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Preface

The occurrence of mass-transfer processes throughout the biological,
chemical, physical, and engineering fields is extremely widespread. Biologi-
cal involvements include respiration mechanisms and the oxygenation of
blood, kidney functions, and food and drug assimilation. A few engineer-
ing examples are the ablative cooling of space vehicles during reentry to
the atmosphere, the transpiration and film cooling of rocket and jet-engine
exhaust nozzles, and the separation of ores and isotopes. Chemical-
engineering applications arise in such processes as distillation, gas absorp-
tion, stripping, liquid and solid extraction, adsorption, crystallization, air
conditioning, water cooling, drying, ion exchange, sublimation, and
chromatography.

This book describes a representative selection of topics, many of which
are common to a wide variety of applications. Nevertheless, any text with
less than several thousand pages must inevitably omit more than it covers
in the enormous field of mass transfer. Indeed, entire books have been
written on some single process from among those listed above. It would
therefore be a simple matter to prepare an extensive list of “omissions,”
although one in particular should be mentioned. The field of mass transfer
in chemically reacting systems is not treated in this text because good
presentations of the subject are available in two recent books. They are
Mass Transfer with Chemical Reaction by G. Astarita (Elsevier, Amster-
dam, London, and New York, 1967), and Gas-Liquid Reactions by P. V.
Danckwerts (McGraw-Hill, New York, 1970).

The approach throughout is from the diffusional or rate-process point of
view. The nature and diversity of mass-transfer processes are indicated in
Chapter 1, and Chapter 2 describes steady and unsteady-state molecular
diffusion under conditions often encountered in practice. The prediction of
molecular diffusivities in gases, liquids, and solids is discussed in Chapter
3. The concepts of individual and overal transfer coefficients are intro-
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viii Preface

duced in Chapter 4, where some of the more prominent theories on
transfer mechanisms are also presented. Chapters 5 and 6 consider mass
transfer under laminar and turbulent flow conditions, mostly with known
velocity fields, and for a variety of external and internal flow systems. The
last three chapters are concerned with column and tower designs for
several gasliquid and liquid-liquid processes where the details of the
velocity fields are unknown. Chapter 7 deals with continuous columns; the
first half of the chapter considers the location of the operating line in
various cases, for use in evaluation of the NTU relationships derived later
in the chapter. A provisional attempt is made in Chapter 8 to integrate
some of the many and diverse studies on droplet phenomena into a
coherent design procedure for perforated-plate extraction columns. The
approach is clearly amenable to refinement after further research. Rate
equations are applied in Chapter 9 to the design of cooling towers. Basic
concepts from the earlier parts of the book influence the formulation of the
last three chapters in ways which are outlined in Chapter 1. Examples
showing numerical computations appear throughout, and the unworked
problems at the end of each chapter-for solution by the reader-are
intended to consolidate and extend material in the text.

Results of digital-computer solutions to certain boundary-value prob-
lems are incorporated at appropriate places in the book (for example, when
considering mass transfer during laminar flow through tubes and between
parallel plates). However, in common with E. R. G. Eckert and R. M.
Drake (Analysis of Heat and Mass Transfer, Preface, McGraw-Hill, New
York, 1972), | assume that the student is already familiar with the com-
puter programming techniques needed to obtain results from the relevant
equations, so that such programs have generaly not been included. An
exception is the rather extensive computer program for perforated-plate
column design in Chapter 8. This facilitates the use of a complex design
procedure and would perhaps pose unusua difficulties if left to the
student.

The book would be suitable for use by either senior or graduate students
and should prove helpful to the practicing engineer. To this end the
derivation of important or representative relationships has been presented
in sufficient detail to enable a clear understanding and, | hope, an
avoidance of misapplication.

A. H. P. SKELLAND

Lexington, Kentucky
June 1973
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Introduction

Diffusional mass transfer involves the migration of one substance through
another under the influence of a concentration gradient. The occurrence of
mass-transfer processes throughout the biological, chemical, physical, and
engineering fields is extremely widespread. Biologica involvements include
respiration mechanisms and the oxygenation of blood, kidney functions,
and food and drug assimilation, Engineering examples are found in the
ablative cooling of space vehicles during reentry into the atmosphere, in
the transpiration and film cooling of rocket and jet-engine exhaust nozzles,
and in the separation of ores and isotopes. Chemical-engineering applica-
tions of mass transfer in separation processes involve the diffusional
transport of some component within a single phase or between two
immiscible phases which have been brought into contact to enable the
transfer of the component from one phase to the other. Components may
migrate from the bulk of one phase to the interface between phases and
remain there, as in adsorption or crystalization. Alternatively, penetration
of the interface may occur, followed by diffusion into the bulk of the other
phase, as in distillation, gas absorption, and liquid-liquid extraction.

The design of equipment for the diffusional separation of mixtures is
determined by two major considerations, namely, the distribution of com-
ponents between phases in a state of thermodynamic equilibrium, and the
rate at which mass transfer occurs under conditions prevailing in the
equipment.

In didtllation intimate contact is promoted between saturated-vapor and

1



2 Introduction

boiling-liquid phases to facilitate the transfer of a less volatile component
from the vapor to the liquid and of a more volatile component in the

opposite direction. Gas absorption refers to the transfer of a soluble
component from a gas phase into a nonvolatile liquid absorbent. The
reverse process is called desorption or stripping. Transfer of solute between

two immiscible or partialy miscible liquid phases occurs in liquid-liquid
extraction, whereas in solid-liquid extraction a liquid solvent is used to
dissolve a soluble solid component from its mixture with another insoluble
solid. In adsorption operations a gaseous or liquid mixture is separated by

preferential adsorption of some component on the surface of a solid.
Subsequent recovery of the adsorbed material is often effected by heating
or steaming. Crystallization is used to separate a crystalline solid from its
solution by inducing supersaturation. Air humidification and some forms of
air conditioning and water cooling involve the transport of water vapor

through an air stream which has been contacted with water. Dying
operations depend on the transport of both liquid and vapor within the
solid and of vapor in the drying gas. Clearly, many other examples could

be cited, such as ion exchange, sublimation, chromatography, and reverse
osmosis, al of which are linked by their common dependence upon
rate-process mass transfer.

A great diversity of equipment has evolved for carrying out these various
separation operations. In cases involving the contacting of a gas and a
liquid phase or of two liquid phases the equipment may generaly be
classified as either a continuous or a stagewise contactor.

Continuous contactors usualy consist of vertica columns, frequently
filled with some sort of packing. The two phases generally flow counter-
currently through the interstices in the packing, which is provided to
promote good contact for mass transfer between the phases. The necessary
column height to achieve a specified separation is a major design objective
in such equipment.

Stagewise contactors provide intermittent, rather than continuous, con-
tact between the phases. The stages often take the form of horizontal plates
or trays of varied design, arranged vertically above each other in a column.
The two phases usually flow countercurrently, mix together to alow
interphase mass transferjonja given stage, and then separate and flow,
respectively, up and down to the next stages in the series. The design of
such contactors involves a determination of the number of stages needed
to effect a given separation of components in a phase, or of the separation
obtainable from an existing column with a fixed number of stages.

The choice between continuous and stagewise contactors in a particular
situation is determined by such factors as the attainable stage efficiency,
capacity or scale of operation, corrosion problems, tolerable pressure drop,
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availability of performance data, and, of course, relative cost. Both types
of contactor are considered here in terms of rate-process mass transfer.
Other forms of phase-contacting equipment, including dryers, crystallizers,
mixer-settlers, and the like, are available in great variety. In al cases,
however, their performance is substantially dependent on relationships to
be presented here.

Transfer in solids may occur by mechanisms other than diffusion. Thus
in particulate solids with an extensive structure of large and varying pores,
liquid transport may take place under the influence of capillary forces in a
manner that is not directly proportional to the concentration gradient. In
fluids at rest, mass is transferred by purely molecular diffusion when a
concentration gradient is present. When convective movement exists in the
fluid, however, transfer occurs both by molecular diffusion and by bulk
motion of the whole mixture. The latter contribution to the mass-transfer
process depends on the details of the flow pattern within the fluid.
Knowledge of the relevant fluid dynamics is therefore essentia to the
solution of any convective-mass-transfer problem. To keep the length of
the treatment within bounds, fluid-dynamical developments are here con-
fined to those aspects necessary to the case under consideration.

Forced-convection problems are those in which the flow field is imposed
by some device such as a pump or fan, or by the propulsion of a body
through a fluid. Natural or free convection arises, for example, under the
influence of a gravitational field acting on density differences associated
with variations in solute concentration or temperature.

It will be found that certain mass-, heat-, and momentum-transfer
processes are in some ways analogous when solute concentrations and
transfer rates are low. Under conditions of high mass flux, however, the
flow field is modified by velocity components associated with the mass
transfer, and this introduces significant differences between mass transfer
on the one hand and heat and momentum transfer processes without mass
transfer on the other. Mass-transfer coefficients that are restricted to low
concentrations and low transfer rates are usually marked with an asterisk
in this book.

Any text with fewer than several thousand pages must inevitably omit
more than it covers in the enormous field of mass transfer. Indeed, entire
books have been written on some single process from among those de-
scribed earlier. An encyclopedic survey of mass transfer is therefore not
feasible in one volume, athough one omission in particular should be
mentioned. The study of mass transfer in chemically reacting systems is
not treated in this text, because good presentations of the subject are
aready available in two recent books (Astarita, 1967; Danckwerts, 1970).

Design applications in the final three chapters are confined to the
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gas-liquid and liquid-liquid processes of distillation, gas absorption, strip-
ping or desorption, liquid-liquid extraction, humidification, and gas and
liquid cooling. Solid-fluid operations, such as adsorption, chromatography,
ion exchange, drying, and crystallization, are excluded, athough some
related topics are dealt with in earlier parts of the book. These include
unsteady-state diffusion in bodies of several geometries and j factors in
packed and fluidized beds. The approach throughout is from the diffu-
sional or rate-process point of view. Design procedures in terms of the
nondiffusional aspects of material and energy conservation, subject to the
constraints of phase equilibrium, are to be found in texts by Smith (1963),
Henley and Staffin (1963), and Brian (1972).

The last three chapters contrast with situations in Chapters 2, 5, and 6 in
that the details of the hydrodynamics involved are much less well known.
Basic relationships and concepts from earlier chapters nevertheless contri-
bute significantly to the treatment in these areas, as outlined in the
following three paragraphs.

In Chapter 7, the four rate equations from Chapter 4, the two-film
theory (Chapter 4), and the respective mechanisms of equimolal counter-
diffusion and unimola unidirectional diffusion (Chapter 2) are all used in
formulating the expressions for the number of transfer units (NTU) in
digtillation on the one hand and in absorption, stripping or desorption, and
extraction on the other. The concept of the additivity of resistances to mass
transfer between phases (Chapter 4) is then applied in obtaining the
relationships between overall and individual heights of transfer units
(HTUs) for the two different transport mechanisms. Evaluation of the
individua HTUs requires a knowledge of the molecular diffusivities,
predictable according to Chapter 3.

Chapter 8 again uses rate equations and the concept of additive resis-
tances (Chapter 4) to formulate overall mass-transfer coefficients from
individual coefficients describing extraction in perforated plate columns.
Various theoretical expressions for coefficients during droplet formation,
rise, and coalescence have been developed using the penetration theory
(Chapter 4), and the disperse-phase coefficient during the free rise of
stagnant droplets is derived from the treatment of unsteady-state diffusion
in a sphere given in Chapter 2. The corresponding continuous phase
coefficient is obtained from relationships for spheres and spheroids pro-
vided in Chapter 6. The rate expressions during all stages of the process
utilize diffusivities obtainable from Chapter 3.

In Chapter 9, the wet-bulb temperature analysis involves individual
coefficients (Chapter 4), j factors (Chapter 6), and diffusivities (Chapter 3);
both individual and overal coefficients (Chapter 4) are used in formulating
the NTU and HTU expressions. Limitations on the use of constant overall
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coefficients in Chapters 7 and 9 are as prescribed in Chapter 4. In both
Chapters 7 and 9 the preference for design in terms of transfer units rather
than coefficients follows from demonstrations in earlier chapters (4, 5, and

6) of the substantial variations in coefficients with flow rate and, in some
cases, with concentration.
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Molecular Diffusion

When the composition of a fluid mixture varies from one point to another,
each component has a tendency to flow in the direction that will reduce
the local differences in concentration. If the bulk fluid is either stationary
or in laminar flow in a direction normal to the concentration gradient, the
mass transfer reducing the concentration difference occurs by a process of
molecular diffusion. This mechanism, characterized by random movement
of individual molecules, contrasts with the bulk transport by eddies which
occurs in a turbulent fluid.

Consideration is first given to some of the ways in which concentration
and flux are defined.

Flux Definitions

A wide variety of methods for expressing the composition of multi-
component systems is in use, including mole or mass fraction, moles or
mass per unit volume, and moles or mass of component A per mole or unit
mass of non-4. The mass concentration or mass of component A per unit

volume of solution is denoted by p,, and the mass fraction, p, /p, by w,.

The molar concentration (the number of moles of component A per unit
volume of solution) is written as ¢,, and the mole fraction, ¢, /c, as x,. It
may be noted that “molal” and “molar” refer to different definitions of
concentration in classical chemistry. However, both terms are also widely
used in a broader sense in the engineering literature to denote quantities

6



Molecular Diffusion 7

and processes relating to moles. Among those using “molal” in this way
are Rohsenow and Choi (1961), Bennett and Myers (1962), Kay (1963),
Sherwood and Pigford (1952), and McCabe and Smith (1967), whereas
those preferring “molar” include Bird, Stewart, and Lightfoot (1960),
Welty, Wicks, and Wilson (1969), Oliver (1966), and Foust et a. (1960).
The term “molal” is generally used in this text to mean “pertaining to
moles,” in accordance with the International Dictionary of Physics and
Electronics, 2nd ed., Van Nostrand, Princeton, N. J., (1961), p. 761.

Attention is now directed to a nonuniform multicomponent fluid mix-
ture that is undergoing bulk motion and within which the various com-
ponents move with different velocities because of diffusional activity.
Some procedures are considered by which the component velocities may
be averaged to provide different definitions of the average fluid velocity.
Detailed developments of such relationships and the attendant expressions
for flux have been presented in the engineering literature by Bird (1956),
Bird, Stewart, and Lightfoot (1960), Rohsenow and Choi (1961), and
Bennett and Myers (1962).

The statistical mean velocity of component i in the x direction with
respect to stationary coordinates is written as u, so that the mass flux of
component i through a stationary surface normal to u; is pu. For an
n-component system the mass-average velocity in the x direction is then
defined by

2 piY; (2.1)

Another form of mean velocity for the mixture is the mola-average velocity
in the x direction, given by the expression

U=

S | —

|$| cu; (22)

Evidently ¥ and U are approximately equal at low solute concentrations
in binary systems-a situation which has received extensive theoretical and
experimental study. The velocities ¥ and U are also the same in nonun-
iform mixtures of compounds having the same molecular weight. Another
case in which the mass and molal average velocities are equal is the bulk
flow of a mixture with uniform composition throughout, regardless of the
relative molecular weights of the components.

The velocity of component i may clearly be defined in three frames of
reference. In relation to stationary coordinates it is u;, in relation to the
mass-average velocity it is #,— u», and in relation to the molal-average
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velocity it is »,— U. These various velocities lead to corresponding defini-
tions of mass fluxes in the x direction for component i as follows:

Relative to stationary coordinates, #, = p;u, (2.3)
Relative to the mass-average velocity, i, = p; (u,~u) (2.4)
Relative to the molal-average velocity, ji, =p,(4,=U)  (2.5)

Similar definitions of molal fluxes in the x direction can be written for
component i. Thus:

Relative to stationary coordinates, N, = ¢u; (2:6)

Relative to the mass average velocity, I, = ¢, u;=u) (2.7)

Relative to the mola average velocity, J,=¢(u~U) (2.8)

These expressions enable ready development of the relationships be-

tween the various mass and molal fluxes. For example, to relate mass flux
i, to mass flux n,, consider equations 2.1, 2.3, and 2.4:

ix?

, P&
lx = PiU— PiU =Ny ; 2 p:Y;

i=1

=ny, = Wi_z Ny (2.9)
and for a binary system of components A and B,

Lae = Mgx —Wa(ng +ng,) (2.10)
Summing equation 2.9 for all components gives

é iy=0 (2.11)

i=1

or, for the binary system,

i +ig, =0 (2.12)
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To relate the mass flux j,, to the mass flux n,,, consider equations 2.2,
23, and 2.5

. S
Ju=pithi—pU=n,— = 21 ity
1=

M.
=y = —c— S N, (2.13)
and for a binary system,

<M, M,
Jax = Max— c N+ Np ) =ng =X ng . E"Bx) (2-14)

since Ny, M,=n,.; Ny Mg=ng . Summing equation 2.13 for al com-
ponents,

2 ju=p(u=U) (215)
or, for the binary system,
Jax +jBx=p(u_ U) (2.16)

From equations 2.1 and 2.3 for the binary system, n,, + ng, = pu.
The development of the corresponding relationships between the mold
fluxes is summarized by equations 2.17 to 2.24 in Table 2.1. Other

relationships between the fluxes may be developed by analogous proce-
dures and for the coordinate directions y and z.

Now consider a binary mixture of nonreacting components A and B.
Suppose that the total mixture is flowing steadily with mass- and molal-
average velocities u and U in the x direction. If the composition is
nonuniform, molecular diffusion occurs within the mixture in accordance

with Fick's first law. For steady one-dimensiona transfer this diffusive flux
may be written as follows:

d
lax = = DAB’&
* dx

which is shown below to require constant density p. More generally,

(2.25)

dw
b = =PDas (2.26)
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Table 2.1. Development of some relationships between molal fluxes N, I, ,and J,

Eq. Eq.
L,=fN;y) No. Ju  =fNy) No.
Relevant
equations 2.1, 26, and 2.7 2.2,2.6,and 2.8
Flw IL.=cu—cu J=cu;—c;U
¢ L C; L
—Nix_ —Epiui = Ny-- zci“i
Pi=1 ¢S
w, A n
= Nix—_l znix 217 :Nix_xiENix 221
Fi=1 i-1
Forbinary 7, =N,, Jaz =Ny,
systems
My
_wA(NAx+ENBx) 2.18 = x4(Ny, + Ngy) 2.22
n
sumfor all S =c( U-U) 2.19 3 J,=0 2.23
components i-1 i=1
For binary Li,+Ig,=c(U-u) 2.20 J4+J5,=0 2.24
systems

n
From equations 2.2 and 2.6: >, N,, =cU, and for abinary system, N, + N, =cU
i-|

which will be shown not to require constancy of p. In molal terms,
dc,
- 4 22
AB dx ( 7)
for which, it can be proved, constant total molar concentration c¢ is
required. More generaly,

JAx =

dx,

JAx= _CDAB'E (2.28)

for which variation in c is permissible. In these expressions, p = p, + pg,
c¢=c,+cg,and D,p= Dy, is the molecular diffusivity in the binary system.
Whether p and ¢ need to be constant is now considered using expres-
sions due to Mikic (1970). Equation 2.1 may be written for the binary

mixture as
up=up, +upg=u,p,+ugpp (2.29)
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Combining equations 2.4 and 2.25,

dp,
WPy =upA_DABd—; (2.30)
and for component B,
dp
ugpp=upp— Dy, "f (2.31)

Inserting equations 2.30 and 2.31 into equation 2.29 and dividing
throughout by D,z = Dy, yidds

dp, dpgy 4

a5 _2 2.32

dx  dx dx (2:32)
showing that equation 2.25 is restricted to constant density p. Equation
2.26 may be expanded to

dw dp, D dp
Lax = _pDAB—ZXi =_DABd—;:+_;_B 4 0y (2.33)
so that equations 2.30 and 2.31 become
do, D dp
Uy Pg= UPpy = DAB'E;i ;B PAa (2.34)
dp Dp, dp
UpPp - Upg = DBA% + "p—PBg; (2.35)
The combination of equations 2.29, 2.34, and 2.35 gives
idﬁi ii.p_B = C_ip_ (236)
dx dx dx

The validity of this result indicates that equation 2.26 does not require
constant density.

An entirely analogous treatment may be performed, beginning with
equations 2.2 and 2.8, to show that equation 2.27 is confined to constant ¢,
whereas equation 2.28 is not.

It may be noted that for dilute mixtures of A in B the quantities p and ¢
are effectively constant throughout. In this case equations 2.26 and 2.28
simplify, respectively, to equations 2.25 and 2.27.
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STEADY-STATE MOLECULAR DIFFUSION

Under steady-state conditions the concentration at a given point is con-
stant with time. Attention is here confined to nonreacting systems of two
components A and B, for which Fick's first law of molecular diffuson may
be written for steady one-dimensional transfer with constant ¢ as

dc

J4r= _DAB“f (2:37)
dc

Jp:=~Dps— (2.38)

where J,, and Jp, are the mola fluxes of A and B in the z direction
relative to the mola average velocity of the whole mixture, the latter being
with respect to stationary coordinates; z is the distance in the direction of
diffusion; ¢, and ¢, are the molar concentrations of A and B; and D,p
and Dy, are the molecular diffusivities of A in B and of B in A,
respectively. Now for a perfect gas,

24 P

“4=Rr> BT RT (239)
so that equations 2.37 and 2.38 become
DAB @A
JAZ_ - RT 'E (2.40)
DBA de
#="RT & @)

Consider first the genera case in which a steady total or bulk flow is
imposed upon the fluid mixture in the direction in which component A is
diffusing. The magnitude of this mola flux of the whole mixture relative to
stationary coordinates is N,, + Ny, . The fluxes of components A and B
relative to stationary coordinates are now each the resultant of two vectors,
namely the flux caused by the bulk flow and the flux caused by molecular
diffusion. Whereas these two vectors are in the same direction for com-
ponent A, they are clearly in opposite directions for component B. The
total flux of component A relative to stationary coordinates, then, is the
sum of that resulting from bulk flow and that due to molecular diffusion;
for a gaseous mixture this is

D,g dp,

P
NA1=(NA2+NBz)—}% “RT 4 (242)
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This relationship is another expression of equation 2.22 given earlier in
Table 2.1. Assuming constant D, ,,

D,y dp,
RT f T e e
Pa1 NAz_(_)

P
Integrating for constant N, N,

_DABP( 1 )m[l—(lw)(pu/l’) (2.44)

7R\ Ty )| T2 (040 (0 /P)

where y= N,,/N,,. Equation 2.44 reduces to two special cases of molecu-
lar diffusion which are customarily considered. In equimolal counterdiffu-
sion, component A diffuses through component B, which is diffusing at the
same molal rate as A relative to stationary coordinates, but in the opposite
direction. This process is often approximated in the distillation of a binary
system. In unimolal unidirectional diffusion, only one molecular species—
component A-diffuses through component B, which is motionless relative
to stationary coordinates. This type of transfer is frequently approximated
in the operations of gas absorption, stripping or desorption, liquid-liquid
extraction, and adsorption.

Steady-State Equimolal Counterdiffusion in Gases

In this case the total molal flux with respect to stationary coordinates is
zero, so that N, = - N,,,. Then from equations 2.40, 2.41, and 2.42,

Ny=J4,=—Ng=—Jp, (2.45)
but
P4 +pg = P = constant (2.46)
Therefore
dp, dpg
- =T 9 (2.47)

and from equations 2.40, 241, and 245,

DAB=DBA=D (248)
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At steady state N, and N, are constants, so that equations 2.40, 2.45,
and 2.48 may be combined and integrated for constant D to give

D
Ny= RTz (P41 =P42) (2.49)

where z is z,~z,; p,, and p,, are the partial pressures of A a z, and z,,
respectively. Equation 2.49 is aternatively obtainable from equation 2.44
after applying L’Hopital’s rule for y = =1,

Equations 2.40, 2.45, and 2.49 demonstrate that the partial-pressure
distribution is linear in the case of steady-state equimola counterdiffusion.

Steady-State Unimelal Unidirectional Diffusion in Gases

In this case the flux of component B in one direction because of the bulk
flow is equal to the flux of B in the opposite direction because of molecular
diffusion. Component B is therefore motionless in relation to stationary
coordinates, and Ny, equals zero. Setting y equal to zero in equation 2.44
and recalling that P-p, =pp,

N,=— 12 (2.50)

which may be written as

N, - DP (Psz_l’m) D ( P

T RT: = )(pm—pu) (2.51)

" RT:

DPpLm Ppim

where

Pp2~"Ppi

In( ppy/Ps1) (2.52)

Ppim™

The increase in transfer-by the factor P /pg y—due to bulk flow in the
direction of diffusion of A isindicated by a comparison between equations
249 and 251

Equation 2.50 demonstrates that the partial-pressure distribution is non-
linear in the case of steady-state unimola unidirectional diffusion.

Illustration 2.1.

Two large vessels are connected by a truncated conical duct which is 2 ft
in length and has internal diameters of 8 and 4 in., respectively, at its
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larger and smaller ends. One vessel contains a uniform mixture of 30 moie
percent mitrogen and 20 mole percent oxygen, and the other a uniform
mixture of 30 mole percent nitrogen and 70 mole percent oxygen. The
pressure throughout the system is 1 atm, and the temperature is 32°F. The
diffusivity for the nitrogen-oxygen system under these conditions is 0.702
ft*/hbr. Determine the rate of ransfer of nitrogen between the two vessels
in the early stages of the process, assuming the complete absence of
convection and that nitrogen diffuses along the duct in the direction of
decreasing diameter. '

Compare the result with that which would- be obtained if the conical
duct were replaced with a circular tube of diameter equal to the average of
the terminal diameters of the truncated cone—that is, 6 in.

SOLUTION.  Steady-state transfer is assumed in view of the large capacities
of the reservoirs on each side of the conmecting conduit. Equimolal
counterdiffusion then takes place in the duct, such that the rate of transfer,
at a given cross section is in accordance with equations 2.40, 2.45, and
2.48:

q.rjz — - &iEJ__!
A RT dz

"VAI =

where g,, is the rate of transfer of nitrogen {(component 4) in the :
direction, in moles per unit time. In general the terminal diameters of the
truncated cone may be denoted by &, and 4,, located at axial points 7, and
23, where dy > d,. Then the cross section at distance z from z, is

Substitution in the foregoing expression for IV, gives the following result
after integration:

7D (dl —dz} P17 P42
I"fl;l:--lz

T 4RT

2@"35
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For the conditions of this problem, P41 =08(1 atm)=0.8 atm; p_ ,=0.3(]
atmj=03 atm; T=492°R; z,=0; z,=2 ft; R=0.7302 (aum)(ft”) /{Ib-mole)
(°R).

. 7(0.702) ( 0.67-0.33 ] 0.8—0.3
Az

T 4(07302) (a92) L 2 1 1
0.67-[(0.67-0.33)/2]x2 0.67

=8.69X 107" Ib-mole /hr.
When d,=d, =4 the foregoing relationship gives g, =0/0, but applica-
tion of L'Hopital's rule for this case leads to

p =D(P,41_P11} 7d*
4 RT(z,~z,) 4

This expression corresponds to equation 2.49 multiplied by the cross-
sectional area of the circular tube. For the present conditions,

~ 0.702(0.8-03) =(0.5)°

. : =9.6X 107 ° Ib-mole /hr.
T 0 T0(am)2 4 6 mole,

Tlustration 2.2,

The diffusivity of the binary gas system cyclohexane-nitrogen is to be
determined from the measured rate of evaporation of liquid cyclohexane,
which partially fills a vertical, narrow, glass tube. A steady stream of pure
nitrogen is blown across the top of the tube, which has an internal
diameter of 1 cm. The system is at 15°C, the total pressure 1s | atm, and
the liquid level is located 10 cm below the top of the tube at the start of the
experiment. If the drop in level is 0.2 cm after 20 hr of continuous
operation, calculate the diffusivity under these conditions.

The gas constant R is §2.06 atm cm®/gm-mole °K, and the density and
vapor pressure of cyclohexane at 15°C are 0.779 gm/cm® and 0.082 atm,
respectively.

