The situation is more complex in multicomponent sys-
tems because of interactions between the flows of the various species, and
these complications increase with increasing departure of the system from
ideality. The special case of diffusion of a dilute species in a mixture of two
solvents has been considered by Cullinan and Cusick (1967a)  in a treat-
ment confined to completely miscible, nonassociated liquid systems. They
note that, although the flux of the dilute component is in this case
dependent only on its own gradient, the diffusivity is not directly related to
any binary diffusion coefficient. The expression obtained for the diffusivity
of the dilute species A is in terms of the limiting binary diffusivities at
“infinite” dilution and two thermodynamic factors:

The binary diffusivities at “infinite” dilution, DjB, Die, DEB,,  and D&,
may be estimated by one of the correlations given above, and the ther-

















































































































































































































































































































































































































































































































































































































































































































































































































































































































500 Subject Index

Boiling-point diagram, 87,358,359
Boundary layers, 110-l 12

combined Iaminar and turbulent flow,
224-225, 272-213

concentration distributions, Iaminar flow,
115

natural convection (laminar), 122
on a plate at high mass flux, 185
turbulent flow, 221-222
natural convection (turbulent), 226

differential equations, 182-183
exact solutions, 117
integral concentration boundary layer

equation, 113-114, 181, 222
in natural convection, 122, 226

integral momentum boundary layer equa-
tion, 113-114, 181,226

in natural convection, 120-121, 226
Iaminar, on a flat plate, 1 IO-127

lift off plate at high mass flux, 184
natural convection, 120-127
transfer with high mass flux, 181-188,

192-199
mass transfer between immiscible cocur-

rent streams (laminar flow), 127-130
thicknesses, definitions, 110-l 12

laminar concentration boundary layer,
110,116

in natural convection (Iaminar), 121-
124

laminar momentum boundary layer,
llO-112,114-115

in natural convection (Iaminar), 121-
124

with high mass flux, 181-184
turbulent concentration boundary layer,

222
in natural convection (turbulent), 227
turbulent momentum boundary layer,

222
in natural convection (turbulent), 227
ratio of concentration to momentum

boundary layer  thickness, 116, 121,
222

transitional flow, 117
in natural convection, 124-l 25

turbulent, on a flat plate, 221-228, 243,
301

natural convection, 225-228
velocity distributions, laminar flow, 114

natural  convection (laminar), 122, 124
on a plate at high mass flux, 185
turbulent flow, 221
natural convection (turbulent), 226, 228

Brick, unsteady diffusion in, 38, 4142
Bubbles, correlation of size, 389

mass transfer during formation, 402
Bubble-tray design, 385
Buffer zone,  235, 237, 243-246, 248-249,

262-264
Bulk flow, due to diffusion, 12-14, 112-l 13

Capacity coefficients, 93-94, 104-105
dependence on flow velocity, 347-348,

457,462,472-473
Capacity of packed columns, 309-310
Capillary  forces, effect on mass transfer, 3,

77
ChanneIIing  in packed towers, 365,453
Chapman-Enskog theory, 50
Chemical reaction and mass transfer, 3
ChiltonColbum analogy, 267-268
Chromatography, 2,4
Circulation inside drops, 403,405-407,409

effects of surfactants, 409411
Coalesced layer, thickness in plate columns,

396
Cocurrent  flow in cooling towers, 464-467
Coefficient of mass transfer, dependence on

concentration, 189-190
during droplet coalescence, continuous

phase, 408409
disperse phase, 408

during droplet formation, continuous
phase, 401-402

disperse phase, 398401
during droplet rise, continuous phase, 406-

408
disperse phase, 402406

effect of high mass flux, 181-184, 201,
294

individual, 4,91
interrelationships, 105-106, 189-190

overall,  4,91-93
limitation on, 4-5, 93
relation to individual, 92-93

see also each specific application
Coefficients in cooling towers, correction

for end effects, 478-479
correlations for, 457,462,472474
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evaluation of, 453454,459461,465467
Collision integral, 50,484
Column diameter, in packed distillation

columns, 363-365
in perforated-plate columns, 395-396

Computer program for design of continuous
columns, 350

of plate extraction columns, 411426
comparison with experiment, 412426
criteria for applicability, 421
data needed for application, 412

of water cooling towers, 459
Concentration, definitions, 6, 38, 238
Co rcentration distributions, in a cylinder,

36-37,45-46
in a slab, 34,4647
in a sphere, 25-27,4546
in laminar  boundary layers, 115

natural convection (laminar), 122
in parallel plates, parabolic velocity pro-

file, 178
in tubes, parabolic velocity profile, 160,

169,170-171
plug flow, 154
turbulent flow, 251-254, 256-258

in turbulent boundary layers, 221-222
natural convection (turbulent), 226

Condensation of mixed vapors, between
parallel plates, 176

in annuli,  143, 180
in tubes, 143

Condenser, leaking, in aqueous distillation,
322-325

Conical duct, diffusion in, 14-16,44
Conjugate curve and tie line interpolation,

90-91
Constant molal  overflow, 313,344
Contactors,  continuous versus stagewise, 2-3
Contamination effects, see Surfactants
Continuous columns, preferred method of

design, 308
Controlling resistances to mass transfer, 93,

353
Convective-transfer theory, 101
Cooling tower coefficients, correction for

end effects, 478479
correlations for, 457,462,472474
evaluation of, 453-454,459461,465467

Cooling tower design, 435480
effects of change in air flow rate, 461463

in wet-bulb temperature, 461-464
variety of possible inlet air conditions, 455

Coordinate transformation for the diffusion
equation, rectangular to spherical
polar, 45

rectangular to cylindrical, 45
Core, turbulent, 235-238, 242, 243-246,

241-249, 259, 262-264
Corrosion, mass transfer aspects of, 143,

176,180
C remover, 330, 333
Crystallization, 1, 2,4
Cylinder (hollow), concentration distribu-

tion during steady diffusion, 45-46
Cylinder, j factors for, 273-274

unsteady-state diffusion in, 36-41
average concentration at time t, 37
concentration distribution at time t, 37
drying of, 37-41

Dalton’s law, 84
Dehumidification, 435,467-470
Density, variation with composition, 197,

198
Desalination of sea water, 144, 176
Desorption, 2,4

correlations for individual HTUs,  353-357
phase equilibria for, 328, 331
transfer units for, 346-349

evaluation of NTU, 350-352
Desorption with reflux, 326-329

minimum reflux ratio, 337-339
minimum stripping-gas-to-feed ratio, 339
multiple feeds, 340-344
representation on triangular and distribu-

tion diagrams, 333-338
side streams, 340-344
terminology for, 326, 328, 330
total reflux, 339-340

Detachment of drops, effect on mass trans-
fer, 398

Dew point, 438,445
Difference points, 333-336, 340-343

use in constructing operating lines, 335-
336, 339-340, 343-344, 371-372

Diffusion coefficient, see Diffusivity
Diffusion, molecular, 6

in gases, 12-17
in liquids, 17-l 8
steady-state, 12-21




