SOLUTION. This process represents an example of unimolal unidirectional
diffusion in which cyclohexane is transferred through stationary nitrogen.
The molal flux in equation 2.51 is determined by the rate of fall of the
liquid level, so that

e D P
=== dz_ ( '){PM_PA:J
Parm

where p,; is the density of the liquid and : is the diffusion distance in the
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gas. Integrating over the range 0<¢ <z, ZoRIgz,
04 RTpgy (77 —123)
N 2ML P ( Py —Paz)
The calculation is conveniently performed in cgs units.
1—(1-0.082)
B 1/ (1-0082) ]

=0.957 atm

~ 0.779(82.06) (288) (0.957) [ (10.21)" = (10)*]

=0.076 cm?/
2(84.16) (20) (3600) (1) (0.082—0) o/ sec

Conversion to units of ft*/hr is effected by multiplying the value in
cm”/sec by 3.88; thus

D=0.076(3.88) =0.295 ft*/hr

Molecular Diffusion in Liquids

[n the absence of a fully developed kinetic theory for liquids the re-
lationships for molecular diffusion are usually assumed to parallei those
for zases, although diffusivities are often more substantiailly dependent on
concentration of the diffusing components. In the case of equimolal

ol mee e

o D

N 2. 253
N,= - (eq1—¢cq2) (2.53)
If ¢itcg=c, them ¢,=x,c and cy=xze, where x,,x; are the mole
fractions of 4 and B, and

De )
Ny = — {-":,1 1" %az) (2

Ly

4)

For unimolal unidirectional diffusion the liquid-phase analog of equation
251 15

Il
n |t
L]
—
—_—
iy
HN
|
3
e
3
pa—
-
(3]
L
L
—
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where
Cgn—C
g2 " Ep P
CaLm = Bl Tm Y ) (2.57)
(€ga/ Cg
__FB2 T Xg
XaLm =

—_—— (2.58)
In(xp,/ Xg, ) .

In addition to the vanation in D, the total molal concentration ¢ also
varies, and a mean value of (c;+c,)/2 is used when variations are not
excessive, :

Molal and Volumetric Diffusivities

An expression that may be thought of as intermediate between equations
255 and 2.56 is often seen:

- Dm ( g -
Ny=— - )(‘\".AJ —X42) (2.59)
= fam

Rearrangement of equation 2.35 shows the dimensions of D to be
(length)® /time, whereas from equation 2.59, D, has the dimensions of
mole/(length)(time). D, is called the molal diffusivity, while D is called
the volumetric diffusivity, Experimentally measured values are more com-

monly reported as volumetric diffusivities, which is why the preceding

denvations have been in terms of this quantity. ., a. Lo, i

Steady-State Diffusion from a Sphere e _f"-=% SR R sy L

Consider a sphere of radius 7, located inside a concentric spherical shell of
radius r,. The surface of the sphere is maintained at the constant partial

pressure p,. with respect to component 4. The ‘spherical shell contains a

stagnant gas in which the diffusivity of component 4 is constant. The
boundary of the spherical shell is held at another uniform partial pressure
Pap Where p, <p, . and this boundary constitutes a “sink” for component
A. It follows that for steady-state diffusion the material between the
surface of the sphere and the boundary of the shell cannot act as a sink.
The equation for Steady-state diffusion from the surface of the sphere is as
follows: Iar " ' Gan T,

wer | | = Lo el
£

; . 47°DP  dp.
— P4

a
.
-

-------

S s R
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. where N, the radial flux at r, has been replaced by equation 2.42 with
Ng =0. Integrating,

R 4w DP [ rr, P=p.
PN, = | 0 : 7,
T RT (fu-r,)hf’-p,u (260)
Now a mass transfer coefficient % is defined as
AmrN = kgmd?(p,, —p.,) (2.62)

where d, =2r,. Combining equations 2.61 and 2.62 gives the following
relationship for the Sherwood number:

kaPaiuRTd, r,

. T A3
PD - Fo=r, (2.63)

Ny =

(Relations between the quantity kgp . RT/P and a varety of mass
transfer coefficients are given later in Problem 4.3 of Chapter 4.) Equation
2.63 shows, for example, that when the radius ratio r,/r, assumes values of
2,3, 10, 50, and infinity, the corresponding Sherwood numbers are 4, 2.5,
227, 2.04, and 2.0. The latter value is often regarded as the lower limit of
the Sherwood number for a sphere. Cornish (1965), however, has pointed
out that values of Ny, much lower than 2 may be obtained when the
sphere is located within an array of spheres, as in the case of some
packed-bed studies.

Consider a limiting case of two equal-size spheres with the same con-
stant surface concentration, located in an infinite stagnant medium. If the
spheres are brought closer together there will be a reduction i the
Stespness of the concentration gradient in the vicinity of parts of the
sphere surfaces. This reduces the rate of mass transfer and consequently
the Sherwood number. The dependence of Sherwood number on distance
between sphere centers is shown in Tabie 2.2, after Cornish.

The mean Sherwood number, based on p, —p,, decreases as the
number of spheres increases, approaching a minimum theoretical value of
Zero as the array of spheres approaches an infinite extent. [t may be noted
that if the continuous medium flows through the array of spheres, it may
then act as a sink for component 4. Even in this case. however, N, values
less thap 2 may arise for fluid velocities in the vicinity of zero.

A different situation is often found in experimental work, where a sphere
undergoing mass (or heat) transfer is located within an array or bed of
nert, dummy spheres. This case may be regarded as ome in which the
continuous medium and the embedded dummy spheres constitute a com-
Posite medium with properties varying with position. [t is then necessary to’
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Table 2.2. Dependence of Vg, on the distance
hetween two equal spheres in an nfinite station -

arv medium.
Sherwood
Distance between centers number
of spheres Ney
el 2
100r, ~=1.98
4r, =6
2r, (surfaces touching) 1.386

estimate the proper diffusivity for this composite medium. The analogous
heai-transfer case for spheres in a cubic array has been considered by
Ravleigh (1892) and by Maxwell (1904) for small spheres separated by
large distances. De Vries (1952) reviews several such analyses. When the
composite medium surrounding the active sphere is infinite, the Sherwood
number is again 2, provided that the effective diffusivity appropriate to the
composiie medium is used. However, if the Sherwood number 1s calculated
using the diffusivity of 4 in the continuous medium between the dummy
spheres, a value either substantially above or substantially below 2 may be
obtained. depending on how closely the dummy spheres are packed and on
the value and sign of the difference between the diffusivities of 4 m the
dummy spheres and in the continuous medium.

flusiration 2.3

A water droplet with amn initial diameter of 0.1 in. is suspended on a thin
wire in a large volume of stationary air at 80°F, contalnimg water vapor
that exerts a partial pressure of 0.01036 atm. Estimate the time required for
complete evaporation of the droplet if the total pressure is 1 atm.

SOLUTION. Equation 2.61 may be written as follows (because in this case
Fo® 1)

dm 4nDPr P=p, . 2
A = 4';7."2_|N. = T : In Pap - =faTT Ay
dr Ar RT /

where —dm, /dt is the instantaneous evaporation rate in lb-mole/hr and

s 1/3
= 4arip, - ( 3M m, )
A 3M, ! Amp,
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Substituting for , and integrating,
pr’RT

k)

L‘vf_,,DPlIl[(P“Pdo)f(P"PAJ)}

Evaporation of the droplet causes its temperature to fall to a steady-state

value called the wet-bulb temperature, T,,. For the present conditions

Ilustration 9.1 shows T, to be 60°F, corresponding to a water vapor
pressure of 0.01743 atm. The increase in vapor pressure with surface
curvature is less than 4 percent down to drop diameters of 0.1 pin the case
of water (Perry, 1963, p. 1861). This effect is, therefore, neglected, as.are
any convective effects caused by the difference in density between the
drop surface and the bulk of the air. The diffusivity of water Vapor in air at
the average temperature of 70°F is taken to be 1.01 ft*/ hr, so that

62.43(0.05/12)(0.73) (530)

i= _ , - =1.612 hr
2(18)(1.01) (1)2.303log[ (1—0.01036) /(1-0.01743) ]

Additional effects due to natural convection are discussed later near
equation 6.141.

UNSTEADY-STATE MOLECULAR DIFFUSION ( ep mai
Unsteady-state mass-transfer processes are those in which the concentra-
tion at a given point vares with time. The mathematical solution of the
differential equations for unsteady diffusion is complicated and has been
performed only for transfer through bodies of simple geometry, such as
slabs, cylinders, and spheres, subject to particular sets of boundary condi-
t1oms.

Unsteady-State Diffusion in a Sphere

A major fraction of all engineering mass-iransfer operations volves
transfer between two phases, one of which is dispersed as droplets ar
bubbles in the other. Various attempts at theoretical analysis of such
PTocesses have assumed that the droplets or bubbles of the disperse phase
may be regarded as spheres, in which mass transfer occurs by unsteady-
State molecular diffusion. These considerations, plus the occurrence of
Some drying problems for this geomeltry, justfy a detailed presentation of
the solution for the case of the sphere. The following assumptions. are
made (see Figure 2.1):
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T~

e

/
- i

Dif fusion of A

Figure 2.1. Section of z sphere 1o which mass transfer is occurmng by unsteady-state
molecular diffusion.

(a) The concentration of solute (component A) is uniform at €40
throughout the sphere at the start of diffusion (r=0).

(b} The resistance to transfer in the medium surrounding the sphere is
negligible. so that the surface concentration of the sphere is constant at [sj
10 equilibrium with the entire continuous phase—the latter having constant
composition.

{c) Diffusion is radial, there being no variation in concentration with
angular position, and physical properties are constant.

The origin of coordinates is at the center of the sphere; the concentra-
tion at the spherical surface of radius » will be ¢,, and at the spherical
surface of radius r+4r it will be ¢, +dc,. A control volume is defined as
bounded by these two surfaces at r and r+4r.

The rate of flow of solute into the contral volume is

L. dc
—D(4mr?) =2 (2.64)
ar
and the rate of flow out of the control volume is
2 Dan(r+a)’] Oea B (Bea) (2.65)
u(.r = dr ar T ar ar N

The net flow rate of solute into the comtrol volume is obtained by
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subtracting equation 2.65 from equation 2.64, and neglecting second- and
* third-order differentials, the resuit is

P LA, i 2.66

T r“arzr_rarr (2.66)

The rate of accumulation of solute in the control volume is aiso given by
de,

(4ar? dr) a_: (2.67)

The expressions 2.66 and 2.67 may therefore be equated and solved for
de, /3t to obtain :

dc,. d’c, 7 ic,
—==p| —A s 2.68
ar.- .D( art ,+.=- ar - (288)

The boundary conditions follow from the initial assumptions:
¢y (r,0) =cyg
c(r,t)=cf
. —b
%qd(r.f} ounded
where 7, is the radius of the sphere. Let

yo=cy—cf
Then

?y_’=D(iJf+Ei”L) (2.69)
at ar Foar
and the boundary conditions become

.)’(( r0)=cio—c]

Y(r.t)=0

P_{%y (r,#) =bounded

Following the conventional procedure, assume a solution of the following
form in order to separate the variables:

Yirt)=R(r)T(s) - (2.70)
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where R is some function of r only, and T is some function of ¢ only. Then
clearlv

8y’ aT ' 4R 3%’ d*R
=K, _— =T ' ‘—"— O
ot dt ar ar art dr?

and equation 2.69 becomes

1 dT _1(dR 2dR\__,,
DT dr R(d,z+r r)"‘ A (2.71)

The definitions of R and T show that the left side of equation 2.71 is
independent of r, while the right side is independent of 7. Both sides are
therefore equal 10 a constant, which can be +A% 0. or —A%. The constant
— A%, however, can be shown to @ve a nontrivial result. Solving the first
differential equation,

T=C, exp(—A%Dr) (2.72)
- s Fd A
o Ny . . P T P
The second differential equation is gk s s
R4 ) ¥~ 7 o o
‘e'_‘—ie—-F——'B-'f'P\‘;R'—_"U e E:T.‘;)

ar- r df‘
Let rR=p, then

790
T d :
Cb 3y aR__B 1B (2.74)
ar ~ roar

Substituting equations 2.74 and 2.75 into equation 2.73,

a8
—_— A =0
ar- A

This equation has the solution (Li, 1960, p. 310)
B=C,sinAr+ CycosAr

from which

G . Cs
== sinAr + — cosAr
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for R to be finite at r=0, C;=0. Also, from the boundary condition
y'(r,,t)=0 and equation 2.70,

2

s

R(r—-r_g)=(}= sinAr,

Therefore

where n=1,2,3.....

Cs . nwr
R=—2sin (2.77)
- r,
Combining equations 2.70, 2.72, 2.76, and 2.77,
SR Az —Dn::rlr
e g Lo [0 Mt 2.78
y= 2 dtsin( )exp( J_f ) (2.78)
e . _
When =0,
N [ nr
r{c—cl)= 2 Ansin(r—)
n=1 :

This is a Fourler sine series for f(r)=r(c,,—c¥), so that 4 may be
evaluated as follows (Li, 1960, Chapter 5):

2 [ o o [ nEr
A== r(cyo—cf)sin ar
. r

0 .

5 5

2r, ) pl
S —_*)( — 2.79
e (C.-ao CA}( l} _ ( 79}

Then equation 2.78 becomes

2, N (=D famey [ —Detr
'3_;=¢A*_+?(C‘Aa—¢:)'2—n—“;sm(—r—)exp =
n=1 g ¥
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The evaluation of local ¢y (r,0) is facilitated by adaptation of the
Gurney-Lurie heat conducnan charts in Perry (1963). For this purpose
temperatures 1n the ordinates (¥) of the charts are replaced by the
corresponding concentrations, the thermal diffusivity k / pc, in the abscis-
sa (X) is replaced by D, and k/hy 1 the parameter m is replaced by
D/, sumowcings- 11¢ rate of tramsfer at time ¢ across the surface of the
sphere is '

d
4N, (1) = ~amn( 52 ) (281)
r =-r

and evaluating 3¢, /6r at r=r, from equation 2.80,

o =
5 . — Dnm<y i :
47?.";'NA,{'1')=8W"_,D{CAO-CJ)__Jexp(——;z——] (2.82)
ne=1 5 /

The total transfer up to time ¢ is N, where

N/ =drr f?\m,lfzja'r

? — Dnr* :
- )T — | I—exp (——"——) (2.83)
a=p T T
The total transfer per unit surface up to time { is
Ny r, 1 — Dn’r4 ]
= =(g—e¥)= - - — - 2
o (cq0 1) 2 E exp ( . )J (2.84)
ne=] e ]
where it can be shown (Li, 1960, p. 349) that
$1.c
H2
L
A materia] balance on the transfer up to time ¢ 1s
{CAO_EAJX%Wf;N:q (2.85)

m which &, is the avérage concentration throughout the sphere at ¢. The
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fractional extraction from the sphere at time ¢ may be defined as follows
and combined with equation 2.84:

5

— ! 2 — 2
Cao"Cs 3N, =8> L[ 22771 (256
e n* =
n=]

0" Ch dard(cgo—ch)

¥ !

[t may be noted that the series in equations 2.80 and 2.86 converge
rapidly only for large times or large values of Dt/r>. Alternative solutions,

useful for small times, are obtainable by use of the Laplace transform. The
results are in terms of infinite series of error functions and associated
functions as follows (Crank, 1956, pp. 86-87): .

PRI =
. . ---‘-"'“." PR ey

L

B +1)r,—r 2n+1)r,+r
q4=cdﬂ+§{c§_cAo}z[eﬁcu‘eﬁc_f_"}—]

=} z Dl’ 2V.D
(2.87)

and

C-]l]_- : 3"'6 E{I ]. _‘_22 ieﬂc nrj -!_3—-]5}—5- “2.38:}

Cqg—Cy T T a1 Vﬁj s
where

erf o= —=— “@‘xp{‘gz}d‘?
Vo Jo

in which 4 is any “dummy” variable, used merely to describe the function
to be integrated; 4 is eliminated by the limits of integration.

erfca= rz__ ImexP(—ﬁz}dézniu'erfa

o @x

iezfca=fmerfcﬂd9= %exp (—a*)—aerfca

@ T .

Tabulated values of these three functions are readily available (e.g., Crank,
1936, p. 326). -

Equation 2.86 agrees with the expression stated without derivation by
Treybal (1963) and by Newman (1931). For ready solution of aumerical
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Figure 21.2. Unsteady-state molecular diffusion in a sphere, slab. or cyviinder (Newman,
19317,

problems Newman (1931) presents a graph’cal representation of equation
2.86 in the form of a plot of I —(cq0—C4)/(cyo—c%) against the di-

mensionless quantity Dt /r;, as shown in Figure 2.2.

Unsteady-State Diffusion in a Slab

The problem of unsteady-state diffusion in a slab or plate is of importance,
for example, in some drying operations on certain colloidal or gel-like
materials, where it may be necessary to know the distribution of moisture
in the slab as a function of position and time, or the relation between the
average moisture content of the slab and the duration of drying. For
purposes of analysis it will be supposed that the edges of the slab are
sealed agamnst transfer. Alternatively, the slab or sheet may be regarded as
thin enough for edge effects to be neglected. Diffusion through two
opposite surfaces and then through a single surface are considered in turn.
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Figare 23. Section of a slab in which mass transfer is accurring by unsteady-state molecular
diffosion.

Diffusion Through Two Opposite Surfaces of a Slab
The assumptions made are analogous to those used for. the sphere and are
as follows, with reference to Figure 2.3: uniform concentration 4o
throughout the slab at r=0; constant concentration ¢ T at the two large
surfaces; diffusion confined to a direction normal to the two large surfaces
of the slab, which are both permeable to solute (4); and constant physical
properties.

The origin of coordinates is at the midplane of the slab, which has area
A4 normal to z.

Consider a control volume defined by the element of slab at =. having
thickness dz as shown. The concentration gradient at z + 4z at some given
[nstant is

dz dz | 9z

3 3
'?,{4_3(&)“;;

and the flow rate of solute into the control volume is then

ey

3 3
(rVA;);+<fr4=DA[%C;—"+ 2 ( o )dzJ (2.89)

The flow rate of solute out of the control volume at the same instant
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occurs across the face zt z and is

de

(N, V. A=DA (2.90)

az

The net flow rate into the control volume is obtained by subtracting 2.90
from 2.89 to obtain

%,

0z*

DA

dz (2.91)

The rate of accumulation of solute in the control volume is also given by

dz s 2.92)
A TS (2.92)
The expressions 2.91 and 2.92 may therefore be equated and solved for

dc, /8 to obtain Fick's second law of molecular diffusion, namely

— = = (2.93)

It may be noted that for general three-dimensional diffusion with
constant D the expression corresponding to equation 2.93 would be
obtained in an analogous manmner by considering the rates at which solute
enters, leaves, and accumulates in a cubic control volume of differential
dimensions &xdydz. The resulting expression is then

éc, 9%, d%, a7,

L =p| 24—y A _py (2.94
dt dx*  @y? dz* 4 254)

For the present problem, however, the terms @, /9x* and 3%, /9y are
zero, and the boundary conditions follow from the imitial assumptions as

¢ (an)=c]

CA{Z!0}=CA0

Let

y=c,—ct. y'=y"(z1)
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+ Then

Y '}21
¥ _ 0%

—_— 7
dat 3zt (2.95)

and the boundary conditions become

y'(a,1)=0
B, Jl./ e oood o s , “ Y'(2,0)=cpo—cf=yg
T e —{0,1)=0,
. 2 (0n=0

Equation 2.95 could be solved by the method of separation of variables
in a manner analogous to that already demonstrated for the sphere. The
results are useful for large diffusion times, because the series converges
rapidly under such conditions. -‘ul alternative methed of solution is pro-
vided by use of the Laplace transform. This procedure is presented here, to
complement the separation-of-variables method already miven for the
sphere. It yields results suitable for small times of diffusion.

In general the Laplace transform f(s) of a function f(r) is defined as

Fls)=L[ (1)) =f0°°e-f[r‘(.r)dx (2.96)

where 5 15 2 number large enough to assure the convergence of the integral.
The inverse Laplace transform is expressed as

F) =L [F(s)] (297)

For a function f(x,7) of two independent variables x and ¢, the (partial)
Laplace transform of f(x,¢) with respect to ¢ is defined by

F(ea) = L)) = [Tem ) d (298)
0

Where the subscript  denotes transformation with respect to t. Properties
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of Laplace transforms of interest here include thase relating to partial
derivatives; thus

L[ D7 (x.5)~£(x.0) (299)

(2.100)

F(x.0) 1 87 (x.5)
Lf[ ax _I ax

assurning that the order of integration and of differentiation with respect
to x may be interchanged. More extended information on Laplace trans-
forms may be found. for example, in the text by Holl. Maple, and
Vinograde (1959). _

Taking Laplace transforms of both s:dcs of equation 2.95 with respect to
t,

where

with s regarded as a parameter. This equation has the solution

r

' — v .
F=ce” VP gV D - ' {2.101)

and from the boundary condition at z=

dy{[} r) V‘ +c.,\/—
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from which ¢, =c,, then

. ~Vi7Bz, VB, Yo
y=-¢:][e V’fu‘+ev’fﬂ'J+—u
5

Next, from the boundary condition y=0at z=q,

¥

~Vo

o= —\-‘.r,’Da_'_E\"_?f‘Du]

5[8
so that

B _‘i‘i E—V;;D (a==z} +e=ViiDla=z2) +yu‘

5 e_—z‘-":,r'_pa

+1 3

33

Application of the binomial theorem to the denominator of the bracketed

term gives
;) =1 =, . YW s 7
(14272780 "2 § (=1 em75e
=0
Therefore

ey ( Un
- ’ 1 L V5D m+1la=-:
)’ZJ’u[;—E‘“—S—E 75 [ (2n+1)a-z]

=}

“? ("'1} E—V}Tfﬁ[(in‘#[]a%‘:i { (2.102)

s 5
=0

The inverse transform of each term in these two sertes may be found in
tables; for example, as item 8 in the table of Laplace transforms gfiven by
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Crank (1956, p. 327). The result can be written as

% o (2n+1)a=-:z
¢=cqot (cf—cho)| Z (= 1) crfc_'wT
n=0 2V Dt
o0
n 2H+1 G+:1
+ E (=1) crfc:{—-v-—L—‘—J (2.103)
) 2V D

The corresponding expression for the average concentratiom £,
throughout the slab at time ¢ 1s

(2.104)

It should be pointed out that these series converge rapidly for small
times, so that these results are of most value when diffusion times are

short.
For large times a more rapidlv converging series solution is obtained by

the separation-of-vanables method. The results are

(-1)" [[znﬂ)m —D(2n+1) 7
—CA+ (CAD CJ 2 2 +1 co 2ﬂ EXp 4(.": ’

n={]

(2.105)

 Evaluation of local ¢,(z,r) 1s facilitated by the Gurney-Lurie charts
given m Perry (1963), adapted as described below equation 2.80. For the
average concentration ¢, throughout the slab at time ¢,

_ - ) .
Cao= s _ c,—ct -8 1 exp —D(2n+1) 77
€107 4 Cao™Cq w n_.ﬁ_(?.n—kl}: 4a*

(2.106)

Numerical application is facilitated by the plot of equation 2.106 in the
form of 1—(c,o—¢4)/(c o—c3) versus Dt/a* in Figure 2.2, after Newman
(1931).
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One sometimes encounters diffusion into a slab or sheet in which the
‘two large opposite faces are maintained at the respective constant but
unequal concentrations ¢%, and c%,. The interior of the slab is initially at
the uniform concentration ¢, when £=0. This is the case, for example, in
diffusion through a membrane. The boundary conditions are

e (0,2) =c%,
c(2a,t)=c*,
Cq (Z) 0) =Cq0

Crank (1956, p. 47) shows that for this situation equation 2.106 takes the
form

. - ) 1,

P - D(2Zn+1)77t
.-J.G*.-f =1_,i12 1 ,exp[ ( .3
cio=0.5(ch +eka) T g (22+1)° [ o

(2.107)

where 24 1s again the slab thickness. Figure 2.2 may also be used for ready
application of equation 2.107, if the ordinate is set equal to one minus the
left side of this equation. Ewventually, as steady-state conditions are
approached (r—w), the conceniration distribution of course hecomes
linear in the slab. -

Diffusion Through a Single Surface of a Slab

Diffusion may take place across only one large surface of a slab, the
opposite face being impermeable to transfer. Such a situation arises, for
example, in tray dryers for treating certain colloidal or gel-like materials.
The concentration gradient dc,/dz is zero at an impermeable surface,
which therefore coincides with the midplane of the slab considered zarlier,
for which diffusion occurred symmetrically through the two large opposite
faces, each of which was at the identical concentration ¢*. Thus placing an
mpermeable surface down the midplane and removing that half of the
slab beyond the midplane will have no effect on the previous soiutions,

- While yielding the case now under consideration. The solutions for the case

- of symmetrical diffusion therefore apply here, with the permeable surface
2l z=g and the impermeable surface at z =0.



36 Maoalecular Diffusion
Unsteady-State Diffusion in a Cylinder

The plane ends of the cvlinder will be sealed against mass transfer, so that
diffusion occurs only in the radial directon; also constant physical pro-
pertues are assumed. The following boundary-value problem is obtained in
a manner analogous to that given earlier for the sphere and the slab. This
involves a material balance on component 4 entenng, leaving, and ac-
cumulatmg in an annular, cylindrical volume element:

dec,
dr

+ == (2.108)

with the boundary conditions
ci(r.0)=cy
elar)=cy
E%Cf‘ (r,7)=bounded

Attention is now directed to a situation considered in Chapter 5, where a
detailed amalysis 15 made of diffusion into a fluid in plug flow through a
cvlindnical tube, the walls of which are at a constant solute concentration.
The relevant differential equation 5.103 is reproduced below in terms of ¢,.

dc, .DJ- d°c, | dc, .
=7 5 e (5.103)

where V is the velocity of plug flow in the axial or x direction along the
tube. Suppose that equation 5.103 is multiplied throughout by ¥, and the
quantity x/¥ then .replaced by :. The result is equation 2.108. The
solutions derived for equation 5.103 can accordingly be adapted to provide
the solutions to equation 2.108 as follows.

The concentration distribution for unsteady-state diffusion is given by
equanon 3.113, adapted to the present situation, as '

To(br) ]
co=ch+ 2y CA)Z M{”} e (= D) (2109)

where the b,’s are roots of Jy(b,a)=0, and J,(br) is the Bessel function of
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the first kind of order zero. Evaluation of local ¢,(r,1) is facilitated by the
Gumey-Lurie charts given by Perry (1963), adapted as described below
equation 2.80. The average solute concentration is also obtainable as a
function of time from the plug-flow analysis in Chapter 5. Thus equation
5.117 1s combined with the equalities noted below equation 5.113, and x/ ¥
is replaced by ¢ to give

*

Co0—E C4—Ch N
2L 2 AN L e (—DE) (2.110)
=]

. o=
Cio™Cy Cq0—CH a

IP}ZI*—

Although solutions useful for smail times and corresponding to equa-
tions 2.109 and 2.110 are available (Crank, 1956, p. 66), they are more
limited both in convenience and in range of application than in the case of
the sphere (equations 2.87 and 2.38) or the slab (equations 2.103 and
2.104),

Numerical appiication is facilitated by the plot of equation 2.110 in the
form of I~(cyp=E)/(c,o—c%) versus Dt /a” in Figure 2.2, provided by
Newman (1931). B

It must be appreciated that the detailed solutions presented here for the
sphere, the slab, and the cylinder under particular boundary conditions are
merely 2 sampling of the more important cases which may be encountered.
Other solutions for a variety of geometries and boundarv conditions are
given by Crank (1956).

Hlusiration 2.4

A stream of air at 20°C and with low. constant humidity is directed over
the rwo large surfaces of a slab of clay that initially contained 13 mass
percent of water, distributed uniformly throughout the clay. The slab has a
thickness of 2 in. and its edges are sealed against mass transfer. If the rate
of drying is controlled by the process of moisture diffusion within the slab,
determine the effective diffusivity when the average moisture content falls
to 10 mass percent in 375 min. Suppose that the equilibrium moisture
content for these conditions of air temperature and humidity is 2 mass
percent. :

For the same initial moisture content determine the final average per-
centage of moisture contained in the following bodies made from the same
clay and dried for 25 Ar under the same conditions:

(2) A solid sphere with a diameter of 6 in.
~ (®) A solid cylinder that has both ends sealed against mass transfer, a
tength of 10 in., and a diameter of § i,
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(c) A solid cylinder as in (b), with one end sealed and the other exposed
to transfer.
(d) A solid cylinder as in (b), with both ends exposed.
(e) A rectangular bar with both ends sealed, of thickness 4 in. and width
8 m.
(f) A brick-shaped body, measuring 46X 8§ in.
SOLUTION. The ordinate of Figure 2.2 represents the fraction of solute
unremoved and is denoted by E. Concentrations may be converted from
terms of ¢, to those commonly used in drying, namely the mass of
moisture per unit mass of dry solid. Since the weight of dry solid per umt
volume is constant throughout the drying process when shrinkage 1s
negligible, it is possible to write

= * ¥ =
e ci—chy X=X
— £ — =

cio— €l Xyo— X%

where X, represents the moisture content expresséd in pounds of water:per -
pound of dry solid.

Ttems (c) to (f) of this problem involve relationships not developed in the
text; the relevant expressions have beeen presented by Newman (1931) as
follows (see Figure 2.2):

1. For unsteady-state diffusion in a cylinder with one end sealed and

one end exposed, when the cylinder radius and length are ¢ and 2a,.

N e —— e e
respectively: : ] -

— e

Ezf(gb(i“) =Ecv|E?.al
a '\ (2a,) )

where E_,, is read as the ordinate of the curve for the cylinder correspond-
ing 1o an abscissa of Dr/a’. E,, is the ordinate of the curve for the slab
when the abscissa is Dt /(2a,)".

2. For unsteady-state diffusion in a cylmder with both ends exposed,
when the cylinder radius and length are a and 2a;:

E=f(£-:£)f(£f) =-‘E¢y!Ea,

where E,, 1s as in (1) above and E, is the ordinate of the curve for the
slab corresponding to an abscissa of Dt/aj.
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3. For unsteady-state diffusion in a rectaugular bar with both ends
sealed, when the bar thickness is 2a, and width is 2a,:

AZH 3w

where E, and E,_are the ordinates of the curve for the slab corresponding
to abscisas of Dr/::z and Dt/ az.

4. For unsteady-state diffusion in a bnck—shaped body of thickness 2a,,
width 22,, and length 2a.:

4 Dt Dt Di
E=fl=|fl = E,E,E
AENEN )20

where E , E, , and E, 2, 4T€ ordmates of the curve for the slab for abscissas
of Dz/az D:/az, and Dt/ a3.

The effective diffusivity is assumed to be independent of concentration
and direction and is calculated as follows:

X, 0= % =0.1765 b meisture /1b dry sohd
X,= —lé% =0.1110 Ib moisture/1b dry solid

X5= 9— =0.0204 1b moisture,/Ib dry solid

_0.1110—0.0204

= 0176500004 ~ -8

This ordinate corresponds to the following absmssa of the curve for the
slab in F]gure 2.2

Lag=t’

=iy Dt o135
az
50 that
e LY 60 e
9_0.1;5( 12) 7 = 15X 107 1 /hr.
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- SOLUTION (a). For the solid sphere,

0.00015)25 375
D ( ) - Q00375 _; o
p

r? (025  (0.25)
E=0.345 (from Figure 2.2)
¥, =0.345(0.1765 - 0.0204) +0.0204 = 0.345(0.156 1 ) +0.0204 = 0.0743
or
0.0743 . £
107 (100) =6.91 mass percent final average moisture content,
SOLUTION (b). For the solid cylinder, both ends sealed,

Dr O 00375

———=(.0338
& (0.33)°

£1=0.615 (from Figure 2.2)
X, =0.615(0.1561) +0.0204=0,1 164
ar
O 1164

Tod T 17z (100) = 10.43 mass percent final average moisture content.

SOLUTION (c).  For the solid cylinder, one end exposed,

Dr_ 000575 g D L= Q00375 s
a  (0.33)° (2a,)*  (0833)

E 1=0.615 (from Figure 2.2, cylinder)
E, 2,=0.92 (from Figure 2, 2, slab)

E=E ., E,, =0.615(0.92) =0.566
Y, =0.566(0.1561) +0.0204 = 0.1089
or

[13 llggg (100) =9.81 mass percent final average mmsture content.
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soLuTIoN (d).  For the solid cylinder, both ends exposed,

Dt _ 000375 oone. Dr_ 000375
& (0.33)° Toal (04165)°

E_,;=0.615 (from Figure 2.2, cylinder)

=0.0216

E, =0.83 (from Figure 2.2, slab)

E=E_,E, =0615(0.83) =0.51

X, =0.51(0.1561) +0.0204=0.0999
or

&

?gggg (IU{)') =9.09 mass percent final average moisture content.

SOLUTION (e). For the rectangular bar, both ends seﬁﬂcd,
136. D2t _ 0.00375

DL Q00575 136, 2 > =0.0338
a  (0.166) az  (0.33)°

£,,=0.58; E,=0.79 (both from Figure 2.2, slab)

E=E, E, =058(0.79) =0.458

X, =0.458(0.1561) +0.0204 = 0.0919
ar

0. . _
1 g;;; (IOG} =84 mass percent final average moisture content.

soLuTiON (f).  For the brick-shaped body, all surfaces exposed,

Dr_ 0.00375? ~0.136; 2t 0.00375 —006; 26000375 _ 35
ar  (0.166)° @ (0.25)° as  (033)°

E, =058 E,=072; £,=079 (all from Figure 2.2, slab)
E=E, E, E, =0.58(0.72) (0.79) =0.33

X, =0.33(0.1561) +0.0204=0.0719
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or
0.0719 . _
L0710 (100} =6.7 mass percent final g, ,., "It moisture content.
'NOMENCLATURE
A Component 4.
A Area, ft*.
A, Coefficient in the nth (¢, "l i infinite ser
. in series.
a Half thickness of a slah: il of & cvlinder 1
B Component B. - T
b, The nth root of Jo(&,a)—
Cy, Ca Cy Constants.
¢ Total coneentration, Ib-jy,,),, I
€ Cg Concentrations of COmMPuy n;'and B. Tb-mole /{13
e Equilibrium concentratiny, ,,, he surfac: 1b-m013’/ﬂ3l
g, Average concentration |y, hout ;h " b
mole / ft*. Ehou © phase, -
C4n Uniform concentration o ol
e fe
of diffusion (r O, 1b-mni¢-,/,r:: throughout at the start
Coim Logarithmic-mean conceny
. i lin of component B be-
wween points 1 and 2, diniyy,,,,  apart lb}-jmole/ftv" €
D, D, Dy, (Volumetric) molecular ‘“”fihivit . f.A in B: of B i
A; ft*/hr. ¥ 0 m o "
D, Molal diffusivity, lb-moh.-/””“”)
d, Diameter of a sphere, ft, '
Lix Moia‘,l flu‘x of -:_:omponen.l ! 'elitive to the mass-average
_ Yelocity, Loth in the x direc iy, Ib-mole /(ft*)(hr)
Iix Mass flux of componen "“lifive to the mass-average
velocity, both in the x djje lon, 1b mass /(Fthr) £
Joos I Molafl flux of component 1elhlive to the molal-average
velocity, both in the x upj , directions, respectivel
Ib-mole /(ft*)(hr). ’ pe ¥
Jix Mass flux of componen; / 1ely
) o ’ ilive to the molal-average
velocity, both in the x d“‘““liurl, Ib-mass /(ft*)(hr) :
Jar J, Bessel functions of the firg .

Lkind of order zero and one.



kc.. surroundings

kﬁ

My, My

N,

Ny, Ny N,
NB.:‘-' NB:

MNomenclature 3

Coefficient of mass transfer between the surroundings
and the surface of the body, ft/hr.

Individual mass-transfer coefficient based on Ap,, Ib-
mole / (hr)(ft*)(Ib-force / ft?).

Molecular weights of components .4 and B.

Total transfer up to time ¢, [b-mole.

Molal fluxes of 4 and B in the respective directions r,
%, and z relative to statiomary coordinates, Ib-

mole /(ft)(hr).

Molal flux of component i.in the x direction relative to

stationary coordinates, [b-mole /(ft*)(hr).

Sherwood number.

Am imteger.

Mass flux of component i in the x direction reiative to

stationary coordinates, lb-mass /(ft*)(hr).

Total pressure, Ib-force/ft?.

Partial pressures of components 4 and B, [b-force /ft*.

Constant partial pressure of component A at boundary-

of surrounding spherical shell, Ib-force /ft*.

Constant partial pressure of component A at surface of

a sphere, Ib-force /ft*.

Logarithmic-mean partial pressure of component B be-

tween points 1 and 2, distance z (or ry—r,) apart

Ib-force/ft*.

Gas constant, [545(ft)(Ib-force)/(Ib-mole)(°R).

Some function of r only—equation 2.70.

e

‘Radius; of a spherical shell; of a sphere, [t

Absolute temperature, °R.

Some function of ¢ only, equation 2.70.

Time, hr.

Molal-average velocity in the x direction, equation 2.2,
ft/hr.

Mass-average velocity in the x direction, equation 2.1.
ft/hr.

Statistical-mean velocity in the x direction of com-
ponent i relative to stationary coordinates, ft/hr.
Plug-flow velecity along a tube, fi/hr.

Mass fraction of component 4, p, /p.



44 Moiecg.lar Dhlfusion

XMz Coordinate directions and distances, ft.

X, Mole fraction of component A4, c, /e

Xppw Logarithmic-mean mole fraction of component B be-
tween pomts 1 and 2, distance : apart.

¥ c,—ck.

5 TR.

¥ NB:/N E

A A constant in equation 2.71.

Ds D4 P Total mass density; mass concentration or mass of
components 4 and i, respectively, per unit volume of
solution, Ib /ft°.

Subscripts:

A, B, Components A4, B, ;.

LM Logarithmic mean.

1.2 Points 1 and 2.

PROBLEMS

2.1 Derive the following flux relationships for the nonuniform. single-
phase. binary fluid 4 + B:

. M,
Jax =JAxM.4 Sl T W, (HAA' thg)—x, (”A: + M, ”Bx)

Ly, ! . . My
IAx=E=JA1+IA('NAx+th}mWA hhdx-'-:ﬁ}:hﬂx

Lix=/4x and 1,.,=J,, when M,y =M.

2.2 Suppose that the direction of the truncated conical duct is reversed in
Mustration 2.]1—in other words, the nitrogen now diffuses along the duct
in the direction of increasing diameter. Determine the rate of transfer of
nitrogen in the early stages of the process under these new conditions and
compare with the previous results.

© 23 Anarrow, cylindrical vessel is 2 ft high and is filled to a depth of 18

in. with toluene at 2 temperature of 18.4°C. If the vessel is not closed, how
long will it take to lose 5 percent of the toluene by evaporation and escape
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to the surroundings when the total pressure is 1 atm? The air within the
vessel is motionless, but air currents across the open top ensure zero
concentration of toluene there. Under these conditions the vaper pressure
of toluene is 20 mm Hg, its density is 54.1 Ib-mass/ft’, and the diffusivity
of the air-toluene vapor system is 0.326 ft? /hr.

L4 A spherical container has a diameter of 2 ft and is open to the

atmosphere through a 3-in. diameter hole at the top. If the vessel is half
full of liquid toluene, what is the instantaneous rate of toluene loss to the
surroundings by evaporation? Assume that conditions and relevant phym-
cal properties are as in Problem 2.3.

2.5 Estimate the time required for complete evaporation of a naphthalene
sphere having an initial diameter of 0.2 in. when suspended in an effec-
tively infinite amount of stll air at [13°F. The naplithalene surface
temperature is taken to be 113°F (see Illustration 5.1), so that its vapor
pressure is 1.546 lb-force/ft* and its density is 71.41b/ft>. For the present
purposes ncglect any variation in vapor pressure with changing curvature
of the surface. For:these conditions D is 0.2665 ft*/hr. -

Covdp

- 2.6 Equation 2.94 in the x,y,z coordinate system may be expressed in

spherical polar coordinates r, §, and & by use of the transformation
equations

x=rsinfcosao
y=rsindsine
z=rcosd

For spherically symmetrical diffusion (dc, /30 =0,37%, / 3¢*=0) show that
the result is equation 2.63.
The transformation of equation 2 94 to cylindrical coordinates r, 4, and

z 1s performed with the equations

x=rcosd

y=rsind

Fc}r radla.lly symmetrical diffusion with negligible end effects (3¢, /3¢ =0,
d%c, /3z2=0), prove that the resuit 1s equation 2.108.

2.7 Radial steady-state diffusion is occurring through the rigid walls of a
hollow sphere and a hollow cylinder, both bodies having imner and outer
radii r; and r,. If the concentrations of solute 4 at r, and r, are constant at
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¢, and ¢, 5. show that the concentration distributions in the solid shells are
given by the respective expressions
ra(r— r:j
Casphere = €1~ (€41 €42 F(ry—r)
- cyln(r/ry+c,In(r/r)
A In(r,/r).

Evaluate the radial concentration gradients at r= r, and obtain the flux
at the outer surfaces of the two solid bodies.

28 A small amount m of substance 4 is deposited in a very thin,
disk-like film (at z =0, 1=0) through 2 solid cylinder of B. The cylinder has
unit cross section and effectively infinite length on each side of the film.
The substance 4 spreads axially on either side of z=0 by diffusion in
accordance with equation 2.93. Show by differentiation and by application
of the boundary conditions

I—* oo, >0, c,—0

z=0, =0, ;=00

and with

m= c dz

where z is the axial distance in either direction normal to the original film
of A. How might this process be used to evaluate D in metals?

2.9 Apply the method of separation of variables to the problem of
unsteady-state molecular diffusion in 2 slab, on the assumptions already
used in the text for this geometry. Take the origin of coordinates at one
large surface of the slab, so that the other large surface is at z/=2a and z is
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replaced by Z' in equation 2.95. Show that the local concentration of solute
(A) isthen

’ 2 5

, 4 X1 . [ @r+l)m:z —-D(2n+1)’7%

cA(z,t)=cj+;(cA0‘c}) E 3t sm[ 2 exp —
n=0

Compare this result with equation 2.105, which corresponds to a different
coordinate system. Integrate the above expression over 0« z’<2a and
obtain equation 2.106.

210 Consider the unsteady-state molecular diffusion of component A in
a semi-infinite medium, 0<z < co. The process is described by eguation
2.93, and the boundary conditions are ¢, (0, #) = ¢%, ¢, (z,0) = 0. Use the
Laplace transform with respect to time to obtain the solution giving ¢, at
any zand  as

b z/2VDt o2
c,(z,t)=c*| 11— — e " ds
4(0) { =

[Note: This problem has been solved frequently throughout the literature
-see, e.g., Perry (1963), pp.244 and 10-6.]

2.11 A wet slab of wood measuring 6 x 8 x 3 in. is dried in a stream of air
with low, constant humidity. The edges of the dlab are sealed, and drying
occurs by evaporation at the two large surfaces, which are supplied with
liguid moisture by diffusion from within the dab. If the equilibrium
moisture content under these conditions is 5 mass percent and the moisture
content falls from an initial uniform value of 35 mass percent to an
average of 20 percent in 8 hr, determine the effective diffusivity of
moisture in the wood. It will be assumed that moisture diffusion is the
rate-controlling process, that diffusivity is independent of direction and
concentration, and that shrinkage can be ignored.

For the same initiadl and final average moisture contents, how much
drying time would be required by the following bodies made from the
same wood when dried in a similar manner?

(&) A brick-shaped body measuring 3 x 2 x 1 in., with one of its smallest
faces sealed against transfer.

(b) A solid sphere with a diameter of 1 in.

(c) A cylindrical rod with a diameter of 1in. and a length of 12 in. with
one end sealed.

212 Plot the moisture concentration profile in the sphere and in the dlab
of Problem 2.11 after 8 hr of drying:
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(a) Using equations 2.80 and 2.105.
(b) Using Figures 10.3 and 10.4 in Perry (1963), p. 10-6.
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Molecular Diffusivities

The theory of molecular diffusion has been the subject of extensive
investigation because of its close relationship to the kinetic theory of gases.
Detailed reviews are available (Crank, 1956; Jost, 1960; Bird, 1956;
Hirschfelder et al., 1954; Barrer, 1941), and Reid and Sherwood (1966)
have provided a valuable critical comparison of the various correlations
which have been presented for the prediction of diffusivities in gases and
liquids, including electrolytes and nonelectrolytes under a variety of condi-
tions.

The purpose here is not to review molecular-diffusivity theory, but
instead to assemble predictive correlations necessary for the application of
relationships given in other chapters.

DIFFUSIVITIES IN GASES

The kinetic theory of gases, in which molecules are regarded as rigid
spheres experiencing elastic collisions, has resulted in severa theoretical
expressions of the following form for the binary system A + B:

CBTA N[ 1 1
DAB"' sz MA + MB (31)
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where M, and M, are the molecular weights of A and B, T is in °K_ P is

the total pressure in atmospheres, and d is the distance in centimeters
between the centers of unlike molecules on impact.

Various theoretical values have been assigned to the constant b, for
example by Maxwell (1890), Jeans (1921), Chapman (1918), and Suther-
land (1894). After comparing the available correlations, Reid and
Sherwood (1966) recommend the following expression at pressures below
20 atm:

3/2

p= QOOIBSEST2 [ 1 1 (32)
P(04p) QD,AB M, My

This equation originates from the Chapman-Enskog kinetic theory and
attempts to allow for attractive and repulsive forces between the molecules.
Here T isin °K, P in amospheres, D,z in cm?/sec, and 0,5 IN Angstrom
units. The Lennard-Jones potential function is frequently used to
approximate the intermolecular potential field for a molecule of A and a
molecule of B. The “collision integrd” @, ,, is then determined by the
temperature and by kzT/¢,5, Where kg is Boltzmann's constant and the
Lennard-Jones “force constants’ <= AB and o, ae estimated by the follow-
ing combining rules:

€
e,5=Vee,  or ;%:= Z—'Z% (3.3)
o.5=1(0,+0p) (3.4)

The quantities €, /kg, €5/ kg, 64, and o5 may be obtained from Table 1 in

the Appendix. (Those that are not listed may be estimated by means of the

relations at the foot of the table) Substitution in equations 3.3 and 3.4
gives €,5/ky and 0,p; 9, ., is next found as the value corresponding to
kyT/e,p in Table 2 of the Appendix. Insertion in equation 3.2 then yields
D,g: The average error between diffusivities calculated from equation 3.2
and 114 measured values in 65 binary systems at various temperatures was
75% (Reid and Sherwood, 1966).

Three semiempirical relationships for estimating diffusivity appear in
Table 3.1. Equation 3.5 contains atomic diffusion volume increments, u,
which are to be summed for each component using values listed in Table 3
of the Appendix. The units used in these equations must be as given in the
table of nomenclature at the end of this chapter. It is recommended that
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Toble 3.1.  Semiempirical relationships for diffusivity in binary gas mixtures at low
pressures.”

Equation Average
number Equation erro’  Reference
7/4
D s= 0081300T VET: ML+—N}— 6.9% Fulleret al.
P[(Z0)i +(Zo)y | VM1 s (1966)
3.6 D, p= 0015077 % S+ 5% chen and
O Uyp= 1205 r '
P(TuTp) " v vyt ) VMa ™ Mo Othmmer
1.23 (1962)
1 1
M, My
3.7 D= (2.52x 107 )p3/ 4 ———— 126%  Othmer and
Vi + vy Chen

(1962)

4 Units as given in the table of nomenclature must be used.
b From comparisons by Reid and Sherwood (1966) with the same 114 measure-

ments used to test equation 3.2.
¢ Atomic diffusion volume increments, v, to be summed for each component, are
listed in Table 3 of the Appendix, after Fuller et al. (1966).

estimation of D,, be made either by equation 3.2 or 3.5, athough more
extensive tabulation of v is needed to enhance the range of applicability of
the latter expression.

If an experimental value of diffusivity at a temperature T, is available,
the diffusivity for the same system at T, may be estimated by means of a
relationship that follows from equation 3.2:

3/2
T, (QD AB)T;
=D.| == - DA57 5 .
DTZ T'( T, ) (QD,AB)Tz (3 8)

Illustration 3. |

Estimate the binary diffusivity for naphthalene vapor-air at a temperature
of 0°C and a total pressure of 1 atm. Compare predictions from equations
3.2, 35, 3.6, and 3.7 with the experimenta vaue of 0.0513 cmz/ sec (Perry,
1963, 14-23).

Use eguation 3.8 to convert the experimental value to that correspond-
ing to a temperature of 45°C.
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soLUTION.  Call naphthalene component A, and air component B. Con-
sider first the evaluation of equations 3.2 to 3.4.
The critical constants of naphthalene are as follows:

T, =7484°K; ¥, =408 cm’/gm-mole

(Reid and Sherwood, 1966, p. 576). Table 1 of the Appendix gives
€,/ky=0.75T.,=0.75(748.4°K) = 561.5°K and ¢, /k = 78.6°K.Then from
equation 3.3,

ksT _ 273 273 _
€48 /(561.5)(78.6)

The corresponding value of €, ,, is obtained from Table 2 of the
Appendix as 1.273.

Table 1 of the Appendix shows that o, = £ V/!/* = 3(408)!/> = 6.18 A and
o,=3.711A. Then from equation 3.4, 6,, = 4(6.18+3.711)=4.945 A.
Substituting in equation 3.2,

0.0018583(273)*"* 1 1

(1) (4.945)*( 1273) ¥ 128.16 29
= 0.0553 cm?/sec

AB™

The evaluation of equation 3.5 requires the following diffusion volume
increments, taken from Table 3 of the Appendix:

For naphthalene (A)= C, (H,,

Carbon: 10x 165 = 165
Hydrogen: 8x 1.98 = 1584
Aromatic rings: 2x(-20.2) = -40.4
(Z0)4 = 14044
For air (B), (2v)p =20.1.
Substituting in eguation 3.5,
0.00100(273)"* 1 1

= +—
42 (1)[ (140.44)"+ (20.1)"°]* V12816 © 29

= 0.0605 cm?/sec
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Insertion of appropriate values in equation 3.6 gives

1.81

0.0150(273) 1 1

D S
“OT (408)"* + (90.52)*']

()] (7484)(1325)]

12816 T 29

=0.0538 cm?/sec.

The viscosity of air at 0°C and 1 atm is 0.017 ¢P, so that equation 3.7 is
written for this case as

1 1
278 128.16 ' 29

[ (408)°*+(90.52)°*]"

D,, = (252 x 107) (0.017)

= 0.0469 cm?/sec

The error between these respective predictions and the experimental
value of 0.0513 ¢cm?/sec is defined as

percentage error = (DAB)predicted— (DAB)experimental x 100

( D AB ) experimental

The resulting errors are + 7.8, + 17.9, + 4.9, and — 8.6 percent for equa-
tions 3.2, 35, 36, and 3.7, respectively

Estimation of the diffusivity at 45°C requires evaluation of the collision
integral ©,, ,, at this temperature.

kyT 273445
€48 210

=1515

The corresponding §,, 45 is found in Table 2 of the Appendix to be
1.193. From equation 3.8,

32,
(DAB)45°C=0-0513( ‘32‘%) —i—'lzgz% = 0.0687 CmZ/SCC
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An dternative allowance for the influence of temperature upon diffusiv-
ity is provided by equation 3.6 as

1.81
T
(DAJB)T2 = (DAB)T,( 7? )
so that

181

(DAB)45eC=0.0513( %) =0.0675cm?/sec

DIFFUSIVITIES IN LIQUIDS

Different theoretical approaches to the description of diffusion in liquids
have been made, depending upon whether the systems are electrolytic or
nonelectrolytic. The available prediction procedures must therefore be
divided into those suitable for nonelectrolytes and those suitable for
electrolytes; for the latter, relationships are unfortunately scarce. Most
studies have been devoted to the estimation of diffusivities in very dilute
solution, although some progress has been made towards allowance for the
substantial variations that occur with increasing concentration of the
diffusing solute.

The experimental methods available for the measurement of molecular
diffusivity are well reviewed by Johnson and Babb (1956), Tyrell (1961),
Jost (1960), and, more briefly, by Nienow (1965).

Nonelectrolytes

Severa correlations for dilute solutions are available; a choice may be
made on the basis of the accuracy needed and the availability of
relevant physical data.

Dilute Solutions

The kinetic theory of liquids is of course much less advanced than that of
gases, and this has hampered fundamental developments. There are two
well-known theoretical approaches to diffusional theory for nonelectro-
lytes. Eyring's theory of absolute reaction rates treats the molecules of the
liquid as being in a quasicrystalline lattice in which “holes’ are scattered,
the process having some of the characteristics of diffusion in a solid.
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Agreement between the theory and experiment is poor, but the following
theoretical relationship is indicated (Jost, 1952, p. 472):

D
__A;” 2 =f (mola volume of mixture) (39)

The hydrodynamical theory was initiated by Einstein, who applied
Stokes' law to describe the drag on large, spherical solute molecules (4)
moving through a continuum of small solvent molecules (B). The equation
obtained is

A2 (3.10)

where kg is Boltzmann's constant and r, is the radius of a molecule of A.
The expresson breaks down, however, for smaller solute molecules.

Progress on the basis of statistical-mechanical theory is reviewed by
Reid and Sherwood (1966).

The lack of widespread quantitative success with the theoretical
approaches has led to the development of several semiempirical re-
lationships based on equations 3.9 and 3.10. Table 3.2 presents a collection
of 10 such expressions, in which A is the solute, B is the solvent, and DY,
isin cm?/sec. It isimportant to note that the equations are for use with the
units of each term as prescribed in the table of homenclature at the end of
this chapter. Some of these correlations are more successful in one class of
application than another, and this has occasioned the classification of
errors in prediction as shown.

The parameter £ in the Wilke-Chang equation 3.11 is an “association”
factor for the solvent. The uncertainty involved in assigning values to £ for
new solvents not covered in the origina investigation has resulted in
efforts to eliminate this factor from the correlation. To this end, Table 3.2
shows relationships that attempt to allow for intermolecular association
forces by introducing functions of the latent heats of vaporization. Allow-
ance for the ratio of solvent size to solute size is made in some cases by
introducing theterm V,, / V, , .

Specific difficulties have been found in the prediction of diffusivity when
water is the solute. For example, discrepancies between measured values
and those predicted by the first three equations of Table 3.2 may reach 250
percent. Olander (1961) postulates that polymerization of the water may
account for this anomaly. His attempt to rectify this situation is repre-
sented by equation 3.15, which is based on a score of data points from nine
systems. In this regard, equation 3.20 was found to give acceptable results



Table 3.2. Semiempirical relationships for diffusivity in very dilute binary solutions of non -
electrolytes.”

Equation .
number Restriction Equation

311 Exclude Dpian 7-4% 1078(¢M,)"”
water s T VoS
solute

For unassociated solvents, § = 1.0; for water, ¢ = 2.6;
for methanol, ¢= 1.9; for ethanol ¢= 15.

312 Exclude T : W\l 1
water as DZB-K[ ——"‘UVI}[‘,3 ]=8.2x 10 8[ 1+(——VM ) [_#ABV_M:‘ ]
solute

Special solvent cases water, ¥y, < Vyg K=252X 10-5;
benzene, V,, <2V,p, K-18.9X 10-5
other solvents, Vs <2.5V,5, K=17.5% 1075,

313 Exclude
waer & Doom 14X 105
solutg AB Vgis#ﬂ "\JVTJ’ AHpr /AH r

-5

34 Aqueous DS,,= 140X10-7
solutions wr Vi
only

315 Wae as D:vnerusolule=(.D:quﬂi0n 3.11 \)/2'3
solute 053

. ( M}/AHY/ 3T) '
DS p=54%X10"°| ——mr—pr

316 General 4B 4 VESAHD?

1/6 1/2

317 General Dosbs _ 4 4x10-8( L2 AHmy

T ’ Voa AHm,
° 10x 10~ 8pm}/2 17
318 - Diisrs 3 — B MDY
T VeV Via
319 General D ppy 85 x107 M2 Vs
= ) —>15
T ViV Vou

320 Organic o 1/3

solvents Dasts _g 55 10-4¥,51/3 1'40( ﬁ’ﬁ) + %
T Via bd

¢ Units as given in the table of nomenclature must be used.

% Numbers in parentheses show how many measurements are compared with prediction.
¢ Comparisons Dy Reid and Sherwood (1966) with filed sets of data

4 Comparisons by authors with various sets of data.
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Table 3.2. (continued)

Average error?
" Organic’  Waer & VECHES Equation
solvents solvent solute Overdl Reference number
21%(53°)  11%(46°)  Upto 200-250%  10%(285% Wilke and Chang 3
(1955)

25% (53°)  11%(46°)  Up to 200-250% - Scheibel (1954) 312

28%(53°) 11%46°) Upto 200-250%  20%(1209) Othmer and Thakar 313
(1953)

- 11% (46°) - -_ Othmer and Thakar 314
(2953)

_ No anomalies (20%) Olander  (1961) 3.15

26% (42°)  12%(32°) 12% (79) 13% (1153  Staraman et 4. 316
(1963)

— - NoO anomalies®/  155%(2139) King et d. (1965) 317

15% (607) 9% (16%) — 135%(76%) Reddy and Doraiswamy 3.18
(1967)

18% (14%) —_ 26% (64)>8 205% (20%) Reddy and Doraiswamy 319
(1967)

16% (51  — See below” — Lusis and Ratcliff 320
(1968)

¢ Unstisfactory for high pg.

S Error= = 72% for water in glycerol.

8 Error = 100% for water in ethylene glycol.

& Acceptable results in most cases, provided that water is assumed to diffuse as a tetramer.

57
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in the mgjority of cases when applied to water as a solute in organic
solvents, provided that water was assumed to diffuse as a tetramer. For
organic acids diffusing in organic solvents (excluding acohols), equation
3.20 showed an average error of 9.9 percent with respect to 18 measure-
ments when the acid was assumed to diffuse as a dimer, in contrast with
44.5 percent when it was assumed to diffuse as a monomer. Acids
appeared to diffuse as monomers, however, in methanol, butanol, and
ethylene glycol. This is also usua when organic acids diffuse in water.
Lusis and Ratcliff (1968) discuss further problems that arise in the predic-
tion of the diffusivity when strong interactions occur between solute and
solvent molecules and when long straight-chain hydrocarbon molecules are
undergoing diffusion. Special problems arise when complexes are formed,
as in the case of iodine-aromatic solutions (Wilke and Chang, 1955).

Six of the ten correlations for DS, in Table 3.2 have appeared in the
decade 1960-1970. More time for further extensive testing must elapse
before a final selection from among them can be made, although some
guidance on the relative effectiveness of these expressions has been indi-
cated. It is to be anticipated that further relationships will appear, pending
the development of a more complete theory of the liquid state. In the
meantime, tentative recommendations on the basis of the evidence com-
piled in Table 3.2 are as follows:

For diffusion in organic solvents, use equation 3.12, 3.18 (when applic-
able), or 3.20. When water is the solvent, use equation 3.14. When water is
the solute, use equation 3.15, in conjunction with equation 3.11. The latter
result could be checked by applying equation 3.20 in the manner pre-
scribed, and also by the use of equations 3.16 and 3.17.

The relationships in Table 3.2 have generally not been extensively tested
outside the temperature range 10 to 30°C.

Illustration 3.2.

Estimate the diffusion coefficient for carbon tetrachloride in very dilute
solution in benzene at 25°C. Compare predictions from equations 3.11,
3.12, 3.13, 3.16, 3.17, 3.18, and 3.20 with the experimental value of
1.92 x10~ ° em?/sec [Horrocks, J. K., and E. McLaughlin, Trans. Faraday
Soc. 58, 1357, (1962)].

Convert the experimental value to that corresponding to a temperature
of 40°C.
soLuTION. Carbon tetrachloride is designated component A, and ben-
zene component B. The mola volumes of these two components at their
norma boiling points are estimated from the LeBas atomic volumes
(Perry, 1963, p. 14-20) as

Vye = 1012 cm® /gm-mole, ¥,z =% cm®/gm-mole.
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(Calculations are to slide-rule accuracy throughout.)
In equation 3.11

.5=0.6 P, T=298°K, M,=78.11

12
_ (74x10 8)[1(73“)] (ﬁ%) 2,04% 1075 cm?/sec

(101.2)*° 06

In equation 3.12,
Vig <2Vup SOK=189~10"°
Do — (18.9% 107 #)298

- =2.015%107* cm?/sec
P 06(1012)"°

In equation 3.13,
wp=065¢P, m,=08%cP
AHgy= 8100 ca/gm-mole, AH,; = 10,500 ca/gm-mole

14x 10~ i e
Din= =1486 X 10~ * cm*/sec
o (101.2)0'6(0.65)(0_894)1.1(8100)/10,500 /

In equation 3.16,
pp=06cP, AH,=4642 cal/gm, AH, = 94.14 cal/gm

0.93
(78.11)'/3(94.14) /> (298) B
os(o12) ) | /e

D23=5.4(10“8)(

In equation 3.17,
AH, , = 7135 ca/gm-mole, AH, = 7355 ca/gm-mole
D45=44(10" 8)( 5 )1/6(:/&) (298) =2.2X 107° cm?/sec
A8 101.2 7135 0.6
In equation 3.18 (selected because ¥,/ ¥,, < 1.5),

- 1/2
. _ 10(107*)(78.11)" (298

= =221 =2.065x 107> cm?/sec
AB ( 101.2)1/3(96)1/3 0.6) /



60 Molecular  Diffusivities

In equation 3.20

101.2

8.52( 1078) 9 \'>. 96 | 2908
0 —_— by
Dre= =gy 4 (101.2) * ( 0.6)

=2.15x 107 cm?/sec

The errors in these predictions with respect to the experimental vaue of
1.92X 10~° ¢m?/sec are defined as in lllustration 3.1. The resulting errors
are +6.25, +4.95,—-22.6, +12.5, +14.6, +7.5, and + 12 percent for
equations 3.11, 3.12, 3.13, 3.16, 3.17, 3.18, and 3.20, respectively.

Equations 3.10 to 3.12 and 3.17 to 3.20 suggest that the quantity
DY,us/ T isconstant for agiven liquid system. This relationship is found
to be only approximately true but will be used here to estimate the
diffusivity D9, at 40°C (313°K):

ps =0.5 cP at 40°C or 313°K,

—s{ 0.6 313 -
0 °C= 5 = 5 om?
DYy at40°C=192X%x10 ( 05 )( 508 ) 242X 107> cm*/sec

In binary systems, such as those considered so far, only one diffusivity
need be defined. The situation is more complex in multicomponent sys-
tems because of interactions between the flows of the various species, and
these complications increase with increasing departure of the system from
ideality. The special case of diffusion of a dilute species in a mixture of two
solvents has been considered by Cullinan and Cusick (1967a) in a treat-
ment confined to completely miscible, nonassociated liquid systems. They
note that, although the flux of the dilute component is in this case
dependent only on its own gradient, the diffusivity is not directly related to
any binary diffusion coefficient. The expression obtained for the diffusivity
of the dilute species A is in terms of the limiting binary diffusivities at
“infinite” dilution and two thermodynamic factors:

0 Xp " Xc

A== Xg Xc ' Xc Xp
a0 (Dgs) (aABCDgC) (Dgc) (aACBDgB)

(3:21)

The binary diffusivities at “infinite” dilution, D, D3¢, D2s and Dic,
may be estimated by one of the correlations given above, and the ther-
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modynamic factors are calculated by the following relationships:

Vc( 1 —Dgc/Dgc) Dgc
Q = s | =——1>0.25 (3.22)
"ABC VA - VB Dgc
or
1 DY
& pc= 75 ‘1 ——2fl<025 (3.23)
BC
and
VB( 1- DAQB/DgB) DEDEB
= . 3.24
O4cp VA — VC ) 1 | ang >025 ( )
or
Vs D5
aACB=T/;’ I—T <0.25 (3.25)
cB

where ¥, V;, and V. are the molal volumes of components A, B, and C
in the liquid state at the temperature and pressure of the mixture. Agree-
ment was found between equation 3.21 and a limited amount of experi-
mental data.

A simpler and somewhat more effective relationship for dilute solute A
in mixed solvents B and C was subsequently offered by Leffler and
Cullinan ( 1970b) :

(XETO DA)“ABC:_ (DSBV'B) B(Dgcl"c) ‘ (3.26)

where p, g, the viscosity of the solution, is essentially that of the solvent
mixture B and C.

Concentrated Solutions

Five relationships for the prediction of diffusivity in concentrated binary
solutions of nonelectrolytes are given in Table 3.3. Equation 3.27 expresses
the concentration dependence of diffusivity in terms of the activity coef-
ficient of the solute, v,, and the viscosities of water and the solution,
and p, 5. Gosting and Morris (1949) found that this equation accurately
described their measurements of diffusivities in aqueous sucrose solutions
at 1 and 25°C at concentrations below 6 gm/100 ml.
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Equation 3.28 for idea solutions expresses a linear variation of the
quantity D, u,, With composition at a given temperature. This relationship
also provides at least a crude approximation to the dependence of diffusiv-
ity on concentration in the measurements by Gamer and Marchant (1961)
on associated compounds in water. The totally miscible solutes studied
were ethanediol, propane 1. 2 diol, and glycerol, for which the highly
nonlinear variations in diffusivity over the full range of solute concentra-
tion were respectively about 5-, 9-, and 100-fold.

The extension of equation 3.28 to nonideal solutions is effected by the
introduction of the activity coefficient of the solute, giving equation 3.29.
In the case of miscible liquids the term dlny,/dlnx, may be evauated
from vapor-liquid equilibrium data in the manner described in thermo-
dynamics texts. Thus for ideal vapors

dlny, dlnp,
dinx, dlnx,

where p,, is the partial vapor pressure of the solute in solution. Limitations

on the applicability of equation 3.29 have been indicated by Kincaid,
Eyring, and Steam (1944), and Vignes (1966) shows systems for which the
expression is not valid.

The substantial level of agreement between the empirical equation 3.30
(Vignes, 1966) and many experimental data prompted Cullinan (1966,
1968) to attempt a partially theoretical derivation of the expression. This
development was expanded by Cullinan and Cusik (1967b) to yidd a
predictive theory for composition-dependent diffusivities in multi-
component systems that are completely miscible and free from association.
The latter contribution has been the subject of further discussion by
Vignes (1967) and Cullinan (1967).

Equation 3.30 was modified by Leffler and Cullinan (1)70a) to give
improved correlation by incorporating the viscosity of the solution and of
the pure components, resulting in equation 3.31.

The concentration and temperature dependence of liquid diffusivities
has been treated by Gainer (1970) on the basis of absolute rate theory in a
manner which does not require thermodynamic data.

Hansen (1967) has provided solutions to the diffusion equation (Fick’'s
second law) for cases in which the diffusivity varies exponentialy with
concentration. The results were used to correct measurements of diffusivity
for solvents in polymer films.

The effects of concentration on diffusivities as indicated by statistical-
mechanical theory have been summarized by Reid and Sherwood (1966, p.
546). Further development of this approach is needed, and at present the
resulting relationships, while satisfactory for binary ideal solutions, are not
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reliable for nonideal systems or those in which molecular association is
significant.

When considering a new system it is desirable to check whether it is
included in the tabulation prepared by Johnson and Babb (1956) of
experimentally measured diffusivities in nonelectrolytic solutions. In the
absence of experimental values, equations 3.30 and 3.31 appear to be the
currently preferred relationships for estimating the effect of concentration
on diffusivity.

Illustration 3.3

The following experimental values are available for the diffusivity of very
dilute hexane (4) in carbon tetrachloride (B) and of very dilute carbon
tetrachloride in hexane at 25°C:

DY 5= 1487 X 10~ *cm?/sec
DY, =3858 X 10~ °cm?/sec

[D. L. Bidlack and D. K. Anderson, J. Phys. Chem., 68, 3790, (1964)].

Use equations 3.29, 3.30, and 3.31 to predict the diffusivity at al
intermediate compositions, and compare the results with experimentally
measured values.

soLuTion.  If experimental measurements of D3, and DS, had not been
available it would, of course, have been necessary to predict these quanti-
ties from one of the relationships utilized in Illustration 3.2. (For example,
equation 3.12 yields the following estimates: D, = 1.12X 107> cm?/sec;
D%, =379 X 107° cm?/sec.)

Activity coefficients were measured and correlated as a function of
composition for this system at 20°C by S. D. Christian, E. Neparko, and
H. E. Affsprung [J. Phys. Chem. 64, 442 (1960)]. The correlation was
adjusted to 25°C by Bidlack and Anderson (1964) to give

diny,
I Jinx,

= 1—0.354XAXB

Solution viscosities are required as a function of composition at 25°C for
use in equations 3.29 and 3.31; measurements by Bidlack and Anderson
(1964) appear in Figure 3.1, which includes the values

p, = 0.2958 cP, pig = 0.8963 cP
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o1 F =

0 ] L 1 i
0O 02 04 06 08 10

Xp = Mole Fraction Hexane

Figure 3.1. Viscosity of hexane-carbon tetrachloride solutions at 25°C (Bidlack and Ander-
son, 1964).

In equation 3.29, when x,=0.4,

diny,

oy, - "0:354(0.4)(0.6) -0.915

pp=0.511cP (from Figure 3.1)

D _ 298 [[ (3858x107°)0.2958  (1.487 x10™*)0.8963
(Da)eone= 5577 298 208

(1487 x 10~°)0.8963
+ 08 (0.915)

=225 x 107 cm?/sec
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0

0.2 0.4 0.6 0.8

XA = Mole Fraction Hexane

composition for the system hexane-carbon tetrachloride at 25°C.

1.0

Comparison between experimental and predicted diffusivities as a function of

Additional values for other x, are calculated in the same way and

appear as the curve in Figure 3.2.
In Equation 3.30, when x, = 04,

(D) cone= (1.487~107%)*°(3.858x 10~%)**(0.915) = 1.99~ 105 cm?/sec

Values for other x, are plotted in Figure 3.2. In equation 3.31, when

x, =04,

(D) eonc= 0—511—1[ (1.487x 10~°)0.8963]"°[ (3.858x 10~°)0.2958]**(0.915)

=224 x107° cm?/sec

Figure 3.2 again shows further values corresponding to other x,.
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Figure 33. Comparison between experimental and predicted diffusivities as a function of
composition for the system methyl ethyl ketone-carbon tetrachloride at 25°C.

Many systems have a minimum in the plot of diffusivity versus binary
composition. Leffler and Cullinan (1970) examined some such systems, in
which both equations 3.30 and 3.31 fitted the data closely and with about
the same degree of precision, as exemplified by Figure 3.3. Much poorer
agreement was obtained, however, in the system acetone-carbon
tetrachloride and with mixtures of n-alkanes.

Electrolytes

Molecules of an electrolyte in solution dissociate into cations and anions
which, because of their smaller size, diffuse more rapidly than the undis-
sociated molecules. Despite differences between the sizes of the positive
and negatively charged ions, however, both types diffuse at the same rate,

so that the electrical neutrality of a given solution is preserved.
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Dilute Solutions

The diffusivity of strong electrolytes at infinite dilution may be calculated

from an equation obtained by Nemst (1888) on the assumption of com-
plete dissociation:

e z,+z_
D§=8931x107°T| 5 || <~ (332)
L+

where

DS = diffusivity of the molecule, cm?/sec,

1% = cationic conductance at infinite dilution,mho/equivalent,

{® = anionic conductance at infinite dilution, n& o/equivalent,

[° + 1° = electrolyte conductance at infinite dilution, mho/equivalent,
z . = absolute value of cation valence,

z _ = absolute value of anion valence,

T = absolute temperature, “K.

A useful tabulation of ionic conductances at infinite dilution in water at
25°C isgiven in Perry (1963, p. 14-24), for use in equation 3.32. Diffusivi-
ties at temperatures other than 25°C may be estimated with the aid of the
following relationship:

19 = 1% +a(t—25) +b(1—25)+c(1—25)° (3.33)

Vaues of a b, and c for some of the more common ions are tabulated in
Perry (1963, p. 14-24).

Diffusivities of weak €electrolytes in water were measured by Bidstrup
and Geankoplis (1963). The experiments were for concentrations up to 0.1
N in the carboxylic acid series-formic, acetic, propionic, butyric, valeric,
and caproic acids. Their resulting correlation, which was shown to be
equally applicable to the corresponding a-amino carboxylic acids, is simply
the Wilke-Chang equation 3.11 but with the constant 7.4 replaced by 6.6.
The average deviation between 25 experimental results and values so
calculated was *3.7 percent.

Illustration 3.4

Estimate the diffusivity of potassum chloride in water at infinite dilution
and a temperature of 18.5°C.

SOLUTION. The ionic conductances at infinite dilution are adjusted to a
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temperature of 185°C with the aid of equation 3.33 and values tabulated
in Perry (1963, p. 14-24):

(19) 5.50c=T73.50+ 1.433(18.5—25) +0.00406( 18.5 — 25)
—0.0000318( 18.5—25)°
= 64.36 n&ol/equivalent
(12 ) 15.5°c =76.35(18.5—25) +0.00465( 18.5— 25)" — 0.0000128(18.5— 25)°
= 66.55 n&o/equivaent
and in equation 3.32,

D9 =8931x1071°(291.5) [ o),

“—1} 17% 10~ 5 cm?/sec

Experimental and predicted variations in diffusivity with concentration
for this system are compared in Illustration 3.5.

Concentrated Solutions

Diffusivities of electrolytes at higher concentrations may be estimated from
a semiempirical equation proposed by Gordon (1937):

milny.\ 1 [ b
D =D°(l+ —) — (—) 3.34
( A)conc A am C'B VB In ( )

where

DY is calculated from equation 3.32,

m = moldlity,

¢’y = number of gm-moles of water per cm® of solution,

V5 = partia molal volume of water in solution, cm®/gm-mole,
pg = viscosity of water,

pyp = Viscosty of solution,

v, = mean ionic activity coefficient based on molality.

Harned and Owen (1950) and Glasstone (1947) provide tabulations of
Y. as a function of m for several-agueous solutions, and a method for
estimating partial molal volumes ¥, is described by Lewis and Randall
(1923). Equation 3.34 has been found valid up to concentrations of more
than 2 N in some systems (Reid and Sherwood, 1966, p. 563).
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The effects of ion hydration in nonassociated electrolyte solutions have
been examined by J. N. Agar in an extension of the earlier treatment for

nonelectrolytic systems by Hartley and Crank (1949). The resuiting expres-
son is

Iny,
om

3
(DA)conc=D'A(1+m )(1—0.018n’m)

0
4 bap

vD*%
x [ 1+0.018m( D“2° —n’)] Ll (3.35)

The definitions beneath equation 3.34 apply here, and in addition,

n’ = “hydration number,” namely, the number of moles of water
transported with the ions of one mole of solute.

» = number of ions formed from one molecule of solute.
D%, = self-diffusion coefficient of water, 2.43 X 107° cm?/sec at
25°C.
D', = DY corrected for electrophoretic effects. [According to Hall,
Wishaw, and Stokes (1953), D', may be replaced by DY with
only dlight error.]

Equation 3.35 was applied by Hall, Wishaw, and Stokes (1953) and by
Wishaw and Stokes (1954) to agueous solutions of various inorganic
electrolytes. It was shown that, with »’ values of 2.8 for LiCl, 0.6 for
NH,Cl, and 2.5 for LiNO,, the equation reproduced measurements of
(D )cone Within 1 to 2 percent up to 4 mola for LiCl, 7 molal for NH,CI,
and 2 to 3 mola for LiNO,. In the case of NH,NO,, however, it was found
necessary to invoke the concept of ion-pair formation in order to fit their
results by further modification of eguation 3.35.

The evaluation of diffusivities in solutions of partialy dissociated weak
electrolytes requires allowance for the contributions due to the ions and
the undissociated electrolyte molecules. These effects were averaged by
Vitagliano and Lyons (1956) to obtain an expression for simple univalent
electrolytes in the form

, (1+a)D,1,I_ ( dlny.
AT A=)l +(F/RT)aD (I, +1_)\
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where

a = degree of dissociation,
D, = diffusivity of the undissociated molecule,

F = Faraday, 96,500 coulombs /gm equivalent,
R = gas constant, 8.314 joules /(gm-mole)(°K).

A relationship drawn from the Onsager and Fuoss theory (1932) was
utilized by Vitagliano and Lyons (1956) to evaluate [/ and [_, the
equivalent ionic conductances. At infinite dilution(a@=1, 1 + md In h/am
= 1) , equation 3.36 reduces to the Nernst equation 3.32, written for
univalent electrolytes. The relationship was applied with success to the
weak electrolyte system acetic acid-water, for which good activity data
and accurate values of a are available at various concentrations.

Experimental measurements of liquid diffusivities, upon which these
correlations are based, have been largely confined to the temperature
range 10 to 30°C.

The relationships presented above are of course only to be used in the
absence of experimentally measured values. The selection of a correlation
for use evidently depends on the system in question, the availability of
necessary data, and the accuracy required. A comprehensive tabulation of
experimental diffusivities for nonelectrolytes has been compiled by John-
son and Babb (1956). Similar extensive data for electrolytes are given by
Harned and Owen (1958) and by Robinson and Stokes (1959).

[llustration 3.5.

Estimate the diffusivity of potassium chloride in water as a function of
concentration at a temperature of 18.5°C.

SOLUTION.  Estimations are made using equation 3.34, and the evaluation
of each term on the right-hand side of that expression is considered in turn.

EVALUATION oF DY. The term D§ was calculated to be 1.7 x 1073
cm?/sec in Illustration 3.4.

EVALUATION OF 1 + md Iny , /dm. Values of the mean activity coefficient
y .. for this system at 18.5°C are interpolated from the table on p. 558 of

Harned and Owen (1950) and plotted against molality in Figure 3.4. The
slope of the curve is measured at various m and used in the relationship

mdlny, m 9dy.
am Y, Om

The results appear in Table 3.4.
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Figure 34. Mean activity coefficient y, versus molality of aqueous potassium chloride
solutions at  18.5%.

EVALUATION OF ¢’p. For asolution of density p it is evident that
oo 1000p
7 (1000+mM, ) My

where A is the solute, B is the solvent, and m is the molality of the solution
(i.e., the number of gram-moles of solute per kilogram of solvent). The
densities of aqueous solutions of potassium chloride at 18.5°C were graphi-
cally interpolated from Perry (1963, p. 3-76). Reciprocal values-used in
the computation of 173——are plotted against composition in Figure 3.5.
Values of ¢ are listed in Table 3.4.

EVALUATION OF 175. The partial specific volumes of water in aqueous
KC1 solutions of various concentrations were determined by the graphical
method of tangent intercepts, as described by Lewis and Randall (1923).
For example, at a potassium chloride concentration of 20 mass percent in
Figure 3.5, the tangent intercept at zero KC1 is 0.993 ¢m? per gram of
water. This is the partial specific volume of water in an aqueous soiution
containing 20 mass percent KCl at 18.5°C. The corresponding partial



Table 3.4. Terms in equation 3.34 for the computation of (D,
18.5°C (llustration  35).

in aqueous solutions of KC1 at

)COI‘IC

Mass %

KC1 l 2 4 8 12 16 20 24
Normality N 0.1349 02711 0.549 1125 1735 2.37 34 3.74
Molality m 0.1353 02735  0.5585 1166 1830 2.555 3355 4.24
1+mdlny. /dm 0.9206 08950 08911  0.9044 0.9377 099%1 10372 10634
Cp 0.0552 00551 0.0546 0.0537 0.0527 00515 00504 00491
Vs 18.02 18.02 18.02 18.02 18.02 17.94 17.88 17.84
Ps/tan 1002 1007 1011 1019 1019 1010  09% 0975

(D)conc (10° cm?/sec) 1575 1540 1552 1616 1710 1851 1.948 2015
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Figure 3.5. Specific volumes of agueous potassium chloride solutions (1/p_,.io.) as a
function of composition a 18.5°C.

mola volume is obtained as 18(0.993) or 17.88 c¢m® per gram-mole of
water. Table 3.4 contains values of ¥, corresponding to other solute
concentrations.

EVALUATION OF pg/p,p. These ratios at 18.5°C were interpolated from
the tabulation in the International Critical Tables, Vol. V, (1929), p. 17, and
are shown in Table 3.4.

Consider, for example, the calculation of (D,)
tion containing 8 mass percent KCl.

for an aqueous solu-

conc

w, = (mass percentage) / 100

_ 1000w, 80 - 1166
M, (1-w,) = 7456(092) '

m
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From Figure 3.4,

=0.594 N _ 0.0487
Y- =U > om - TV
molny, m oY« 1.166
R S RN (L —0.0487) =0.9044
t om Y, Om 0,594( )

1000( 1.0505 ,
= ( ) = 0.05375 gm-mole H,0/cm? of solution

€27 1000+ 1.166(74.56) ] 18

where 1.0505 gm /cm? is the density of the 8 mass percent KCl solution at
18.5°C from Figure 3.5.

V, = 18 x (the ordinate intercept of the tangent
at 8 mass percent KCI, Figure 3.5)
= 18( 1.001) = 18.02 cm’/gm-mole

(ﬁ) = 1.019
P4 7 185°C

Substituting in equation 3.34,

i
0.05375( 18.02)

=1.616X 10> cm?/sec

(D)) cone= 1.7 107°(0.9044) (1.019)

Estimations for other concentrations are listed in Table 3.4 and plotted
in Figure 3.6 for comparison with the experimental measurements of B. W.
Clack [Proc. Phys. Soc. (Lond.) 36, 313 (1924)]. The agreement between
experimental and predicted values is evidently good over the whole range
of concentration up to saturation, including the location of the minimum
in the curve at about 2.2 mass percent KC1 (0.3 N). _

It may be noted that the correction factor (p,/pyz)/c’s ¥V did not
depart greatly from unity throughout the calculation, being 1.007 at 1 mass
percent of KC1 and increasing to 1.111 at 24 mass percent KCl. The
corresponding range of the term1/¢’, ¥, was 1.003 to 1.14.

Figure 3.7, due to Gordon (1937), shows additional comparisons be-
tween diffusivities predicted by equation 3.34 (solid lines) and experi-
mental measurements on various systems. The abscissa is in terms of
concentration expressed as the square root of normality.
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DIFFUSIVITIES IN SOLIDS

Mass transfer of fluids through a solid may be exceptionally complex. In
the case of solids which are particulate or which contain large pores, the
mass flux may not be proportional to the concentration gradient and may
even be againgt it. This arises when capillary forces are opposed to a liquid
concentration gradient. Nevertheless, diffusion relationships are frequently
applied to experimental measurements to obtain an empirical effective
diffusivity characteristic of that particular fluid and solid structure. The
reader is referred to the books by Jost (1960) and Barrer (1941) on this
subject.

NOMENCLATURE

A,B Components.

a,b,c Constants in equation 3.33.

b Constant in equation 3.1.

' Number of gm-moles of water per cm® of solution.
D, D% D,, D p,

D¢, Dge, Doy (Volumetric) molecular diffusivity; in very dilute solu-
tion; of species A;of AinB; of Ain C; of B inC; of
C in B; ¢m?/sec. [Note: 3.88 X D in cm?/sec gives D

in ft*/hr.]

D', DY corrected for electrophoretic effects-equation 3.35.

Dho Self-diffusion coefficient of water, 243 x 10~ cm?/sec
at 25°C.

Dz, Dy, Molecular diffusivities at temperatures 7, and T,
cm?/sec.

D, Molecular diffusivity of the undissociated molecule,
cm? /sec.

d Distance between centers of unlike molecules on im-
pact, cm.

F Faraday, 96,500 coulombs/gm egquivalent.

AH,, AH, Latent heats of vaporization of A and B at their normal
boiling temperatures, cal/gm.

AHgr, AH,; Latent heats of vaporization of solvent (B) and of

water at temperature T, cal/gm-mole.
AH,,, AH, g As AH,, AH,, but in cal/gm-mole.
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%
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Tc’ TrA’ TcB
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Pair
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Pair

Diffusivities

Boltzmann's  constant.

Cationic conductance at infinite dilution, mho/equiva-
lent.

Anionic conductance at infinite dilution, mho/equiva-
[ent.

Electrolyte conductance at infinite dilution,
mho/equivalent.

Molecular weights of components A and B.

Molality.

“Hydration number,” the number of moles of water
transported with the ions of one mole of solute.

Total pressure, atm.

Partial vapor pressure of the solute in solution, atm.
Gas constant; in equation 3.36 the units are 8.314
Joules /(gm -mole)(° K).

Radius of a molecule of A.

Absolute temperature, °K.

Critical temperature; of A; of B, °K.

Temperature, “C.

Partial molal volume of water in solution, ¢cm?®/gm-
mole.

Mola volumes of pure liquid components A and B at
their normal boiling temperatures, cm®/gm-mole.

Critical volume; of components A and B, cm?®/gm-
mole.

Atomic diffusion volume increment.

Mole fractions of A, B, and C.

Absolute value of cation vaence.

Absolute value of anion vaence.

Degree of dissociation.

Thermodynamic factors; see equations 3.21 to 3.25.
Activity coefficient of the solute, A.

Mean ionic activity coefficient based on molality.
Lennard-Jones force constant, equation 3.3.
Viscosity of the solution, ¢P.

Viscosity of air at temperature of interest, cP.
Viscosity of solvents B and C, cP.

Viscosity of air at temperature of interest, cP.
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replaced by Z' in equation 2.95. Show that the local concentration of solute
(A) isthen

, 4 S 1 L [ @a+ e —D(2n+1)’n%
cq (2, )=c+ ;(cAo—c,’{) Z 1 s1n{ 7 exp —aZ
n=0

Compare this result with equation 2.105, which corresponds to a different
coordinate system. Integrate the above expression over 0<z'<2a and
obtain equation 2.106.

210 Consider the unsteady-state molecular diffusion of component A in
a semi-infinite medium, 0<z < 00. The process is described by eguation
2.93, and the boundary conditions are ¢,(0,f)= c¥, c,(z,0)=0. Use the
Laplace transform with respect to time to obtain the solution giving ¢, at
any zand ¢t as

2 2/2VDt a2
c(z,t)=c*|1——=— e 0 do
(2,1) [ =1, |

[Note: This problem has been solved frequently throughout the literature
-see, e.g., Perry (1963), pp.24 and 10-6.]

2.11 A wet dab of wood measuring 6 X 8 x 2 in. is dried in a stream of air
with low, constant humidity. The edges of the dab are sealed, and drying
occurs by evaporation at the two large surfaces, which are supplied with
liquid moisture by diffusion from within the dab. If the equilibrium
moisture content under these conditions is 5 mass percent and the moisture
content falls from an initial uniform value of 35 mass percent to an
average of 20 percent in 8 hr, determine the effective diffusivity of
moisture in the wood. It will be assumed that moisture diffusion is the
rate-controlling process, that diffusivity is independent of direction and
concentration, and that shrinkage can be ignored.

For the same initial and final average moisture contents, how much
drying time would be required by the following bodies made from the
same wood when dried in a similar manner?

(@) A brick-shaped body measuring 3 x 2 X 3 in., with one of its smallest
faces sedled against transfer.

(b) A solid sphere with a diameter of 1 in.

(c) A cylindrical rod with a diameter of 1 in. and alength of 12 in. with
one end sealed.

212 Plot the moisture concentration profile in the sphere and in the dab
of Problem 2.11 after 8 hr of drying:
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(a) Using equations 2.80 and 2.105.
(b) Using Figures 10.3 and 10.4 in Perry (1963), p. 10-6.
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Molecular Dif f usivities

The theory of molecular diffusion has been the subject of extensive
investigation because of its close relationship to the kinetic theory of gases.
Detailed reviews are available (Crank, 1956; Jost, 1960; Bird, 1956;
Hirschfelder et al., 1954; Barrer, 1941), and Reid and Sherwood (1966)
have provided a valuable critical comparison of the various correlations
which have been presented for the prediction of diffusivities in gases and
liquids, including eectrolytes and nonelectrolytes under a variety of condi-
tions.

The purpose here is not to review molecular-diffusivity theory, but
instead to assemble predictive correlations necessary for the application of
relationships given in other chapters.

DIFFUSIVITIES IN GASES

The kinetic theory of gases, in which molecules are regarded as rigid
spheres experiencing elastic collisions, has resulted in severa theoretical
expressions of the following form for the binary system A + B:

bT3/? 1 1
= 3.1
Das Pd? M, M, (2-1)

49



50 Molecular Diffusivities

where M, and M, are the molecular weights of A and B, T is in °K, P is

the total pressure in atmospheres, and 4 is the distance in centimeters
between the centers of unlike molecules on impact.

Various theoretical values have been assigned to the constant p, for
example by Maxwell (1890), Jeans (1921), Chapman (1918), and Suther-
land (1894). After comparing the available correlations, Reid and
Sherwood (1966) recommend the following expression at pressures below

20 atm:
0.001858373/2 1 1
DAB=—2V-AT+—A7- (3.2)
P(a,s) Cp, 4z A B

This equation originates from the Chapman-Enskog kinetic theory and
attempts to allow for attractive and repulsive forces between the molecules.
Here Tisin %K, P in atmospheres, D, in cm?/sec, and g, in Angstrom

units. The Lennard-Jones potential function is frequently used to
approximate the intermolecular potential field for a molecule of A and a
molecule of B. The “collision integrd” €, , is then determined by the
temperature and by kyT /€45 where k, is Boltzmann’s constant and the
Lennard-Jones “force constants’ &= AB and o,, are estimated by the follow-

ing combining rules:

€48 €4 €p
€,p=Ve € or —=\/—— 33
"AB A~B kB kB kB ( )
0,5=13(04+05) (3.4)

Thequantities 252 A/kB, €z / ky.0,, and o, may be obtained from Table 1 in
the Appendix. (Those that are not listed may be estimated by means of the
relations at the foot of the table.) Substitution in equations 3.3 and 3.4
gives €5/ kg and a,5; 2, 4 is next found as the value corresponding to
kgT/e,p in Table 2 of the Appendix. Insertion in equation 3.2 then yields
D,z The average error between diffusivities calculated from equation 3.2
and 114 measured values in 65 binary systems at various temperatures was
7.5% (Reid and Sherwood, 1966).

Three semiempirical relationships for estimating diffusivity appear in
Table 3.1. Equation 3.5 contains atomic diffusion volume increments, u,
which are to be summed for each component using values listed in Table 3
of the Appendix. The units used in these equations must be as given in the
table of nomenclature at the end of this chapter. It is recommended that
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Toble 3.1. Semiempirical relationships for diffusivity in binary gas mixtures at low
pressures.”

Equation Average
number Equation erro’  Reference
7/4
35 D,y= ——Q00I00TT7__ 2\/ML+ML 6.9% Fuler e
P[(So) +(Z0)s] ¥ Ha M (1966)
0.01507!8! 1 1
3.6 D= =\t 8.5% Chen and
P(T,T.p)" " (Ve +V5 My My Othmer
123 (1962)
—
37 Dyp=(252x10Muz74 174 P 126%  Othmer and
[ (Vo + Vst J Chen
(1962)

2 Units as given in the table of nomenclature must be used.

b From comparisons by Reid and Sherwood (1966) with the same 114 measure-
ments used to test equation 3.2.

¢ Atomic diffusion volume increments, u, to be summed for each component, are
listed in Table 3 of the Appendix, after Fuller et a. (1966).

estimation of D,, be made either by equation 3.2 or 3.5, although more
extensive tabulation of v is needed to enhance the range of applicability of
the latter expression.

If an experimental value of diffusivity at a temperature T, is available,

the diffusivity for the same system at T, may be estimated by means of a
relationship that follows from equation 3.2:

3/2
T2 ) (QD,AB ) T,

D,.=D —_ 3.8
r (T (@oan), (38)

[llustration 3.1

Estimate the binary diffusivity for naphthalene vapor-air at a temperature
of 0°C and a total pressure of 1 atm. Compare predictions from equations
3.2, 3.5, 3.6, and 3.7 with the experimental value of 0.0513 cmz/sec (Perry,
1963, 14-23).

Use equation 3.8 to convert the experimental value to that correspond-
ing to a temperature of 45°C.
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so,utioN.  Call naphthalene component A, and air component B. Con-
sider first the evaluation of equations 3.2 to 3.4.
The critical constants of naphthalene are as follows:

T, =7484°K; V,, =408 cm®/gm-mole

(Reid and Sherwood, 1966, p. 576). Table 1 of the Appendix gives
€,/kg=0.75T,,=0.75(748.4°K) = 561.5°K and ¢, /k, =78.6°K.Then from
equation 3.3,

ksT _ 273 273
“5  1/(561.5)(78.6)

The corresponding value of @, ,, is obtained from Table 2 of the
Appendix as 1.273.

Table 1 of the Appendix shows that o, = § V1/3 = $(408)!/3 = 6.18 A and
05=3.711A. Then from equation 3.4, o,;= $(6.18+3.711)=4.945 A
Substituting in equation 3.2,

0.0018583(273)*"* ) 1

= —_— 4 —

4B~ 1) (4.945)%( 1273 Y 12816~ 29
= 0.0553 cm?/sec

The evaluation of equation 3.5 requires the following diffusion volume
increments, taken from Table 3 of the Appendix:

For naphthalene (A)= C, (H,,

Carbon: 10x 165 = 165
Hydrogen: 8x 1.98 = 158
Aromatic rings. 2X(-20.2) = -40.4
Eo)4 = 14044
For air (B), (Xu), = 20.1.
Substituting in equation 3.5,
0.00100(273)"* 1 1

D,p= . +
M (140.44)‘/3+(20_1)1/3] 128.16 © 29

= 0.0605 cm?/sec



Diffusivitiesin Gases 53

Insertion of appropriate values in equation 3.6 gives

0.0150(273)"* 1 1
(1)[(748.4) (132.5)]""*[ (408) %+ (90.52)**]" ¥ 128

= 0.0538 cm?/sec.

The viscosity of air at 0°C and 1 atm is 0.017 ¢P, so that equation 3.7 is
written for this case as

1.23
1 1
274 128.16 T 29

[ (408)°*+ (90.52)*]’

D,5 = (2.52 x 10)(0.017)

= 0.0469 cm?/sec

The error between these respective predictions and the experimental
value of 0.0513 cm?/sec is defined as

.D icted — D :
percentage error = ( AB)predctd ( AB)expenmental X 100

( D AB ) experimental

The resulting errors are +7.8, + 17.9, +4.9, and = 8.6 percent for equa-
tions 3.2, 35, 36, and 3.7, respectively

Estimation of the diffusivity at 45°C requires evaluation of the collision
integral @, , @ this temperature.

ksT _273+45 _,
6p 200

The corresponding 2, 4z is found in Table 2 of the Appendix to be
1.193. From eguation 3.8,

3/2
318 /% 1.273
(DA,,)45°C=0.0513(-273-) T'Tog = 00887 cm?/sec
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An dternative alowance for the influence of temperature upon diffusiv-
ity is provided by equation 3.6 as

1.81
T
(DAB)T1= (DAB)T, ( _T_z)
1
s0 that

1.81
(DAB)45°C=O'0513( ;% ) =(.0675 cmz/sec

DIFFUSIVITIES IN LIQUIDS

Different theoretical approaches to the description of diffusion in liquids
have been made, depending upon whether the systems are electrolytic or
nonelectrolytic. The available prediction procedures must therefore be
divided into those suitable for nonelectrolytes and those suitable for
electrolytes; for the latter, relationships are unfortunately scarce. Most
studies have been devoted to the estimation of diffusivities in very dilute
solution, although some progress has been made towards allowance for the
substantial variations that occur with increasing concentration of the
diffusng solute.

The experimental methods available for the measurement of molecular
diffusivity are well reviewed by Johnson and Babb (1956), Tyrell (1961),
Jost (1960), and, more briefly, by Nienow (1965).

Nonelectrolytes

Several correlations for dilute solutions are available; a choice may be
made on the basis of the accuracy needed and the availability of
relevant physical data.

Dilute Solutions

The kinetic theory of liquids is of course much less advanced than that of
gases, and this has hampered fundamental developments. There are two
well-known theoretical approaches to diffusional theory for nonelectro-
lytes. Eyring's theory of absolute reaction rates treats the molecules of the
liquid as being in a quasicrystalline lattice in which “holes’ are scattered,
the process having some of the characteristics of diffusion in a solid.
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Agreement between the theory and experiment is poor, but the following
theoretical relationship is indicated (Jost, 1952, p. 472):

I—)f%”—” = F (mola volume of mixture) (3.9)

The hydrodynamical theory was initiated by Einstein, who applied
Stokes' law to describe the drag on large, spherical solute molecules (4)
moving through a continuum of small solvent molecules (B). The equation
obtained is

D, gug _ kg
T 6ar,

(3.10)

where ky is Boltzmann's constant and r, is the radius of a molecule of A.
The expression breaks down, however, for smaller solute molecules.

Progress on the basis of statistical-mechanica theory is reviewed by
Reid and Sherwood (1966).

The lack of widespread quantitative success with the theoretical
approaches has led to the development of several semiempirical re-
lationships based on equations 3.9 and 3.10. Table 3.2 presents a collection
of 10 such expressions, in which A is the solute, B is the solvent, and D,
isin cm?/sec. It isimportant to note that the equations are for use with the
units of each term as prescribed in the table of nomenclature at the end of
this chapter. Some of these correlations are more successful in one class of
application than another, and this has occasioned the classification of
errors in prediction as shown.

The parameter ¢ in the Wilke-Chang equation 3.11 is an “association”
factor for the solvent. The uncertainty involved in assigning values to § for
new solvents not covered in the origina investigation has resulted in
efforts to eliminate this factor from the correlation. To this end, Table 3.2
shows relationships that attempt to allow for intermolecular association
forces by introducing functions of the latent heats of vaporization. Allow-
ance for the ratio of solvent size to solute size is made in some cases by
introducing the term v,/ ¥, , -

Specific difficulties have been found in the prediction of diffusivity when
water is the solute. For example, discrepancies between measured values
and those predicted by the first three equations of Table 3.2 may reach 250
percent. Olander (1961) postulates that polymerization of the water may
account for this anomaly. His attempt to rectify this situation is repre-
sented by equation 3.15, which is based on a score of data points from nine
systems. In this regard, equation 3.20 was found to give acceptable results



Table 3.2. Semiempirical relationships for diffusivity in very dilute binary solutions of non .
electrolytes”

Equation
number Restriction Equation
31 Exclude Diysigs 7-4x 10-4(¢My)"
slute ' &
For unassociated solvents, ¢ =1.0; for water, ¢ = 2.6;
for methanol, § = 1.9; for ethanol ¢ = 1.5.
312 Exclude v\
T bB T
Doypy=K| ———— |=82x10"8 1+( )
::fi‘tf:eas AB [ “'ABVl/ ] [ Via FABVl/s
Specid solvent cases: water, V,, < Vg, K=252X 10,
benzene, v, , <2V, K= 18.9~ 10-s;
other solvents, ¥, <2.5¥,p, K= 175 x 10-s.
313 Exclude s
waer as Doy = 14X 10
solute Viiw gty 7 S Har /At
-5
314 Adgueous Doy= 14'?"(_136
solutions P Vi
only
315 Wae{ & D:llmnlol“te-(p:qmﬁon n ) 23
solute o .
3.16 General D%p=54x10"% My AHy T
' . Ka Vo AHZ?
1/6 1/2
317 General DYprs —44X10- Ves AHm,
T Voa AHm,
- D, 10x10~8Mm4/2 17
3.18 A_ngl‘n = s ;9 ; #<1'5
Vb/ Vb‘ bA
319 General Dgus 85X 107°MY2 ¥y s
T VilVeg® 0 Ve T
3.20 Organic 1/3
solvents D% pip - 8/~1/3 VbB Kg
—5 8.52x107 %5 1.40 V., + 7.,

a Units as given in the table of nomenclature must be used.

¢ Numbers in parentheses show how many measurements are compared with prediction.
¢ Comparisons by Reid and Sherwood (1966) with fixed sets of data

4 Comparisons by authors with various sets of data.
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Table 3.2. (continued)

Average error®

organic . waeg & Wae @& Equation

solvents solvent solute Overall Reference number

2% (53) 11%@69)  Upto 200-250%  10%(285% Wilke and Chang s
(1955)

259%(5%) 11%(46°) up  10200-250%  —~ Scheibel (1954) 3.12

28% (53°) 11%(46)  Upto 200-250%  20%(120%) Othmer and Thakar 3.13
(1953)

—_ 11% (46°) - — Othmer and Thakar 3.14
(1953)

- No anomdies (20%) - Olander (1961) 3.15

26% (42°)  12% (32) 12% (1) 13%(1154)  Sitaraman et 4. 3.16
(1963)

- - NO anomalies/  155%(213%) King et dl. (1965) 3.17

15% (60%) 9% (16%) - 135%(76%) Reddy and Doraiswamy — 3.18
(1967)

18% (149) - 26% (6%)¢-8 205% (20”) Reddy and Doraiswamy 3.19
(1967)

16% (57%) —- see below” —_ Lusis and Ratcliff 3.20
(1968)

¢ Unsatisfactory for high pg.
“Error- 72% for water in glycerol.
8 Error = 100% for water in ethylene glycol.

& Acceptable results in most cases, provided that water is assumed to diffuse as a tetramer.
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58 Molecular Diffusivities

in the majority of cases when applied to water as a solute in organic
solvents, provided that water was assumed to diffuse as a tetramer. For
organic acids diffusing in organic solvents (excluding alcohals), equation
3.20 showed an average error of 9.9 percent with respect to 18 measure-
ments when the acid was assumed to diffuse as a dimer, in contrast with
44.5 percent when it was assumed to diffuse as a monomer. Acids
appeared to diffuse as monomers, however, in methanol, butanol, and
ethylene glycol. This is also usua when organic acids diffuse in water.
Lusis and Ratcliff (1968) discuss further problems that arise in the predic-
tion of the diffusivity when strong interactions occur between solute and
solvent molecules and when long straight-chain hydrocarbon molecules are
undergoing diffusion. Special problems arise when complexes are formed,
as in the case of iodine-aromatic solutions (Wilke and Chang, 1955).

Six of the ten correlations for DY, in Table 3.2 have appeared in the
decade 1960-1970. More time for further extensive testing must elapse
before a final selection from among them can be made, athough some
guidance on the relative effectiveness of these expressions has been indi-
cated. It is to be anticipated that further relationships will appear, pending
the development of a more complete theory of the liquid state. In the
meantime, tentative recommendations on the basis of the evidence com-
piled in Table 3.2 are as follows:

For diffusion in organic solvents, use equation 3.12, 3.18 (when applic-
able), or 3.20. When water is the solvent, use equation 3.14. When water is
the solute, use equation 3.15, in conjunction with equation 3.11. The latter
result could be checked by applying equation 3.20 in the manner pre-
scribed, and also by the use of equations 3.16 and 3.17.

The relationships in Table 3.2 have generally not been extensively tested
outside the temperature range 10 to 30°C.

Illustration 3.2.

Estimate the diffusion coefficient for carbon tetrachloride in very dilute
solution in benzene a 25°C. Compare predictions from equations 3.11,
3.12, 3.13, 3.16, 3.17, 3.18, and 3.20 with the experimental value of
1.92x 10773 cmz/sec [Hoi-rocks, J. K., and E. McLaughlin, Trans. Faraday
Soc. 58, 1357, (1962)].

Convert the experimental value to that corresponding to a temperature
of 40°C.
soLuTioN. Carbon tetrachloride is designated component A, and ben-
zene component B. The molal volumes of these two components at their
normal boiling points are estimated from the LeBas atomic volumes
(Perry, 1963, p. 14-20) as

V4= 1012 cm®/gm-mole, ¥, , = 96 cm®/gm-mole.
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(Calculations are to slide-rule accuracy throughout.)
In equation 3.11

5=06 cP, T=298°K, M,=78.11

0
MBT

(74X 107%)] 1(78.11)]’/2(33§

L2 -5 2
(101.2)°° 0.6) 2.04X 107° cm*/sec

In equation 3.12,
Va <2V,p, 50 K=18.9% 1078

_ (18.9%107%)298
0.6(101.2)""°

0
AB

=2.015% 1077 cm?/sec

In equation 3.13,
wy=0.65 cP, u, =089 cP

AHyy = 8 100 cd/gm-mole, AH,,, = 10500 ca/gm-mole

Do, = 14x 10~3 _ e
4 (101.2)"(0.65) (0.894) 1 FTP/1050 © 1486 X 107" cm*/sec
In equation 3.16,

pp =06 cP, AH, = 4642 cal/gm, AH, = 9414 cal/gm

(78.11)'/2(94.14)"/* (298)
0.6(101.2)*%(46.42)"

0.93
D} =54(10" 8)( ) =2.16X 10" cm?/sec

In equation 3.17,
AH,, = 7135 ca/gm-mole, AH, , =7355 cal/gm-mole

1/6 1/2
0 _ —8 96 7355 298\ _ -5 .2
Dyg 44(10 )(——101.2 ) ( 7135 ) (_0.6 ) 22X 1077 cm*/sec

In equation 3.18 (selected because V,z/ V,, < 1.5),

. 10(107%)(78.11)"% | 108

4B (101 2)1/3(96)1/3 W) =2065 X1 0% cm?/sec
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In equation 3.20

o _ 852(107%)

1/3
0 = — 1.40(——96) + 6 (l"’ﬁ)
(%)

101.2 101.2 |\ 0.6

=2.15x 1077 cm?/sec

The errors in these predictions with respect to the experimental value of
1.92 X 107° cm?/sec are defined asin Illustration 3.1. The resulting errors
are +6.25, +4.95,—22.6, +12.5, +14.6, +7.5, and +12 percent for
equations 3.11, 312, 3.13, 3.16, 3.17, 318, and 3.20, respectively.

Equations 3.10 to 3.12 and 3.17 to 3.20 suggest that the quantity
DSzpp/ T is constant for a given liquid system. This relationship is found
to be only approximately true but will be used here to edtimate the
diffusivity D9, at 40°C (313°K):

pp =0.5 cP at 40°C or 313°K,

— 0.6 313 -
0 a °C= 1.92~ LY hadid 22 V=924 5 2
DAB 40°C= 10 (05)(298) 242 X 10 cm /SCC

In binary systems, such as those considered so far, only one diffusivity
need be defined. The situation is more complex in multicomponent sys-
tems because of interactions between the flows of the various species, and
these complications increase with increasing departure of the system from
ideality. The special case of diffusion of a dilute species in a mixture of two
solvents has been considered by Cullinan and Cusick (1967a) in a treat-
ment confined to completely miscible, nonassociated liquid systems. They
note that, athough the flux of the dilute component is in this case
dependent only on its own gradient, the diffusivity is not directly related to
any binary diffusion coefficient. The expression abtained for the diffusivity
of the dilute species A is in terms of the limiting binary diffusivities at
“infinite” dilution and two thermodynamic factors:

-1
0_ *B Xc

1 A . Xp Xc + xc X
x40 (Dga) (aABCDgC) (Dgc) (aACBDgB),

(3.21)

The binary diffusivities at “infinite’ dilution, D35, D3¢, D2, and Dgc,
may be estimated by one of the correlations given above, and the ther-
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modynamic factors are calculated by the following relationships:

Vc(l - Dgc/Dgc) Dgc
aABC - VA _ VB > 1 - gc >0~25 (3.22)
or
Ve Dgc
Oype= ", 1-—- <0.25 3.23
"ABC VA l Dgc ( )
and
VB(I_Dga/DgB) D::B
aACB = VA — VC 5 1 - gB >O.25 (3.24)
or
_ Vs 1 Dan <025 (3.25)
Aycg= 7/1 s DgB .. .

where ¥, V5, and V. are the molal volumes of components 4, B, and C
in the liquid state at the temperature and pressure of the mixture. Agree-
ment was found between equation 3.21 and a limited amount of experi-
mental data.

A simpler and somewhat more effective relationship for dilute solute 4
in mixed solvents B and C was subsequently offered by Leffler and
Cullinan (1970b):

( xlAiI—r}o DA)HABC = (DEB!‘B) B(ng’-c) ‘ (3.26)

where -, the viscosity of the solution, is essentially that of the solvent
mixture B and C.

Concentrated Solutions

Five relationships for the prediction of diffusivity in concentrated binary
solutions of nonelectrolytes are given in Table 3.3. Equation 3.27 expresses
the concentration dependence of diffusivity in terms of the activity coef-
ficient of the solute, y,, and the viscosities of water and the solution, pg
and p,,. Gosting and Morris (1949) found that this equation accurately
described their measurements of diffusivities in aqueous sucrose solutions
at 1 and 25°C at concentrations below 6 gm/100 ml.
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Equation 3.28 for ideal solutions expresses a linear variation of the
quantity D, p, 5 with composition at a given temperature. This relationship
also provides at least a crude approximation to the dependence of diffusiv-
ity on concentration in the measurements by Garner and Marchant (1961)
on associated compounds in water. The totally miscible solutes studied
were ethanediol, propane 1:2 diol, and glycerol, for which the highly
nonlinear variations in diffusivity over the full range of solute concentra-
tion were respectively about 5-, 9-, and 100-fold.

The extension of equation 3.28 to nonideal solutions is effected by the
introduction of the activity coefficient of the solute, giving equation 3.29.
In the case of miscible liquids the term dlny,/dInx, may be evaluated
from vapor-liquid equilibrium data in the manner described in thermo-
dynamics texts. Thus for ideal vapors

diny, dlnp,

dinx, dlnx,

where p, is the partial vapor pressure of the solute in solution. Limitations
on the applicability of equation 3.29 have been indicated by Kincaid,
Eyring, and Stearn (1944), and Vignes (1966) shows systems for which the
expression is not valid.

The substantial level of agreement between the empirical equation 3.30
(Vignes, 1966) and many experimental data prompted Cullinan (1966,
1968) to attempt a partially theoretical derivation of the expression. This
development was expanded by Cullinan and Cusik (1967b) to yield a
predictive theory for composition-dependent diffusivities in multi-
component systems that are completely miscible and free from association.
The latter contribution has been the subject of further discussion by
Vignes (1967) and Cullinan (1967).

Equation 3.30 was modified by Leffler and Cullinan (1)70a) to give
improved correlation by incorporating the viscosity of the solution and of
the pure components, resulting in equation 3.31.

The concentration and temperature dependence of liquid diffusivities
has been treated by Gainer (1970) on the basis of absolute rate theory in a
manner which does not require thermodynamic data.

Hansen (1967) has provided solutions to the diffusion equation (Fick’s
second law) for cases in which the diffusivity varies exponentially with
concentration. The results were used to correct measurements of diffusivity
for solvents in polymer films.

The effects of concentration on diffusivities as indicated by statistical-
mechanical theory have been summarized by Reid and Sherwood (1966, p.
546). Further development of this approach is needed, and at present the
resulting relationships, while satisfactory for binary ideal solutions, are not
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reliable for nonideal systems or those in which molecular association is
significant.

When considering a new system it is desirable to check whether it is
included in the tabulation prepared by Johnson and Babb (1956) of
experimentally measured diffusivities in nonelectrolytic solutions. In the
absence of experimental values, equations 3.30 and 3.31 appear to be the
currently preferred relationships for estimating the effect of concentration
on diffusivity.

Hlustration 3.3

The following experimental values are available for the diffusivity of very
dilute hexane (4) in carbon tetrachloride (B) and of very dilute carbon
tetrachloride in hexane at 25°C:

D9p=1.487x10"%cm?/sec
D}, =3.858x10"3cm?/sec

[D. L. Bidlack and D. K. Anderson, J. Phys. Chem., 68, 3790, (1964)].

Use equations 3.29, 3.30, and 3.31 to predict the diffusivity at all
intermediate compositions, and compare the results with experimentally
measured values.

SOLUTION. If experimental measurements of D3, and D3, had not been
available it would, of course, have been necessary to predict these quanti-
ties from one of the relationships utilized in Illustration 3.2. (For example,
equation 3.12 yields the following estimates: Djp=1.12X10"° cm?/sec;
D%, =3.79%10"° cm?/sec.)

Activity coefficients were measured and correlated as a function of
composition for this system at 20°C by S. D. Christian, E. Neparko, and
H. E. Affsprung [J. Phys. Chem., 64, 442 (1960)]. The correlation was
adjusted to 25°C by Bidlack and Anderson (1964) to give

din
14 S04
dinx,

=1-0.354x,x,

Solution viscosities are required as a function of composition at 25°C for
use in equations 3.29 and 3.31; measurements by Bidlack and Anderson
(1964) appear in Figure 3.1, which includes the values

n=02958 cP,  p,=0.8963 cP
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Figure 3.1. Viscosity of hexane-carbon tetrachloride solutions at 25°C (Bidlack and Ander-
son, 1964).

In equation 3.29, when x,=0.4,

Iny,
t Jnx,

1-0.354(0.4) (0.6) =0.915

pyp=0.511cP (from Figure 3.1)

4

D 298 (3.858x107)0.2958  (1.487x107°)0.8963 0
(D1) cone = 0.511 298 298

(1.487%10-)0.8963 |
+ 208 (0515)

=2.25x10"° cm?/sec
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Figure 3.2, Comparison between experimental and predicted diffusivities as a function of
composition for the system hexane—carbon tetrachloride at 25°C.

Additional values for other x, are calculated in the same way and
appear as the curve in Figure 3.2.
In Equation 3.30, when x, =04,

(D) conc= (1.487x 1075)*%(3.858 X 10~5)**(0.915) = 1.99 X 10~ 5 cm?/sec

Values for other x, are plotted in Figure 3.2. In equation 3.31, when
x,=04,

(D) eune= oslT [(1.487 X 1075)0.8963] [ (3.858 x 10~)0.2958]"*(0.915)

=2.24x107° cm?/sec

Figure 3.2 again shows further values corresponding to other x,.
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Figure 3.3. Comparison between experimental and predicted diffusivities as a function of
composition for the system methyl ethyl ketone—carbon tetrachloride at 25°C.

Many systems have a minimum in the plot of diffusivity versus binary
composition. Leffler and Cullinan (1970) examined some such systems, in
which both equations 3.30 and 3.31 fitted the data closely and with about
the same degree of precision, as exemplified by Figure 3.3. Much poorer
agreement was obtained, however, in the system acetone—carbon
tetrachloride and with mixtures of n-alkanes.

Electrolytes

Molecules of an electrolyte in solution dissociate into cations and anions
which, because of their smaller size, diffuse more rapidly than the undis-
sociated molecules. Despite differences between the sizes of the positive
and negatively charged ions, however, both types diffuse at the same rate,
so that the electrical neutrality of a given solution is preserved.
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Dilute Solutions

The diffusivity of strong electrolytes at infinite dilution may be calculated
from an equation obtained by Nernst (1888) on the assumption of com-
plete dissociation:

3 +z_
Dy =8.931x 107107 —+— |[ =2 (3.32)
O+ |\ z,z

where

DY =diffusivity of the molecule, cm?/sec,

1% = cationic conductance at infinite dilution,mho/equivalent,

1° = anionic conductance at infinite dilution, mho/equivalent,

1% +1° =electrolyte conductance at infinite dilution, mho/equivalent,
z , =absolute value of cation valence,

z_=absolute value of anion valence,

T=absolute temperature, °K.

A useful tabulation of ionic conductances at infinite dilution in water at
25°C is given in Perry (1963, p. 14-24), for use in equation 3.32. Diffusivi-
ties at temperatures other than 25°C may be estimated with the aid of the
following relationship:

19, =1% +a(t—25)+b(t—25)*+c(1-25)° (3.33)

Values of a, b, and ¢ for some of the more common ions are tabulated in
Perry (1963, p. 14-24).

Diffusivities of weak electrolytes in water were measured by Bidstrup
and Geankoplis (1963). The experiments were for concentrations up to 0.1
N in the carboxylic acid series—formic, acetic, propionic, butyric, valeric,
and caproic acids. Their resulting correlation, which was shown to be
equally applicable to the corresponding a-amino carboxylic acids, is simply
the Wilke-Chang equation 3.11 but with the constant 7.4 replaced by 6.6.
The average deviation between 25 experimental results and values so
calculated was *3.7 percent.

Illustration 3.4.

Estimate the diffusivity of potassium chloride in water at infinite dilution
and a temperature of 18.5°C.
SOLUTION. The ionic conductances at infinite dilution are adjusted to a
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temperature of 18.5°C with the aid of equation 3.33 and values tabulated
in Perry (1963, p. 14-24):

(19 ) 15.5:c=T73.50+ 1.433(18.5 —25) +0.00406 (18.5— 25)>

—0.0000318(18.5—25)°
=64.36 mho/equivalent

(12) 1 50c =76.35(18.5 ~ 25) +0.00465(18.5 — 25) — 0.0000128(18.5 — 25)’

=66.55 mho/equivalent
and in equation 3.32,

) (64.36)(66.55) 1/ 141
DO=8g. 10 .
5 =8.931x10 (2915)[ 64.36 +66.55 ( 1

)=1.7x 107° cm?/sec

Experimental and predicted variations in diffusivity with concentration
for this system are compared in Illustration 3.5.

Concentrated Solutions

Diffusivities of electrolytes at higher concentrations may be estimated from
a semiempirical equation proposed by Gordon (1937):

molny. 1 Hg
D )eme= D1+ T ) L (L) 334
( A) A om C’BVB U ( )

where

Dj is calculated from equation 3.32,

m=molality,

¢’s =number of gm-moles of water per cm® of solution,

¥ = partial molal volume of water in solution, cm? /gm-mole,
ug = viscosity of water,

45 = Viscosity of solution,

Y. =mean ionic activity coefficient based on molality.

Harned and Owen (1950) and Glasstone (1947) provide tabulations of
Y. as a function of m for several aqueous solutions, and a method for
estimating partial molal volumes ¥, is described by Lewis and Randall
(1923). Equation 3.34 has been found valid up to concentrations of more
than 2 N in some systems (Reid and Sherwood, 1966, p. 563).



70 Molecular Diffusivities

The effects of ion hydration in nonassociated electrolyte solutions have
been examined by J. N. Agar in an extension of the earlier treatment for
nonelectrolytic systems by Hartley and Crank (1949). The resulting expres-
sion is

Iny,
om

3
(DA)mc=D’A(1+m )(1—0.018n’m)

vD%
X 1+0.018m( D""’—n') Ll (3.35)

2 Ban

The definitions beneath equation 3.34 apply here, and in addition,

n’=“hydration number,” namely, the number of moles of water
transported with the ions of one mole of solute.
v =number of ions formed from one molecule of solute.
11,0 =self-diffusion coefficient of water, 243X 107° cm?/sec at
25°C.
D’,=DY corrected for electrophoretic effects. [According to Hall,
Wishaw, and Stokes (1953), D, may be replaced by DS with
only slight error.]

Equation 3.35 was applied by Hall, Wishaw, and Stokes (1953) and by
Wishaw and Stokes (1954) to aqueous solutions of various inorganic
electrolytes. It was shown that, with n’ values of 2.8 for LiCl, 0.6 for
NH,C], and 2.5 for LiNO,;, the equation reproduced measurements of
(D )conc Within 1 to 2 percent up to 4 molal for LiCl, 7 molal for NH,C],
and 2 to 3 molal for LiNO;. In the case of NH,NO,, however, it was found
necessary to invoke the concept of ion-pair formation in order to fit their
results by further modification of equation 3.35.

The evaluation of diffusivities in solutions of partially dissociated weak
electrolytes requires allowance for the contributions due to the ions and
the undissociated electrolyte molecules. These effects were averaged by
Vitagliano and Lyons (1956) to obtain an expression for simple univalent
electrolytes in the form

(1+a)D,I,1_ dlny,
D, = > (l m
(1—a)l I_+(F*/RT)aD,(I,+1_)
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where

a= degree of dissociation,

D, = diffusivity of the undissociated molecule,
F =Faraday, 96,500 coulombs/gm equivalent,
R =gas constant, 8.314 joules /(gm-mole)(°K).

A relationship drawn from the Onsager and Fuoss theory (1932) was
utilized by Vitagliano and Lyons (1956) to evaluate /, and /_, the
equivalent ionic conductances. At infinite dilution (=1, 1+mdlny. /om
=1) , equation 3.36 reduces to the Nernst equation 3.32, written for
univalent electrolytes. The relationship was applied with success to the
weak electrolyte system acetic acid-water, for which good activity data
and accurate values of a are available at various concentrations.

Experimental measurements of liquid diffusivities, upon which these
correlations are based, have been largely confined to the temperature
range 10 to 30°C.

The relationships presented above are of course only to be used in the
absence of experimentally measured values. The selection of a correlation
for use evidently depends on the system in question, the availability of
necessary data, and the accuracy required. A comprehensive tabulation of
experimental diffusivities for nonelectrolytes has been compiled by John-
son and Babb (1956). Similar extensive data for electrolytes are given by
Harned and Owen (1958) and by Robinson and Stokes (1959).

Ilustration 3.5.

Estimate the diffusivity of potassium chloride in water as a function of
concentration at a temperature of 18.5°C.

SOLUTION. Estimations are made using equation 3.34, and the evaluation
of each term on the right-hand side of that expression is considered in turn.

EVALUATION OF DY. The term Dj was calculated to be 1.7X 107°
cm?/sec in Illustration 3.4.

EVALUATION OF 1+ mdlny. /dm. Values of the mean activity coefficient
y. for this system at 18.5°C are interpolated from the table on p. 558 of
Harned and Owen (1950) and plotted against molality in Figure 3.4. The
slope of the curve is measured at various m and used in the relationship

molny, dy.

om

- m
om Y+

The results appear in Table 3.4.
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Figure 34. Mean activity coefficient y, versus molality of aqueous potassium chloride
solutions at 18.5°C.

EVALUATION OF c¢’3. For a solution of density p it is evident that
, 1000p
c ==
B (1000+mM, )M,

where 4 is the solute, B is the solvent, and m is the molality of the solution
(i.e., the number of gram-moles of solute per kilogram of solvent). The
densities of aqueous solutions of potassium chloride at 18.5°C were graphi-
cally interpolated from Perry (1963, p. 3-76). Reciprocal values—used in
the computation of Vg—are plotted against composition in Figure 3.5.
Values of cj are listed in Table 3.4.

EVALUATION OF V. The partial specific volumes of water in aqueous
KCl solutions of various concentrations were determined by the graphical
method of tangent intercepts, as described by Lewis and Randall (1923).
For example, at a potassium chloride concentration of 20 mass percent in
Figure 3.5, the tangent intercept at zero KCl is 0.993 cm? per gram of
water. This is the partial specific volume of water in an aqueous solution
containing 20 mass percent KCl at 18.5°C. The corresponding partial
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Figure 3.5. Specific volumes of aqueous potassium chloride solutions (1/pyon) S 2@
function of composition at 18.5°C.

molal volume is obtained as 18(0.993) or 17.88 cm® per gram-mole of

water. Table 3.4 contains values of ¥, corresponding to other solute
concentrations.

EVALUATION OF pg/p,5. These ratios at 18.5°C were interpolated from
the tabulation in the International Critical Tables, Vol. V, (1929), p. 17, and
are shown in Table 3.4.

Consider, for example, the calculation of (D,)
tion containing 8 mass percent KCl.

conc fOT an aqueous solu-

w, = (mass percentage) /100

1000w, 80
m= = =1.166
M, (1-w,) 74.56(0.92)
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From Figure 3.4,

94 . _ 0.0487
v+ =0.594, am
m Y. om 0.594 '

1000( 1.0505)

= =0.05375 gm-mole H,O/cm? of solution
57 11000+ 1.166(74.56) | 18 £ 0/

where 1.0505 gm/cm? is the density of the 8 mass percent KCl solution at
18.5°C from Figure 3.5.
V5 =18 X (the ordinate intercept of the tangent
at 8 mass percent KCl, Figure 3.5)
=18(1.001) = 18.02 cm?/ gm-mole

(ﬁ) ~1.019
Hap /185°C

Substituting in equation 3.34,

1
0.05375(18.02)

=1.616X 10" cm?/sec

(D) cone=1.7%107°(0.9044) (1.019)

Estimations for other concentrations are listed in Table 3.4 and plotted
in Figure 3.6 for comparison with the experimental measurements of B. W.
Clack [Proc. Phys. Soc. (Lond.) 36, 313 (1924)]. The agreement between
experimental and predicted values is evidently good over the whole range
of concentration up to saturation, including the location of the minimum
in the curve at about 2.2 mass percent KCl (0.3 N).

It may be noted that the correction factor (ug/p,y)/c’sV5 did not
depart greatly from unity throughout the calculation, being 1.007 at 1 mass
percent of KCl and increasing to 1.111 at 24 mass percent KCl. The
corresponding range of the term 1/¢’, ¥, was 1.003 to 1.14.

Figure 3.7, due to Gordon (1937), shows additional comparisons be-
tween diffusivities predicted by equation 3.34 (solid lines) and experi-
mental measurements on various systems. The abscissa is in terms . of
concentration expressed as the square root of normality.
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Figure 3.7. Comparison between experimental and predicted diffusivities as a function of
composition for aqueous solutions of KCl, KNO,, and NaCl (Gordon, 1937).
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DIFFUSIVITIES IN SOLIDS

Mass transfer of fluids through a solid may be exceptionally complex. In
the case of solids which are particulate or which contain large pores, the
mass flux may not be proportional to the concentration gradient and may
even be against it. This arises when capillary forces are opposed to a liquid
concentration gradient. Nevertheless, diffusion relationships are frequently
applied to experimental measurements to obtain an empirical effective
diffusivity characteristic of that particular fluid and solid structure. The
reader is referred to the books by Jost (1960) and Barrer (1941) on this

subject.

NOMENCLATURE

A,B
a,b,c

b

’

Cp

D, D% D4, Dp,
DAC’ DBC’ DCB

’
D',

*
D0

Components.

Constants in equation 3.33.

Constant in equation 3.1.

Number of gm-moles of water per cm? of solution.

(Volumetric) molecular diffusivity; in very dilute solu-
tion; of species 4; of A in B; of 4 in C; of B in C; of
C in B; cm?/sec. [Note: 3.88X D in cm?/sec gives D
in ft>/hr.] ’

DY corrected for electrophoretic effects—equation 3.35.
Self-diffusion coefficient of water, 2.43X 10~ cm? /sec
at 25°C.

Molecular diffusivities at temperatures 7, and T,
cm?/sec.

Molecular diffusivity of the undissociated molecule,
cm?/sec.

Distance between centers of unlike molecules on im-
pact, cm.

Faraday, 96,500 coulombs/gm equivalent.

Latent heats of vaporization of 4 and B at their normal
boiling temperatures, cal/gm.

Latent heats of vaporization of solvent (B) and of
water at temperature 7, cal/gm-mole.

As AH,, AHg, but in cal/gm-mole.
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1

T, T T.p
t

VB
VbA ’ VbB

V VcA ’ VcE

Qs> A4cB
Ya

Y+

€48

Paps Mypc
Kair

ps e

Kair

Boltzmann’s constant.
Cationic conductance at infinite dilution, mho/equiva-
lent.

Anionic conductance at infinite dilution, mho/equiva-
lent.

Electrolyte conductance at infinite dilution,
mho/equivalent.

Molecular weights of components 4 and B.

Molality.

“Hydration number,” the number of moles of water
transported with the ions of one mole of solute.

Total pressure, atm.

Partial vapor pressure of the solute in solution, atm.
Gas constant; in equation 3.36 the units are 8.314
Joules /(gm -mole)(°K).

Radius of a molecule of 4.

Absolute temperature, °K.

Critical temperature; of 4; of B, °K.

Temperature, °C.

Partial molal volume of water in solution, cm?®/gm-
mole.

Molal volumes of pure liquid components 4 and B at
their normal boiling temperatures, cm?/gm-mole.
Critical volume; of components 4 and B, cm?®/gm-
mole.

Atomic diffusion volume increment.

Mole fractions of 4, B,and C.

Absolute value of cation valence.

Absolute value of anion valence.

Degree of dissociation.

Thermodynamic factors; see equations 3.21 to 3.25.
Activity coefficient of the solute, 4.

Mean ionic activity coefficient based on molality.
Lennard-Jones force constant, equation 3.3.
Viscosity of the solution, cP.

Viscosity of air at temperature of interest, cP.
Viscosity of solvents B and C, cP.

Viscosity of air at temperature of interest, cP.
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TI T Viscosity of solvents B and C, cP.

[T Viscosity of solvent at 20°C, cP.

Bt Viscosity of water at T, cP.

v Number of ions formed from one molecule of solute.
¢ An “association” factor for the solvent, B.

OB Lennard-Jones force constant, equation 3.4, A.

2p a8 A “collision integral,” equation 3.2.

PROBLEMS

3.1 Obtain estimates of the diffusivity of benzene vapor in oxygen at 0°C
and a total pressure of 1 atm, using equations 3.2 and 3.5 to 3.7. Compare
the results with the experimental value, 0.0797 cm?/sec, given in Perry
(1963, p. 14-22).

3.2 An experimentally measured value of the diffusivity of toluene vapor
in air at 0°C and a total pressure of 1 atm is 0.076 cm? /sec (Perry, 1963, p.
14-23). Use the relationships between diffusivity and temperature indicated
by equations 3.5 to 3.8 to obtain four estimates of the diffusivity in this
system at 30°C and 1 atm. Compare the results with the experimental
value given in Perry as 0.088 cm?/sec.

33 Predict the solute diffusivity in very dilute solution in the following
binary liquid systems and compare with the indicated experimental values
given by Reid and Sherwood (1966):

(a)Ethanol in benzene at 15°C (experimental value=2.25X10" 5
cm?/sec).

(b)Ethanol in water at 25°C (experimental value=1.24X 103 cm?/sec).

(c) Water in ethanol at 25°C (experimental value=1.132X 10" 5
cm?/sec).

3.4 Estimate the diffusivity of benzoic acid in very dilute solution in
benzene at 25°C, using the equations recommended for organic solvents.
Assume first that the acid diffuses as a monomer and then as a dimer.
Compare the results with the experimental value of 1.38% 107° cm?/sec
given by Reid and Sherwood (1966), to determine which assumption best
fits the measurement.

3.5 Repeat Problem 3.4, but for benzoic acid diffusing in water at 25°C,
for which the experimental diffusivity is 1.21X107° cm?/sec.

3.6 Calculate the diffusivity of very dilute acetone in a binary solvent
mixture containing 47.5 mole percent hexane and 52.5 mole percent
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carbon tetrachloride at 25°C, Viscosity data for mixtures of hexane and
carbon tetrachloride are provided by D. L. Bidlack and D. K. Anderson, J.
Phys. Chem., 68, 3790 (1964). Compare the results with an experimentally
measured diffusivity of 3.1 X 1075 cm?/sec.

3.7 Compute values showing the variation of diffusivity with composition
in the binary liquid system methyl ethyl ketone—carbon tetrachloride at
25°C, using equations 3.29, 3.30, and 3.31. Viscosity data for mixtures of
methyl ethyl ketone and carbon tetrachloride are provided by D. K.
Anderson and A. L. Babb, J. Phys. Chem., 66, 899, (1962). The following
activity-coefficient data for this system as a function of composition are
taken from Vignes (1966):

Mole fraction ketone (4): 0 0.2 0.6 1.0
1+diny,/dinx,: 1.0 0.82 0.88 1.0

Perform computations for these four x4 values and compare the results
with Figure 3.3.

3.8 Calculate the diffusivity of potassium nitrate at infinite dilution in
water when the temperature is 18.5°C.

3.9 Evaluate the diffusivity as a function of concentration over the range
zero to saturation for potassium nitrate in water at 18.5°C. Plot and
compare the results with curve II of Figure 3.7.
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4

Mass-Transfer Coefficients

Equilibrium.

Consider the distribution of a solute (component 4) between two immisc-
ible fluid phases in contact with each other. Under conditions of dynamic
equilibrium the rate of transfer of 4 from the first to the second phase is
equal to its rate of transfer in the reverse direction. The equilibrium
relationship may be represented by a plot such as Figure 4.1 over a range
of compositions of each phase.

The first phase may, for example, be gaseous and the second phase
liquid; Y, will then denote the composition of the gas phase with respect
to component A, expressed in any convenient terms such as partial
pressure, mole or mass fraction, number of moles or mass per unit volume,
or number of moles or mass of A4 per mole or unit mass of non-4. X, will
then denote the composition of the liquid phase, again in convenient terms.

A point on the equilibrium curve gives the equilibrium compositions of
the two phases, a point above the curve indicates that component 4 is
being transferred from the gas to the liquid, and a point below the curve
signifies transfer in the opposite direction.

The position of the equilibrium curve is usually determined experiment-
ally for a given system, but its location can sometimes be predicted from
thermodynamic considerations. Although a couple of simple examples will
be considered here, including one which will be used in a later design
illustration, it must be emphasized that phase equilibria constitute a wide

<]



84 Mass-Transfer Coefficients
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Figure 4.1. Equilibrium distribution of component A between two conjugate phases.

and separate field of study for which the relevant literature should be
consulted (e.g., Wilson and Ries, 1956; Smith and Van Ness, 1959; Emmert
and Pigford, 1963; Smith, 1963; and Null, 1970).

As an example of the prediction of vapor-liquid equilibria in an ideal
binary system, consider the following illustration.

Illustration 4.1.

Calculate the vapor-liquid equilibrium relationships over the whole range
of composition at atmospheric pressure for the system cyclopentane-
cyclohexane.

Correlate the values by an approximate, empirical equation.

SOLUTION.This system will be considered ideal, which means that the
vapor-liquid equilibrium relationships may be predicted from the vapor
pressures of the pure substances using Raoult’s and Dalton’s laws. Raoult’s
law is

Pa=Pyx,
Pg=Pgxy

where p, and p, are the partial pressures of cyclopentane and cyclohexane,
and P, and P are the vapor pressures of these substances at the prevailing
temperature. The mole fractions in the liquid phase are x 4 and xz. From
Dalton’s law,

P4=Py,

Pp=Pyg



Mass-Transfer Coefficients 85

where P is the total pressure, and y,,yp are the mole fractions in the vapor
phase.

P=p,+pg, Xy +xg=y,+yg=10

Combining Raoult’s and Dalton’s laws,

P, ~1 Pg Py(1-x,)
a=praslm -l
so that
P-P,
x=
4 PA-PB

The relative volatility is defined as

Ya/ %4 _yA(l_xA)

a=d,p= =
B yp/xp x(1=y4)
Rearranging,
ax,
P47 T (a-1)x,

For ideal systems a often remains fairly constant over a wide range of
composition at constant pressure, and since, ideally, y,/x,=P,/P, it
follows that a= P,/ Pp.

The vapor pressure as a function of temperature for cyclopentane and
cyclohexane is given by Maxwell (1955). The atmospheric boiling point of
cyclopentane is 120.7°F, and of cyclohexane, 177.3°F. This fixes the
temperature range for the calculations. Vapor-pressure readings from the
graph in Maxwell (1955) are given for various temperatures in Table 4.1,
where the corresponding x,, y,, and «a values are also tabulated. For
example, at 150°F,

1-0.615

= T63-0615 037

X4

mole fraction of cyclopentane in the boiling or saturated liquid phase, and

_ 1.63x0.379

V4= 1.00 =0.618

mole fraction of cyclopentane in the saturated vapor.

1.63
a=geis =265



Table 4.1. Vapor-pressure and composition data for the system cyclo-
pentane-cyclohexane.

t P P, Py

(°F) (atm) (atm) . (atm) X4 Ya a

120.7 1 1.00 0.345 1.00 1.00 2.90
130.0 1 1.175 0418 0.768 0.902 2.81
140.0 1 1.390 0.508 0.557 0.775 2.74
150.0 1 1.630 0.615 0.379 0.618 2.65
160.0 1 1.900 0.740 0.224 0.425 2.57
170.0 1 2.210 0.880 0.090 0.200 2.51
177.3 1 2.500 1.00 0.00 0.00 2.50

Average= 2.67
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Figure 4.2. Vapor-liquid equilibrium for the system cyclopentane-cyclohexane at 1.atm
pressure (Illustration 4.1).
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Figure 43. The temperature-composition or boiling-point diagram for the system cyclo-
pentane-cyclohexane at 1 atm pressure (Illustration 4.1).

The plot of y, versus x, is shown in Figure 4.2, and the temperature-
composition diagram is shown in Figure 4.3. The saturated-liquid curve is
a plot of ¢ (in °F). versus x,, and the saturated-vapor curve is a plot of ¢
(in°F) versus y . Figure 4.3 is sometimes called the boiling-point diagram.

Table 4.1 shows that the change in a is relatively small over the whole
range of concentration, with an average for the computed values of 2.67.
Thus an approximate relationship between y, and x, for this system at
atmospheric pressure is given by

267x, _ 261x,
YA 1y (261-1)x, 1+167x,

Equilibrium data in ternary liquid-liquid systems containing two phases,
as used in liquid-liquid extraction, must generally be determined experi-
mentally. The following example shows how such data may be represented
on a triangular diagram, how erroneous (or nonexistent) plait-point data
may be rectified, and how equilibrium interpolation is facilitated.
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Figure 4.4. Equilateral and right-triangular coordinates.

Illustration 4.2.

Acetone is to be extracted from water using ethyl propionate as solvent at
86°F. The operation will be performed in a continuous, countercurrent,
packed extraction column, for which a partial design is developed later in
Chapter 7 (Illustration 7.4). Provide the following items for subsequent use
in this design procedure:

(a) A representation of the mutual solubility and equilibrium distribu-
tion data on a right-triangular diagram.

(b) The corrected location of the plait point (i.c., the point at which the
two conjugate equilibrium phases become identical).

(c) The location of a conjugate curve for interpolation of tie lines linking
two equilibrium phases.

SOLUTION (a). Ternary systems are often represented on equilateral or
right-triangular coordinates, as sketched in Figure 4.4.

Any point on one of the sides of the triangle represents a binary mixture
of the components at each end of that side. For example, mixture J
contains (line length CJ/line length 4C) X 100% of A, the remainder
being C.

A point inside the triangle represents a ternary mixture, such as S. The
perpendicular distance of the point S from a given side of the equilateral
triangle gives the percentage (or fraction) of the component represented by
the apex opposite that side. The vertical height of the equilateral triangle
represents 100% (or 1.0). In the right-angled triangle—which need not be
isosceles—the composition of a ternary mixture S is conveniently identi-
fied as shown, in terms of the scales of axes 4B and BC. A point outside
the triangle represents an imaginary mixture, of negative composition.

The right-triangular diagram is rather more convenient, since it may be
readily constructed to any scale, with enlargement of any particular region
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of interest. This representation is accordingly adopted here, as shown in
Figure 4.5, where the published data of Venkataratnam, Rao, and Rao
(1957) for this system are plotted as the binodal curve (mutual solubility
data) plus seven tie lines (including the base).

SOLUTION (b). The correct location of the plait point is estimated by the

method of Treybal, Weber, and Daley (1946). The notation for this system
is as follows:

A =acetone, B =water, C = ethyl propionate.
w .5 =mass fraction of 4 in the B-rich phase.

The following quantities are calculated from the coordinates of the
terminals of the tie line nearest apex A in Figure 4.5.

Wec mass fraction acetone in ethyl propionate-rich layer
Wee ~ ‘mass fraction ethyl propionate in ethyl propionate-rich layer
_ 0451 _
= 0a6a ~ 007

w,p mass fraction acetone in water-rich layer (0,344
wgp  mass fraction water in water-rich layer 0.607

=0.566

This procedure is repeated for each of the tie lines in Figure 4.5 and
W,c/Wee is then plotted against w,gz/wpp On logarithmic coordinates in
Figure 4.6. A straight line is drawn through the points.

From points selected at random on the upper portion of the binodal
curve, values of w,/w. and w,/wy are calculated, where w,, wp, and w¢
are the mass fractions of the three components at any selected point. The
curve w,/w. versus w,/wy is then also plotted on Figure 4.6. The
intersection of this curve with the extrapolated straight line corresponds to
P, the plait point. Thus, from Figure 4.6 at P,

w
()20 (2]
Welp W /p

and since w,+wg+w-=10,
w,p=0.487 = mass fraction acetone
wgp =0.329 = mass fraction water

wep=0.184=mass fraction ethyl propionate.
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This is plotted as the estimated plait point P in Figure 4.5. It differs
from the published value (w,,=0.557, wgp=0.251, wep=0.192), which is
in error because it does not lie on the binodal curve.

SOLUTION (c). The conjugate curve is constructed in Figure 4.5 from the
seven existing tie lines and the estimated plait point. For example, point R,
on the conjugate curve is located at the intersection of line fR,, parallel to
side BC, and line eR_, parallel to side AB of the triangle. The line ef is an
experimentally determined tie line. The conjugate curve passes through the
plait point, P, and may be used for tie-line interpolation by reversing the
procedure used in its construction.

An alternative representation of ternary equilibrium data is on the
distribution diagram, which is a plot of the mass (or mole) fraction of
solute 4 in the C-rich phase against the mass (or mole) fraction of 4 in
the B-rich phase. Such a plot appears in Illustration 7.4.

Individual Mass-Transfer Coefficients

It is assumed that local equilibrium prevails at the interface, where the
compositions are Y% and X*%. If transfer takes place from the gas to the
liquid, the individual coefficients k, and ky for the gas and liquid phases,
respectively, are defined as follows:

N A=k y A(Y,—Y*)=kyA(X%—X,) (4.1)

A is the area of the interface, where the flux in the direction of decreasing

concentration is N, and Y, and X, are the concentrations of component

A in the bulk of the gas and liquid phases. Equation 4.1 shows that
Y, - Y% k

X
A L2 2
X,—X% ky (42)

This relationship is plotted in Figure 4.7 on the assumption of interfacial
equilibrium.

Overall Mass-Transfer Coefficients

Interfacial concentrations (X%, Y}) are often unknown at a given location
within a two-phase system, and it is then more convenient to use overall
coefficients K, and K,, defined in terms of overall concentration
differences or “driving forces,” as shown below:

NAA=KYA(YA_ YAL)=KXA (XAG"XA) (4-3)
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\Equilibrium
- Curve

A Xag

Figure 4.7. Individual and overall concentration “driving forces” for a two-phase system
with distributed component 4. Bulk concentrations of the two phases are respectively X ,and
Y,, and interfacial equilibrium is assumed.

where Y, is the gas-phase concentration which would be in equilibrium
with the existing liquid-phase concentration, and X, is the liquid-phase
concentration which would be in equilibrium with the existing gas-phase
concentration. The location of these quantities is shown in Figure 4.7. The
relationships between the individual coefficients of equation 4.1 and the
overall coefficients of equation 4.3 are obtained in the following way,
noting from Figure 4.7 that

m= qu_YAL m = YA—Y; m" = YA_YAL
X:_XA ’ XAG-X;’ XAG_XA
NAA=kYA(YA_Y§)=KYA(YA—YAL)
_1_=L Y, - Y, =L (YA_Y;)-*'(Y;_ )
Ky kY YA_Y; ky YA_Y:
Y*-v
1 _1_1(2a7tu (4.4)
KY k)' ky Y;_YA

Ya—Yu=m(X%—-X,) (4.5)
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and from equation 4.2,
kx
Yi—Y,= - 22 (X5-X,) (46)
Y

Taking the ratio of equation 4.5 to 4.6 and substituting the result in
equation 4.4 gives

1 1L . m
K, "% + %y (4.7)
Similarly,
1 1 1
2 2 4.8
K ke mk, (4.8)
and
1 __1
Kx - m”Ky (4'9)

By analogy with heat transfer, the term 1/K, may be regarded as the
total resistance to mass transfer based on the driving force Y,—Y,,.
Equation 4.7 then shows this to equal the sum of the gas-phase resistance
1/ky and the liquid-phase resistance m/ky. A similar interpretation in
terms of additive resistances prevails for equation 4.8.

It is evident that even if k, and k, are constants, the overall coefficients
will nevertheless vary with concentration unless m=m’=m” = constant—
that is to say, unless the equilibrium curve is linear over the relevant range
of concentration. This constitutes a severe limitation on conditions in
which constant overall X values may be used with genuine validity. The
restriction becomes unimportant, however, in cases which are “gas-phase
controlling” (1/ky>»m/ky) or “liquid-phase controlling” (1/k,
>1/m'ky).

The interfacial area A4 is often unknown in many types of mass-transfer
equipment. In such cases mass-transfer rates are frequently based on unit
volume of the equipment, instead of unit interfacial area. The rate equa-
tions 4.1 and 4.3 are then modified to the following form:

NjA=kya(Y, = Y}),V,=kga(X;—X,),V,

=Kya(Y,— YAL)va=KXa(XAG_XA )mVo (4.10)

where V, is the contacting volume of the equipment, a is the interfacial
area per unit volume, and the combined quantities kya, kya, Kya, and
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Kya are called volumetric or capacity coefficients. Equations 4.7, 4.8, and
4.9 may be divided by a to give

A1, m
Kya kya + kya (4.11)
I 1
Kya kya * m'kya (4.12)
1 1
Kya m"Kya (4.13)

A distinction is made in subsequent chapters between coefficients under
conditions of high and low mass-transfer rates. Coefficients corresponding
to low rates are usually denoted with an asterisk, as k*.

MECHANISMS OF MASS TRANSFER

Many engineering applications involve the transfer of material across the
interface between two phases. Several different mechanisms have been
proposed to describe conditions in the vicinity of the interface, some of
which will now be considered.

The Two-Film Theory

This theory, developed by Lewis (1916) and Whitman (1923), supposes that
turbulence in the two phases dies out near the interface, and the entire
resistance to transfer is considered as being contained in two fictitious
films on either side of the interface, in which transfer occurs by purely
molecular diffusion. It is postulated that local equilibrium prevails at the
interface and that the concentration gradients in the films are established
in a time so short compared to the total time of contact that steady-state
diffusion may be assumed. Both mass and molal units will be used in this
instance, because the latter will yield expressions which contribute signifi-
cantly to the development of relationships for the number and height of
transfer units in Chapter 7.

Individual or single-phase mass-transfer coefficients £ are customarily
defined as follows for a mechanism of equimolal counterdiffusion: In the
gas phase,

_ k;:GApAG

=N, M, %k&ApA =kAy,=k/Ac, (4.14)

T
M,
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and in the liquid phase,
k', A
ny, LEP4L , , P
=M= S = ke, kA, =kc(—M )avAxA (4.15)

For a mechanism involving bulk molal flow, on the other hand, in the gas
phase,

k_-Ap
= ~kebpa= by, = ke, (4.16)
and in the liquid phase,
ko BpaL o
NA= -pTA-— =kcACA=kxAxA=kc(‘A—l)avAxA (417)

Consider a process of equimolal counterdiffusion between a gas and a
liquid phase. The transfer of component 4 in the gas will be described by
equation 2.49 in terms of mole fractions:

DgP ,
Ni:= Rz (O ~y5) =k, (ya=21) (4.18)

and in mass instead of molal units,

D
nAz=;f§(pAG_p:G)= kp/G( Pac — Pic) (4.19)

Component A is transferred in the liquid in accordance with equation 2.54:

D,c, . -
N,= 7 (xA_xA)=kx(xA_xA) (4.20)
L
or in mass units,
~ D (s =k, (p} 4.21
ny,= ZfL(pAL_pAL)_ pL(pAL—pAL) (4.21)

where z;; and z;; are the thicknesses of the fictitious gas and liquid films,
and the asterisk denotes local equilibrium values in the gas and liquid
phases at the interface.

When a total or bulk molal flow (N, + Ng,) occurs in the direction z in
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which 4 is diffusing, equation 2.44 is applicable with nonzero v and may
be written as follows for the gas phase:

o Ny, D;P NAz/(NAz+NBz) —Va2
=N, = n (4.22)
M, Ny, +Np, RTsz NAZ/(NAZ+NBZ)_yAl
so that from equations 4.16 and 4.22,
DgpP N, 1
ko, = RT: ( N, +N ) N N, +N. )— (423)
fG Az Bz [ 42/ (Ng,+Np,) Ya ]LM

where [N,,/(N,,+Ng,)—y, )i is the logarithmic mean of the values in
the bulk of the phase and at the interfacethat is to say, on either side of
the fictitious film of thickness 2. In the special but important case of
unimolal unidirectional diffusion, Ny, =0, and equation 4.23 becomes

L D,P D;P (424)
¢ RTsz( l-y, )LM RTszyBLM -
k RT D.P
ko=-"2=—% 4.25
i P ZicPpLM ( )

and for the liquid phase, when N, =0, equation 2.56 corresponds to

D,c D, c
k. = = -t (4.26)
Zp (1= )m  ZXsim

k DLc _& (p/M)av

Zulpim 2 (pg/Mpg)im

(4.27)

Equations 4.18 to 4.27 show that the two-film theory predicts that the
mass transfer coefficient is directly proportional to the molecular diffusiv-
ity to the power unity. The complexity of flow normally prevents evalua-
tion of z, but it decreases with increasing turbulence.

Relations between the various coefficients in equations 4.14 to 4.27 are
given in Problem 4.3 at the end of this chapter.

The Penetration Theory

The work of Higbie (1935) provided the foundation for the penetration
theory, which supposes that turbulent eddies travel from the bulk of the
phase to the interface, where they remain for a short but constant time
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before being displaced back into the interior of the phase to be mixed with
the bulk fluid. Solute is assumed to “penetrate” into a given eddy during
its stay at the interface by a process of unsteady-state molecular diffusion,
in accordance with Fick’s second law—equation 2.93 in mass-concentration

terms:
0p, 9%,
—=D| —- 293
( = (293)
where v, is negligible and the boundary conditions are
1=0, 0<z<<o0:  py=py,
t>0, z=0: pa=ps

>0, z=o00: P4 =Psoo

The interfacial composition of the phase under consideration is constant
at p%, as i1s the concentration p,,, at z effectively equal to “infinity.” A
solution may be obtained by Laplace transforms (Coulson and Richard-
son, 1964) to give

(4.28)

Here erf is the error function,

_2 _¢2
erf¢ = Lexp( $?)de

Equation 4.28 gives the concentration within a given eddy at the
interface as a function of position z and time f. Under conditions of
negligible bulk flow the instantaneous rate of unsteady diffusion from the
interface is

dp
Mao= —D(—a—f) (4.29)
z=0

and evaluating the derivative from equation 4.28,

@t

0= (05— 1) 2 )W (430)
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The total solute penetrating the eddy in an exposure time ¢, is

L D V2o pe\"?
f nAOdt=(pz‘4_pAoo)(—) f t_l/zdt=2(pf4—94m)(_e)
0 ™ 0

T

(4.31)

and the average rate of transfer during exposure is obtained by dividing
equation 4.31 by ¢,

(nAo)av=2(pX—pAw)(£)l/2

e

(432)

which predicts that the mass-transfer coefficient is directly proportional to
the square root of the molecular diffusivity—in contrast with the two-film
theory. In most applications the exposure time t, for a given eddy is
unknown, but it will decrease with increasing turbulence.

Angelo, Lightfoot, and Howard (1966) have extended the penetration
theory to allow for “stretching” surfaces, such as those which occur, for
example, in large oscillating droplets. A further modification has been
presented by Ruckenstein (1968), who makes allowance for velocity distri-
butions within the eddies during penetration by the solute.

The Theory of Penetration with Random Surface Renewal

The original penetration theory postulates that the period spent by all
eddies at the surface is constant. This picture may be modified by propos-
ing an “infinite” range of ages for elements of the surface. The probability
of an element of surface being replaced by a fresh eddy is considered to be
independent of the age of that element. Danckwerts (1951) introduced this
modification by defining a surface age distribution function, #(2), such
that the fraction of surface with ages between ¢ and 1 +dt is ¢(f)dr. If the
probability of replacement of a surface element is independent of its age,
Danckwerts showed that

o(1)=se™*

where s is the fractional rate of surface renewal. Equation 4.30 gives the
instantaneous rate of transfer from the surface for a given element. Thus
for all elements with ages between ¢ and 7+ d! the instantaneous transfer
rate is

D 1/2
—st *x __ =
se™( p% PAw)(m) at
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The flux of component 4 from a surface having elements with ages
distributed over the range 0<7< oo is therefore

1/2
D ® _ _
(olw=s(oi=00)(2) [T va

or
(M40)av=(pF —P4) (sD)"? (4.33)

which again indicates that the mass-transfer coefficient is directly propor-
tional to the square root of the molecular diffusivity. Procedures for
predicting s are not available at present, but its value will increase with
increasing turbulence. The results of assuming other relationships between
s and ¢ are given in Problem 4.5 at the end of this chapter.

The Film-Penetration Theory

The film-penetration model, presented by Toor and Marchello (1958),
represents a combination of the three earlier theories reviewed above. The
entire transfer resistance is considered to lie in a laminar surface layer of
thickness z;, where p, is uniform at p,, for all z greater than z,. Surface
renewal occurs by eddies which penetrate the surface from the bulk of the
phase. Thus transfer through young elements of surface obeys the penetra-

tion theory (ko VD), transfer through old elements follows the film
theory (ko D), and transfer through elements of intermediate age com-
bines both mechanisms. The transfer equation is again Fick’s second law,
equation 2.93, but with the boundary conditions

t=0, 0z 00 P4=Paoo
t>0, z=0: p=r%

t>0, z=z;: P4 =Psoo

The key difference from the penetration theory lies in the third
boundary condition. A solution for p,(z,7) may again be obtained using
Laplace transforms. The result is used to evaluate equation 4.29, giving, for
small ¢,

nAo=(p:—pAw)(ﬁ)m[lﬁiexp(—%)] (4.34)

n=1
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and for large ¢,

D N Dt
o= 03— 2| 1425 exp (- 2] | (a33)
L

n=1

Equations 4.34 and 4.35 are equivalent, but are obtained by different
techniques for taking the inverse transform to obtain p,(z,#). The first
equation converges rapidly for small ¢ (t<zZ /D) and the second for large ¢
(+>>z}/ D). The equations give instantaneous n,, for elements of age ¢.
Average values are obtainable as

(Mio)av= [ map(t)ds (4.36)
(i
where Y(?) is a general surface age distribution function. When all surface

elements have the same exposure time, as in Higbie’s penetration theory,
the result for short ¢, is

nz,

172 o0
(40) 0= (0% — pAw)Z(ﬁ) [1+2\/E D derfe (4.37)

n=1 Dt

e

and for large ¢,,

[5-Sl-2)

n=1

|

(4.38)

D
(nAO)av =(p,:-pAoo)-z_-{1+
L

The integral of the complementary error function is denoted by ierfc.
Equations 4.37 and 4.38 reduce to the penetration theory, equation 4.32,
for small #,, and to the film theory, equation 4.20, for very large ¢,.

When the surface age distribution function corresponding to Danck-
werts’ random-surface-renewal theory is used in equation 4.36, the result

for short average element life is
o0
(nAO)av= ( p; _pAoo)(SD)l/z 1 +22 exp(_znzl. v % )] (439)

n=1
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and for long average element life,

D
(nAO)av=(pT¢—pAw);Z 1+22 1 (440)

+ n* ZD/szL

When the rate of surface renewal is high (sz?/D is large) equation 4.39
reduces to Danckwerts’ equation (4.33). Conversely, when sz2 /D is low,
equation 4.40 reduces to the film theory of equation 4.20. The series terms
in equations 4.37 to 4.40 converge rapidly in all cases, but the quantities z,,
t,, and s are not predictable at present.

The Mass-Flow or Convective-Transfer Theory

In a series of papers, Kishinevskii and co-workers (1949-1954) proposed a
surface-renewal mechanism which, in contrast with the theories described
above, postulates that transfer into an eddy at the interface occurs pre-
dominantly by convective mass flow and not by molecular diffusion. The
authors also dispute the suggestion that the probability of replacement of a
surface element is independent of its age.

King (1966) has proposed another general model for turbulent liquid-
phase mass transfer to and from a free gas-liquid interface. The model
requires the evaluation of three parameters and involves concepts of
surface renewal in which surface tension exerts a damping effect upon the
smaller eddies. Allowance is made for a continuous eddy diffusivity profile
near the free interface, thereby avoiding the postulate of a “film” or
discontinuity in transport properties as required by the film-penetration
theory.

More recently, Wasan and Ahluwalia (1969) have presented a model in
which heat or mass transfer between a wall and a fluid stream is postulated
to occur by a mechanism of consecutive film and surface renewal. Agree-
ment was obtained between the theory and measurements in both gaseous
and liquid fluidized beds.

The form of the experimental dependence of the mass transfer
coefficient upon D should indicate which theory is more nearly correct.
One difficulty—particularly in the area of gas absorption, to which the
theories have been applied with some persistence—is that the diffusivities
of the usual solute gases are only inaccurately known and do not vary
greatly from each other. Work by Lewis (1954, 1955) on a mechanically
agitated cell containing two liquid phases suggests that the coefficient is
independent of D. This contrasts with the study of Murdoch and Pratt
(1953) on a liquid-liquid wetted-wall column, which indicated that the
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mass-transfer coefficient is proportional to D raised to the 2/3 power. (The
latter dependence occurs quite frequently in a variety of situations.)
Dobbins (1956) developed relationships pertaining to the film-penetration
theory in a publication which appeared two years earlier than that of Toor
and Marchello (1958). He applied the results to experiments simulating the
rate of gas absorption by rivers (Dobbins, 1964), and found exponents on
D between 0.985 and 0.65, the lower values corresponding to increasing
turbulence. Experiments on gas absorption in agitated vessels and packed
columns indicate liquid mass-transfer coefficients proportional to D to the
0.5 power (Vivian and King, 1964; Kozinsky and King, 1966; and Tavares
da Silva and Danckwerts, 1968). Further evidence favoring the surface-
renewal models rather than the two-film theory has been obtained in
experiments on gas absorption with chemical reaction in a variety of
columns (Danckwerts et al., 1963; Richards et al., 1964; Danckwerts and
Gillham, 1966; and Tavares da Silva and Danckwerts, 1968).

There are nevertheless many instances in which the relative simplicity of
the two-film theory has contributed to the quantitative representation of
complex processes in a way which has been consistently useful in design.
Examples of this will be found in Chapter 7.

Relationships between mass-transfer coefficients and diffusivity arising
from boundary-layer theory are indicated in Chapters 5 and 6.

NOMENCLATURE

A,B,C Components 4,B,and C.

A Interfacial area, ft2.

a Interfacial area per unit volume, ft2/ft>,

c Total concentration, 1b-mole /ft>.

c, Concentration of component 4, Ib-mole /ft>.

Caim Logarithmic-mean concentration of component B in a
film of thickness z;,, 1b-mole/ft’.

D,Dg;, D, (Volumetric) molecular diffusivity; in the gas and liquid
phases, ft>/hr.

K, K, Overall mass transfer coefficients based on AX and
AY,Ib-mole/(hr)(ft*)(unit of AX or AY).

keskg ke k,,

ki KoL Individual mass-transfer coefficients defined in equations

4.16 and 4.17.

ke ks Ky ks

ks kot Individual mass-transfer coefficients for equimolal



ky,ky

M My

m,m
NA’NAZ
NB

Z

Ry Ny y,

PP, P,

PasPpsPpLMm

Wy, WpsWe

WapsWacs
WapsWcce

WapsWapsWep
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counterdiffusion, defined in equations 4.14 and 4.15.
Individual mass-transfer coefficients based on AX and
AY, Ib-mole/(hr)(ft*)(unit of AX or AY).

Average molecular weight.

Molecular weights of components 4 and B.

Slope of equilibrium curve, see also Figure 4.7.

Defined in Figure 4.7.

Molal flux of component A relative to stationary
coordinates, in the z direction, Ib-mole /(ft?)(hr).

Molal flux of component B in the z direction relative to
stationary coordinates, Ib-mole/(ft*)(hr).

Mass flux of component A4 relative to stationary
coordinates, at the surface y=0, in direction z, lb-
mass /(ft?)(hr).

Total pressure; vapor pressures of components 4 and B
at the prevailing temperature, Ib-force/ft* or atm.

Partial pressures of components 4 and B; logarithmic-
mean partial pressure of component B in film of thick-
ness z;;, Ib-force/ft* or atm.

Gas constant, 1545 ft lb-force/(Ib-mole)(°R) or 0.73
atm ft* /(Ib-mole)(°R).

Fractional rate of surface renewal, hr™'.

Absolute temperature, °R.

Time, exposure time, hr.

Contacting volume, ft*.

Mass-average velocity in the y direction at the surface
y=0, ft/hr.

Mass fractions of components A, B, and C.

Mass fraction of first-subscript component in the phase
rich in the second-subscript component.

Mass fractions of 4, B, and C in the mixture represented
by the plait point.

Composition of L phase, any convenient units.

Local equilibrium concentration in the L phase at the
interface, any convenient units; mole fraction.

L-phase concentration which would be in equilibrium
with the existing G-phase concentration, any convenient
units.
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X4>Xp

XBLM

YasVs

VLM

2,206,241,2)

a,a,p
p

* *
P4sP4:P4G>PAGs

*
ParsParsPAco

Ps
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(os/M BLM
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Subscript m

PROBLEMS

Mole fractions of components 4 and B.
Logarithmic-mean mole fraction of component B in the
film of thickness z, .

Composition of G phase, any convenient units.

Local equilibrium concentration in the G phase at the
interface, any convenient units; mole fraction.

G-phase concentration which would be in equilibrium
with the existing L-phase concentration, any convenient
units.

Mole fractions of components A and B.
Logarithmic-mean mole fraction of component B in the
film of thickness z;.

Distance in direction of diffusion; thickness of the ficti-
tious G- and L-phase films; thickness of the laminar
surface layer in the film-penetration theory, ft.

Relative volatility; in the binary system 4-B.

Total density, 1b-mass /ft>.

Mass concentration of component A4; interfacial value in
the phase under consideration; in the G phase; local
equilibrium mass concentration in the G phase at the
interface; in the L phase; local equilibrium mass con-
centration in the L phase at the interface; at z= oo,
1b-mass /ft>.

Mass concentration of component B, lb-mass/ft>.

Mean value for the phase under consideration; see CaiM
above, Ib-mole/ft’.

Surface age distribution function.
A general surface age distribution function.
A suitable mean.

4.1 The aqueous absorption of sulfur dioxide from air in a countercurrent
column packed with 1-in. ceramic rings has been studied by R. P. Whitney
and J. E. Vivian [Chem. Eng. Prog., 45, 323-337 (1949)]. At 70°F and 1
atm, using a column diameter of 8 in. and packed height of 2 ft, the
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individual capacity coefficients for the liquid and gas phases were corre-
lated as follows:

, 082
k,a= 0.044( % ) , Ib-mole SO,/ (hr) (ft*) (Ib-mole SO, /ft* solution)

G\ L\*®
ksa= 0.028( 5 ) ( 5 ) , Ib-mole SO, /(hr)(ft*)(partial pressure of
SO,, atm)

where L’ and G’ are the mass velocities of the liquid and gas streams in
Ib/hr, and S is the cross-sectional area of the empty column in ft, over the
ranges 900< L'/S < 12,000 and 65< G’/S <850. The following measure-
ments are from the authors’ run 7 at 70°F:

L'/S=4950 b/ (hr) (ff?)
G’/ S =609 1b/ (hr) (ft?) (average of top and bottom rates)

SO, concentration in entering water =0
SO, concentration in leaving water =0.0111 Ib-mole/ ft? of solution
SO, partial pressure in entering air=0.176 atm
SO, partial pressure in leaving air=0.137 atm

Equilibrium data for this system are available in Perry (1963., pp.
14-6-7), and it will be assumed that the densities of water and of the
relevant SO, solutions are equal. Estimate the following quantites at the
top and bottom of the column under these conditions:

(a) The interfacial concentrations of SO, in the gas and liquid phases.

(b) The overall capacity coefficient in the same units as k; a.

(©) The percentage of the total resistance to transfer which resides in the
gas and liquid phases, respectively,

(d) The local mass transfer rates.

4.2 Suppose the gas flow rate is increased by 35 percent in Problem 4.1.
What liquid rate will restore the overall capacity coefficient to its original
value at the top of the column?

4.3 Derive the following relationships between the various mass-transfer
coefficients in equations 4.14 to 4.27:
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In the gas phase:

RT P
koo =k, = RTkg= "5k, =

k/ — k;G
Peim ¢ YBLM
B k.= ki = RT

Prim Ppim PriMm

k/

Y

In the liquid phase:

k k k!
ka=kc=_x= X — C k;z,: oL
¢ (o/M),, cpm XBLM

c k= _kL

Caim CpLM
4.4 A long, capsule-shaped bubble of carbon dioxide at 1 atm is intro-
duced into a vertical glass tube which is filled with water at 10°C. The tube
has an internal diameter of 3 mm and a length of 65 cm, and the water
flows downwards, drawing the bubble along at a velocity of 130 cm/sec.
Suppose that the average length of the bubble is 7 cms and that CO,
diffuses into the water film between the bubble and the wall of the tube in
accordance with the penetration theory. Each element of water surface is
then exposed to the gas for the time required by the bubble to pass it. If
similar bubbles enter the tube at }-sec intervals, estimate the absorption
rate of CO,.

At 10°C the diffusivity of CO, in water is 1.41X 1073 cm?/sec, and the
solubility, expressed in terms of Henry’s law, is given by p, =1040x,,
where p, is in atmospheres and x, is the mole fraction of CO, in water.
4.5 The theory of penetration with random surface renewal uses a surface
age distribution function ¢(r)=se”*. The reader should examine
Danckwerts’ (1951) paper for the development of this expression, which
assumes the probability of replacement of a surface element to be inde-
pendent of its age. Suppose, instead, that the fractional rate of surface
renewal s is related to the age of the surface through the constants £ and n
as s=¢£", where §,n+1>0. Prove that the corresponding forms of the
surface age distribution function and of equation 4.33 are given by

1/(n+1)

LGS N sl
T[(n+2)/(n+1)] P\~ ¥l

o(1)=

1 1/2(n+1

)
(M40)ay = (p}—pAw)XZ(Q) I{(2n+3)/2(n+1)]

()
n+l I[(n+2)/(n+1)]

m
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where the gamma functions are evaluated from standard tables.

4.6 For the conditions of Problem 4.5, obtain expressions for ¢(¢) and
(n40).y corresponding to n-values of 0, 1, and 2.

4.7 Water droplets form at 2-sec intervals on the tip of a thin-walled
vertical nozzle. The nozzle is immersed in ethyl acetate, which is saturated
with water at 25°C. It is assumed that the drop grows spherically and that
its surface is extended during formation by the addition of fresh elements
which remain at the surface until detachment from the nozzle. Determine
the amount of ethyl acetate that enters a single drop during growth and
before detachment, if the fresh elements continually added to the growing
surface are subject to mass transfer in accordance with the penetration
theory.

The volume of the drop at detachment is 0.014 cm?, and the diffusivity
and solubility of ethyl acetate in water at 25°C are 0.889 % 10~ > cm?/sec
and 0.01614 mole fraction, respectively.

Note: The reader may wish to compare his solution with the detailed
derivation in Chapter 8. The individual mass-transfer coefficient based on
the drop surface at detachment under these conditions is obtained there in
general form as equation 8.43.
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5

Mass Transfer in Laminar Flow

Some engineering situations arise in which mass transfer occurs through a
fluid that is in laminar flow. These include evaporation, sublimation, or
condensation on a plate or on the inner surface of a tube. In other cases
the surface of the plate or tube may sublime or dissolve and then diffuse
through the fluid. Alternatively, the solute may diffuse or be injected
through perforations in the wall.

The final sections of both this chapter and the next review many of the
published studies on transfer with a high mass flux. Much—though not all
— of the literature on this subject expresses concentration in terms of mass
per unit volume or mass fraction. It has therefore been decided to adopt
these units here in order to facilitate further literature study of this
important topic by the reader. A consistent treatment accordingly requires
the use of these units throughout Chapters 5 and 6.

The choice of units is of considerable interest when one is concerned
simultaneously with analytical expressions for mass transfer and fluid
mechanics; attention is directed to the following somewhat lengthy quota-
tion from Spalding (1962):

Chemical engineers have long used molal fluxes and concentrations. The two
advantages are: simplified arithmetic in stoichiometric calculations; and a simple
solution to the Stefan-flow problem when the fluid is an isothermal binary ideal-gas
mixture. Aeronautical engineers tend to use mass units. Other unit systems have
been employed by particular specialists; for example, the mass of steam per unit
mass of dry air is often used in air-conditioning calculations.
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If a uniform procedure is to be adopted for all mass-transfer calculations,
however, it appears wiser to the present author [Spalding] to adopt both mass
fluxes and mass concentrations, for three reasons: when chemical reactions occur
within the fluid, the “law of conservation of moles” is not generally obeyed; many
substances (e.g. kerosene vapor diffusing into a flame) do not have a recognisable
or constant molecular weight; and only mass fluxes enter the equations of motion
of the fluid, not molal fluxes. It may be that chemical engineers will have to forego
the aforesaid advantages of the molal system if they are to make full use of the
achievements of boundary-layer theory.

Having elected to express composition in mass rather than molal terms,
a choice remains between mass fraction, w,, and mass concentration, Pa4-
Although the former would allow for density variations with composition
(see equations 2.29 to 2.36), the complexity of the resulting differential
equations is often prohibitive. Much of this chapter will consequently
consider low-mass-flux conditions in constant-property systems and in
terms of p, and Ap,. Procedures for extending the results to high-mass-flux
conditions, with and without physical-property variations, are then given
in the final section of the chapter.

MASS TRANSFER IN THE LAMINAR BOUNDARY LAYER ON A FLAT
PLATE

Consider a fluid—designated component B—which is in laminar flow over
a flat plate oriented parallel to the undisturbed stream. Suppose that
component A is diffusing from the surface of the plate into the fluid
stream. The diffusing component 4 may originate from sublimation or
dissolution of the plate itself, from evaporation or dissolution of liquid held
in the pores of the plate surface, or from the injection of a different fluid
through perforations in the surface of the plate. This latter procedure is
used in transpiration cooling to protect the surface from a hot gas by
injection of a different cold gas into the boundary layer. In all these
processes a concentration gradient will exist between the plate and the
fluid. The thickness of the concentration boundary layer, §,, at a given
distance x from the leading edge of the plate, is arbitrarily defined as the
normal distance from the plate surface at which p,,—p, =0.99(p 40~ Paoo)s
where p,,, is the concentration in the undisturbed stream.

The relative motion in the x direction between the plate and the fluid is
zero at the surface, and a velocity gradient normal to the direction of flow
extends throughout the fluid because of the drag force resulting from
retardation of the fluid at the surface. The thickness of the momentum
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Figure 5.1. (a) Mass flow rates of component 4 across the boundaries of the control volume
ABCD; (b) Flow rates of x-directed momentum across the boundaries of the control volume
ABCD; (¢) Mass flow rates across the boundaries of the control volume ABCD.
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boundary layer, §, at a given distance x from the leading edge of the plate,
is arbitrarily defined as the normal distance from the plate surface at
which the velocity u is 99 percent of its value in the undisturbed stream,
u. In the general case § and 8, are not identical at a given x, except when
the Schmidt number is unity. The concentration and momentum boundary
layers are sketched in Figures 5.1a and b, respectively. The mass flow
appears in Figure 5.1c; in each case consideration is given to a control
volume (marked off by a dashed line) between x and x+dx, of width w
normal to flow. The control volume is bounded by the upper plane at a
distance / from the plate, where / is greater than § or d,. Physical properties
are assumed to be constant, unchanged by the mass transfer.

Since p,,, is less than p,,, it follows that Ppe 18 greater than pp,
promoting diffusion of B towards the plate. However, if B cannot cross the
surface of the plate, there must be a convective bulk flow of velocity v,
away from the surface to compensate for the diffusive flow of B. The
expression for n,, under these conditions is obtainable from equation 2.10
in the y direction and with ng, equal to zero:

9p,4

Pao
(nAy)y-0=nA0=nAoT—D(g)yzo (5.1)

The convective bulk flow moving with mass-average velocity v, has a
volumetric flow rate Av, through area 4 at the plate surface. The mass
flow rate of component A associated with this volumetric rate is Avgpyo
and the corresponding flux is Avgp,o/A=0vyp,o To this must be added
the diffusive flux relative to the mass-average velocity to give the mass flux
relative to stationary coordinates as

dp,
nA0=vopAO—D(_a-yi) (5.2)
y=0

Comparison with equation 5.1 shows that

M40 _ P4olao

; > (5.3)

UO=

For component B the equation corresponding to 5.2 is as follows, since
nE=O:

aPB)
0= —D| ——
Vo Pgo (ay o
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but
e _ _ 4
ay ay s P=Pyo0 Pso
so that
—D (34 -D [ )
V= - = - 5.4
0 P_PAO( dy ),_o l—on( ay y=0 ( )

Figure 5.1c shows that, for steady flow with constant physical properties,

d ! _
L [fopudjz]dx—pv,wdx+puowdx (5.5)
Therefore
d !
ol=7d;[fouay]—vo (5.6)
From Figure 5.1a,
d !
nAowdx=wE[f0pAudy] dx — py0Wdx (5.7)

Inserting equation 5.2 for n,,, equation 5.6 for v, and noting that (p,,, —
py)=0for 8. <y</,

d (% dp
dxfo (pAw—pA)u@=D(—a;) +00( Paeo— Pao) (5.8)
y=0

The momentum equation for the control volume ABCD equates the total
efflux rate of x-directed momentum to the sum of all external forces in the
x direction which act on this volume. Thus from Figure 5.15,

7
> g dF, = —gc('rowdx + % dx wl) =wdi;c [ f(;puzdy] dx—u, powdx
(5.9)
Substituting equation 5.6 for v, and rearranging,

d (! & dP
EC-./(; (uoo—u)udy= F(To'l' ax—l)+vou°°
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Bernoulli’s equation may be applied along a streamline in the frictionless
flow just outside the momentum boundary layer to show that dP /dx is
zero. But dP/dy is effectively zero inside the boundary layer, so that
dP /dx is zero in this region also for this special case—namely, a flat plate
parallel to u . Furthermore, the definition of § means that (v, —u)=0 for
8 y </, so that if the fluid is Newtonian,

d r® E(a
2;](; (uw—u)udy=;(a—;) 0+uou°o (5.10)
ye

Equations 5.8 and 5.10 are the integral equations for the concentration
or mass-transfer boundary layer and the momentum boundary layer,
respectively.

When the concentration of component 4 is dilute and mass-transfer
rates are low, the corresponding concentration gradients are small. Equa-
tion 5.4 shows that v, is then slight. Attention will be confined to this
special but important case, allowing the terms containing v, to be neg-
lected in equations 5.2, 5.8, and 5.10.

The development of mass-transfer relationships will require an expres-
sion for §, the thickness of the momentum boundary layer, as a function of
x. This is obtained as follows, assuming a cubic polynomial form for the
velocity distribution in the boundary layer:

u=a+by+c+dy’ (5.11)

The boundary conditions are

9%u
y=0, u=0, (—) =0
ay2 y=0

so that equation 5.11 becomes
u 3(Y 1(y\
=-3(5)-2(3) (512)

[

Substituting equation 5.12 for # in equation 5.10 and performing the
integration and differentiation as indicated,

4 _140 B
dx 13 pu,
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and integrating with 6 =0 at x=0,

1/2
ol 4.64( s ) — 464N/ (5.13)
x pU X g

Next assume a cubic polynomial form for the concentration distribution
in the mass-transfer boundary layer, where p,, is constant:

P =Pa—Pso=a+by+ey+dy’ (5.14)

The boundary conditions are

azp/
y=0,  p=p4=0, (a;) —0
L -

Y=08, P4=PA=Paco" Pa0> (——) =0
y=3,
so that equation 5.14 is written as

’ 3
Pa _3(X\_1(Y
p;w‘z(ac) 2(6) (5-15)

c

Equations 5.12 and 5.15 are solved for u and p,, respectively, and the
results substituted in equation 5.8 with v,=0 to obtain

oe(33EHGEN] L e

The use of equation 5.12 for u in the mass-transfer boundary layer
involves the assumption that &./8 is less than unity. Then, denoting 8./8
by ¢, equation 5.16 yields

L3680 3¢%\]_ 3DPun _ 3DPus
P acle gy 20 280

25, 280 (5.17)

(4
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If the term 3¢*/280 can be neglected in comparison with 3¢2/20,

dS 202 ¢ 10D
$B G 2008 o= (5.18)
Equation 5.13 shows that
8L 10761, s2-21.53 1%
dx Pl w
and insertion in equation 5.18 leads to
> _ 0.929
344,77 _ Y
o dx Ng.
The solution is
s_ 0929 ~3/a
P = Ne, — +Cx

Suppose that mass transfer begins at distance x, from the leading edge of
the plate (8§, =0=¢ at x=x,). This permits the evaluation of C, giving

8, %o\ 41"
£ = 1/3 0
s =e=omone 1 ()]
When x,=0,

8 =86Ng'/3 (5.19)
and with equation 5.13,

8
— =4.64Ng'/’Ng.'/? (5.20)

where the factor 0.976 has been replaced by unity in view of the approxi-
mation used to obtain equation 5.18. Equation 5.19 shows that

¢=Ng'/? (5.21)

For liquids the Schmidt number Ny, is much greater than unity, while for
gases it is usually between 0.6 and 1.1 (Foust et al., 1960). The expressions
developed will therefore be valid for liquids, while any errors resulting
from application to gases should be slight.
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A local mass-transfer coefficient at the surface may be defined as

—k*= "o ___D (3{)};) =___3&)’i‘3 (5.22)
* e o\ & |0 2Pl
and inserting equation 5.20 for §,,
kyx
(Ngy) %= D =0'323N11{é,2xN;é/3 (5.23)

where (Ng,)* is the local Sherwood number. The mean mass-transfer
coefficient over the range 0<x< L is calculated as

fo “knax
L

*
" fdx
0

Substitution for k% from equation 5.23 leads to a mean Sherwood number
as follows:

*
pm

k*, L
(Ng )= —5— =0.646N LN/ (524)

The above expressions apply under the assumptions stated, provided
that flow in the boundary layer is laminar. Transition to a turbulent
boundary layer normally begins in the range 3X 105K x,u,, p/p<3 %105

It should be noted that a Blasius-type of “exact” solution to the
differential equations of the mass-transfer boundary layer on a flat plate is
available as an alternative to the approximate method given above (see,
e.g., Welty, Wicks, and Wilson, 1969). The results from the two approaches
are so close, however, as to indicate that the simpler integral method
shown here may be extended to situations not amenable to solution by the
more exact treatment.

Illustration 5.1

A plate of solid naphthalene is oriented at zero incidence to a pure air
stream flowing with a velocity of 15 ft/sec at points remote from the
surface of the plate. If the air pressure is 14.7 psia and the system is at a
temperature of 113°F, calculate the following for comparison with Illustra-
tions 5.2, 6.1, and 6.4.

(a) The average mass transfer coefficient over the first foot of plate
length.
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(b) The average rate of mass transfer per unit width over the first foot
along the plate.

(¢) The local mass-transfer coefficient at a point 1 ft from the leading
edge of the plate.

(d) The local naphthalene concentration gradient at the plate surface at
a distance of 1 ft from the leading edge.

(¢) The local thicknesses of the momentum and concentration boundary
layers 1 ft from the leading edge of the plate.

SOLUTION.  Correlations of the vapor pressure of naphthalene as a func-
tion of temperature are provided by W. J. Christian and S. P. Kezios
(4.1.Ch.EJ., 5, 61-68, 1959) and by S. Uno (Ph.D. thesis, Illinois Institute
of Technology, Chicago, 1958):

logP,=12.198—(6881/T) (Christian and Kezios)
(P, in Ib-force/ft%, T in °R),

log P; =11.84528 — (3857/ T) (Uno)
(P4 in mm Hg, T in °K)

Vapor-pressure measurements were also made on crystal reagent
naphthalene at various temperatures by C. H. Bedingfield and T. B. Drew
(Ind. Eng. Chem., 42, 11641173, 1950). For a naphthalene vapor pressure
of 1.546 Ilb-force/ft>, the above three sources indicate corresponding
temperatures of 113, 114.1, and 115.34°F, respectively.

These results show that, for the lemperature region under consideration (ca.
113°F). uncertainties in the temperature corresponding to a given vapor
pressure of naphthalene probably exceed the depression of the surface
temperature caused by sublimation. [The experiments of Christian and
Kezios (1959) and Bedingfield and Drew (1950) on this system indicate
that the temperature depression here is of the order of 1°F.] Additional
inaccuracies in the equations for heat- and mass-transfer coefficients
prevent reliable evaluation of such a small temperature depression by the
methods of Illustration 5.8. The naphthalene surface temperature is ac-
cordingly taken as 113°F. Such an assumption may be unacceptable in
some cases, however, as shown by Illustration 5.8.

SOLUTION (a). At 113°F and 14.7 psia,

14.7(144)29

p=————— =0.06935 Ib- ft3
Pair™ "1545(573) mass/

(Decimal rounding has been avoided, for the purposes of Illustration 5.2.)

Mair (113°F, 1 atm) =0.0457 Ib-mass /ft hr.
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From Illustration 3.1, since 113°F =45°C,
D=0.0687(3.88) =0.2665 ft*/hr.
The Reynolds number at L=1 ft is

1(15) (3600) (0.06935)
Nrer= 00457 — 82,000

which corresponds to laminar flow in the boundary layer. Substituting in
equation 5.24,

0.0457

0.2665 12
k*,,=0.646 82,000)"/%| ——22L
( )( ) [ 0.06935(0.2665)

1/3
] =66.8 ft/hr

SOLUTION (b). Since the gas stream is pure air, p,,,=0, and p,, is
obtained from the ideal-gas law using the saturation vapor pressure of
naphthalene at 113°F. The correlation by Christian and Kezios gives

6881
logP,=12.198 — 573 =0.1893

P, =1.546 Ib-force /ft*

_ P,M_ 1546(128.16)
P4o™ "RT T T1545(573)

Gaw =K% (1X1) (pa0— Puos) =66.8(1x 1)(0.000224—0)

=0.000224 Ib-mass /ft*

=0.0149 1b naphthalene /hr.

SOLUTION (¢) Equations 5.23 and 5.24 show that, for a given x,

k*=k*,/2=66.8/2=33.41t/hr,

SOLUTION (d). From equation 5.22,

dp, k3 (Paw—Pa0)  33.4(0-0.000224)
ay - D B 0.2665

= —0.028 Ib naphthalene /ft*
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SOLUTION (e). Equation 5.13 shows that, at a distance of 1 ft from the
leading edge,

4.64(1)
8= W =0.0162 ft

Combining this with equation 5.19,

0.0457

1/
— R =0.012 ft
0.06935(0.2665) ]

ac=o.o162[

MASS TRANSFER IN LAMINAR NATURAL CONVECTION ON A VERTI-
CAL PLATE

Density differences may be associated with variation in concentration from
point to point in a fluid. Buoyancy forces are consequently present which
lead to free or natural convection flows. The influence of such natural
convection on mass transfer may be considerable, particularly in the
absence of any forced convection. Attention will here be confined to
natural convection arising from gravitation, although it may also occur
under centrifugal effects or in an electrically conducting fluid exposed to a
magnetic field.

It is assumed that solute concentrations are low and the concentration
distribution is such that the changes in density are small in relation to the
density itself. This enables the density to be regarded as constant when it is
not introduced as a difference.

Consider a flat vertical plate where the coordinate x is measured from
the leading edge and the distance y is measured from and normal to the
plate surface. The concentration of solute (component 4) is constant at P40
along the surface of the plate and is p,,, at points remote from the plate.
Physically the situation resembles that obtained by rotating the three parts
of Figure 5.1 counterclockwise through 90°, setting u_, equal to zero, and
introducing a term for the gravitational force into equation 5.9. The
x-momentum equation for the control volume ABCD then becomes

!
> g dF, = —(gcfowdx+gc—dP dxw1+wdng pdy)
dx 0

=w%[folpu2dy] dx (5.25)
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Now

dP _ .. dpP _ _
dy —0, gc dx poog (5'26)

and at low solute concentrations a volume expansion coefficient 8, may be
defined as

=__1_ (p—ps) (5.27)
¢ P (P4 Puc)
Also, for Newtonian fluids,
ou
o=g1=p| — 5.28
gc(Tyx)y 0= 8. To p’( ay )y=0 ( )

The concentration and momentum boundary layers are considered to
have equal thickness at a given x in natural convection. This is because
density differences (giving rise to convective motion) can exist only where
concentration differences are present. Accordingly, for y>8, py=p,w
u=0. These considerations, together with equations 5.25 to 5.28 and the
assumption that p/p =1, lead to

8

(p-p )
A Ag
Z—-p,
u (0]
y -— ;———PA usugp=0

——— § ——»

Figure 5.2. Distributions of velocity and concentration in the laminar natural-convection
boundary layer on a vertical plate.
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The concentration-boundary-layer equation for negligible bulk velocity
due to diffusion (v,) is given by equation 5.8 as

8 a
%L(pA_pAm)u@=_D(aL;) (5.30)
y=0

The distribution of concentration and velocity in the boundary layer on
the plate is as sketched in Figure 5.2. The concentration and velocity
profiles will be approximated by the following expressions, which have
been used successfully in the heat-transfer analog:

2
Y
PA_PAw=(PAO_PAw)(]—§) (5.31)

which satisfies the boundary conditions
y=0’ P4~ Paco = P40 Paco

y=3, Ps " Pao=0

dp,
=5 —2-0
Y &
and
y{, »Y
u=A§(l—§) (5.32)

where A has the dimensions of velocity and is a function of x. Equation
5.32 satisfies the boundary conditions

y=0, u=0
y=34, u=0
du
=4, — =0
d dy

Equations 5.31 and 5.32 are substituted in equations 5.29 and 5.30,
respectively, to obtain

1 d pgy—_FA -
105 dx (Aa) 8 +3 eg(pAO pAoo)8 (5‘33)

©

1 d 2D
gﬁ(PAo_PAw)Z(As)=T(PAO_PAm) (5.34)
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The following functional forms are now assumed:
A=Bx" (5.35)
§=B,x" (5.36)

Inserting equations 5.35 and 5.36 into equations 5.33 and 5.34 leads to

2m+n 2 2m+n—1_ _ Bl E m—n — E& n
105 BiB,x B, px +B.8( P40 Pacs) 3 % (5.37)
m+n man-1_2D _p
30 B,B,x™*" 1= B2x (5.38)

For these equations to be valid for any x, the exponents on x must be
the same in each equation, or

2m+n—l=m—n=n

m+n—1=-—n
from which

A

m=%, n=

Substitution in equations 5.37 and 5.38 enables solution for B, and B):

-1/2 _ 1/2
B,——-5.17ﬂ(39+—"-) Feg(Pao” Pa) (5.39)
p\21 oD (n/p)

1/4 —1/4 -1/2
_ 2_0' l-" :Beg(pAO_pAoo) IJ‘
32-3.93( 0. —pD) (—————( A ) (——pD) (5.40)

The boundary-layer thickness at x is then

—-1/4

Beg( pAO_pAoo) ) x1/4

L (5.41)
(u/p)

8=3.93Ns‘c‘/2(0.952+NSC)‘/4(

Now

Bf_i(m):_ 1 (_P;Po-;) (5.42)

Py~ Paco Po \ P10~ Paco
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and dividing throughout by x,
2 393N 1720952+ N, ) VNG Y (5.43)

where Ng,,, is the Grashof number for mass transfer,

L
Ncm—(ﬂ/p)z(po 1) (5.44)

The mass flux at the surface of the plate at a given x is

. dp
’Ao=”Ao=‘D(—ayA) (5.45)
y=0

and evaluating the derivative from equation 5.31,

2D
nA0=T(pA0_pAco)=k;( PAO_PAw) (5.46)

Combination with equation 5.43 gives

*

k*x -
(Ns)t=—5- = 25 —0.508NL/2(0952+ Ny ) "/*NYS  (5.47)

This expression shows that the local coefficient of mass transfer is
inversely proportional to the fourth root of x, the distance from the leading
edge of the plate. Accordingly, the mean coefficient over the range x=0 to
Lis

1 L
:m=z A k,‘,dx=;(k;)1_L (5.48)

Equation 5.32 shows that the maximum velocity is located at y=§/3
and is given by

Up, =4 A=4Bx" (5.49)
or
- > =1/2y31/2
s = 0766 (0952+ N5, ) ™ *NY/3 (5.50)

These developments for natural convection require that the boundary
layer be laminar. It is found experimentally that, at least in the case of
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gases and liquid water, the transition to turbulent flow in the heat-transfer
analog occurs in the range

108K N, Np, < 101° (5.51)

The mass-transfer analog would be

10< Ng,p Ns. < 10'° (5.52)

Experimental data on flow transition in such mass-transfer systems are
scarce.

Illustration 5.2

A plate of solid naphthalene is suspended vertically in pure air which is
free from forced convection. If the air pressure is 14.7 psia and the system
is at a temperature of 113°F, calculate the following for comparison with
Illustrations 5.1, 6.1, and 6.4:

(a) The average mass-transfer coefficient over the first foot down the
plate.

(b) The average rate of mass transfer over the first foot from the upper
edge.

(¢) The local mass-transfer coefficient at a point 1 ft below the upper
edge of the plate.

(d) The local naphthalene concentration gradient at the plate surface at
a distance of 1 ft from the upper edge.

(¢) The local thicknesses of the momentum and concentration boundary
layers 1 ft down from the upper edge of the plate.

(f) The maximum velocity in the boundary layer 1 ft below the upper
edge.

SOLUTION. Naphthalene-air mixtures are more dense than pure air at a
given temperature. The boundary-layer flow due to natural convection will
therefore be downwards. Physically the situation resembles that obtained
by rotating the three parts of Figure 5.1 clockwise through 90°, setting u,,
equal to zero, and introducing a term for the gravitational force into
equation 5.9. In this case, however, gravity acts in the positive x direction.
Summing forces, noting that g.dP/dx=p, g, and defining j3, as (p— Po)
/p(04—P4) leads again to equation 5.29. Equation 5.47 then follows,
with

5 (Po—Pw)/Po
(r/p)

Narp
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The naphthalene surface temperature will be taken to be 113°F, as
explained in Illustration 5.1.

SOLUTION (a). From Illustration 5.1, at 113°F and 1 atm,
Pair = P =0.06935 Ib-mass/ft°, p,,=0.000224 Ib-mass /ft>

Pair=0.0457 Ib-mass /ft hr, P, =1.546 Ib-force /ft>

D =0.2665 £t /hr
SO

Pso=14.7(144) — 1.546 = 2115.254 Ib-force /ft>

2115.254(29)

= =0.06929 1b- 3
Pao 1545(573) 0.06 mass /ft

Po= P40+ P5o=0.069514 lb-mass /ft>

_ 4.17(10%)(1%) (0.069514—0.06935) (0.06935 )

Ng,p= =2215% 10
orp 0.069514(0.0457)>

N = 0.0457
> 0.06935(0.2665)

Ng:pNgo =549 10

=2.475

which corresponds to laminar flow in the boundary layer. Substituting in
equation 5.47,

0.2665
1

=6.04 ft /hr

(k%) ft=0.508( )(2.475)'/2(0.952+2.475) “*2.215%108) "4
From equation 5.48,
k*, =4%(6.04)=8.05 ft/hr
SOLUTION (b). For a plate width of 1 ft,
Law =k3(1X1) (p10— o) =8.05(1 X 1) (0.000224 — 0)

=0.0018 Ib naphthalene /hr.
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SOLUTION (¢). From solution (a),
(k’:;)x=1 =06.04 ft/hr
SOLUTION (d).

(gpi) _ ~ki(Pao=Pax) _ —6.04(0.000224 -0)
y=0

D N 0.2665

= —0.00507 1b naphthalene /ft*

SOLUTION (e). From equation 5.47,

2D 2(02665)
8—80— 7(:‘ = _W__ =0.0882 ft.

SOLUTION (f). Substitution in equation 5.50 gives

-1/2

u =0.766| —90457

6y1/2
max ———(1)0.06935 (2.215x 10 )

] (0.952+2.475)

=407 ft/hr or 0.113 ft/sec
This occurs at a normal distance of y =0.0882/3=0.0294 ft from the plate.

More refined numerical calculation procedures would reduce the inac-
curacies in these figures, occasioned by the small difference between p,
and p..

MASS TRANSFER BETWEEN TWO IMMISCIBLE COCURRENT
STREAMS IN LAMINAR FLOW

When two immiscible fluids are in cocurrent flow, the shear stresses
resulting from their relative motion cause a velocity distribution near the
interface which affects the rate of mass transfer between the two phases.
This problem was considered by Potter (1957) for the case of laminar
boundary layers on either side of a plane, stable interface. The
hydrodynamic situation is represented in Figure 5.3.

The upper and lower streams have uniform velocities u,,; and u.,
respectively, and are brought into contact at O; coordinates are taken as
shown, and the interface is a plane at y=0. The laminar momentum
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Uwz 82 u
002

Figure 53. Momentum boundary layers at the interface between two cocurrent streams.

boundary layers on either side of the interface have thicknesses &  and §,.
Equation 5.8 was applied to each mass-transfer boundary layer under
conditions of negligible v, and assuming quartic polynomial distributions
for both velocity and concentration. The approximate solutions for local
k% values in phases 1 and 2 are as follows for Ny > 1:

Khx (744 115(ug/ug,) \2( xug, py |2
(Nsw)i=—2 =( = ) ( = ) Ny (553)
1

172 1/2
o KoX [ TA(ue/Ur) +115(ug/u ;) Xty \ " NP
(NShZ )%= D = 630 i Sc2

(5.54)

where x is the distance from the initial point of contact of the streams, and
p and p’ are functions of u,,/u,, and pp,/u,pe,. Evaluation of the
interfacial velocity u, is described in the original paper. In the limiting case
of flow over a flat plate, u,=0, p=1, and equation 5.53 reduces to
equation 5.23—with a minor change in the constant because of the use of a
quartic rather than a cubic polynomial distribution for « and p 4

When uy=u,,, the upper fluid is flowing without shear; p then assumes
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the value of 1, and equation 5.53 reduces to

172 172
. =0548(9M) =054s(21) ' (5.55)
e x ’ t ’

where the time that the phases have been in contact at x is #=x/uy.
Equation 5.55 is within 3 percent of the exact value given earlier by the
“penetration theory” for unsteady-state molecular diffusion (equation

4.30):
k=2
2

Potter (1957) evaluated p, the exponent on the Schmidt group, for a wide
range of uy/u,,, and assuming N, =100. The results appear in Figure 5.4
and were considered to be accurate to about 5 percent over the range of
Schmidt numbers for liquids.

The treatment is restricted to low rates of mass transfer. Furthermore,
when Ng, is high, as in the case of liquids, §.<8. Velocities are then
relatively constant in the concentration boundary layers, and comparison
between equations 5.55 and 5.56 suggests that the penetration theory will

1/2 - D, 1/2
= 0.564( vy ) (5.56)

0.6 T T
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Figure 5.4. Exponent on Schmidt number versus relative interfacial velocity, ug/u ., (Potter,
1957).
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provide a good estimate of the local mass-transfer coefficients, if ¢ is
calculated as x/u,.

The analysis is confined to stable interfaces; unfortunately the criteria
for the instability of a horizontal interface between two liquids are not
firmly established.

MASS TRANSFER IN A FALLING LIQUID FILM IN LAMINAR FLOW

The situation to be analyzed consists of a constant-property liquid film
falling in steady laminar flow down a flat solid surface. The free-falling
surface of the film is adjacent to a gas phase. Mass transfer may occur
either between the solid surface and the film or between the film and the
gas phase. Each possibility will be examined in turn, for conditions of low
solute concentrations and mass-transfer rates, such that the bulk velocity
due to diffusion may be neglected.

Mass Transfer between an Inclined Plate and a Falling Liquid Film

The following situation is to be studied. A flat plate of width w has an
insoluble surface for x less than zero, and for all x greater than zero the
plate surface consists of material 4 with solubility ps- A film of liquid is in
steady laminar flow in the x direction down the plate, which is inclined at
an angle a with the horizontal, as shown in Figure 5.5. The velocity
gradient in the vicinity of the surface is to be taken as constant, as in the
treatments by Lévéque (1928) and by Kramers and Kreyger (1956). The
solubility of component 4 is low, so that 4 does not penetrate the liquid
beyond the region of constant velocity gradient. The customary assump-
tion is made of zero slip between the liquid and the solid surface, and it is
required to find the average rate of mass transfer between 0 and x.

The flow rate of component 4 into the shaded volume element in Figure
5.5a is as follows, neglecting molecular diffusion in the x direction:

wdyup,+wdxn,, (5.57)
and the flow rate of 4 out of the volume element is
dp, anAy
wdyu( pA+§dx)+wdx (nAy+Waj1 (5.58)
Equating and simplifying ai steady state,
0 on
uta _ T4 (5.59)

ay
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Film Surface

Liquid
Film

(b)

Figure 5.5. (a) Enlarged sketch of a falling liquid film near the surface of an inclined plate;
(b) Forces acting on an element of liquid film falling down an inclined plate.

but n,,, the flux of component 4 in the y direction, is given by

nAy= _D.E); (560)

so that the differential equation for this process is

dp4 0%,
B«,y_a; =D ayz

(5.61)
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with the boundary conditions
x=0, y>0, p,=0
x>0, y=0, p,=p%

An integrated mean coefficient of mass transfer over the range 0 to x is
defined by

ka*d

x X

k=l - D (aﬁ) dx  (562)
fdx (pA—pAoo)x o dy y=0

0

For this case, where p,, is effectively zero, Kramers and Kreyger (1956)
solved equation 5.61 to obtain

*

kX
(Ngp )%= D =0.808x(

1/3
B ) (5.63)

Dx

which is the same expression as that derived earlier by Lévéque (1928) for
the heat-transfer analog. The velocity gradient 8, will be found from the
following force balance at steady state on the fluid element in Figure 5.55:

dF,g.=w(8,—y)dxpgsina=wdxt,g, (5.64)

and for a Newtonian fluid, assuming p, u%f(p,),

. di
(Sf—y)pgsmol=,v‘tzy’i (5.65)
Integrating,
: 2
pgsina y
u= m (8;))——2—) (5.66)
The volumetric rate of flow down the plate is given by
Q=wf8fudy= iwpgsinozlif3 (5.67)
0 3p

so that the film thickness is

1/3
5= (__3"9 ) (5.68)

wpg sina
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From equations 5.65 and 5.68,

(gsine)’]”
du 3 p(gsina
=) | Npx 2 B 5.69
(), | M ] (56
where
40p
Nrer= (5.70)

Combining equations 5.63 and 5.69 gives

2/9

(5.71)

xp’gsina
(Ns,,>:,.=o.7sszv;¢;zv;z3(—2—

Equation 5.71 will apply for a film of Newtonian liquid, provided that
two restrictions are fulfilled:

1. The film is in laminar flow, so that equations 5.66 and 5.68 are valid.
2. Solute does not penetrate the film beyond the region in which the
velocity distribution may be assumed to be linear.

With regard to the first restriction, Dukler and Bergelin (1952) found
that, even at Ng,, (=4Qp/wp) of 1000, §; exceeds the value given by
equation 5.68. In contrast, Jackson (1955) found that for liquids with
viscosities up to that of water, equation 5.68 describes the liquid film
falling down a vertical wall up to Ng, of at least 4000. Many other
investigators have found equation 5.68 to be applicable up to Ny, of about
2000, although even at low N, the velocity distribution may deviate from
equation 5.66 because of rippling.

Considering both restrictions, Kramers and Kreyger (1956) found “fairly
good agreement” between their experimental values and those predicted
from equation 5.71 for Ng.,=4Qp/wp<2000. Their measurements were
on the dissolution of benzoic acid plates in falling water films, for the
conditions 5< x <80 mm, an entrance length upstream of the benzoic acid
surface of 330 mm, and angles a of 6, 45, and 80 degrees.

In many cases the length of soluble surface in the direction of flow, the
velocity of fall, or other conditions may be such that solute penetrates the
film beyond the region for which u=g,y. The appropriate differential
equation is obtained by inserting equation 5.66 for B,y into equation 5.61,
to give
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Figure 5,6. Mass transfer from a wall to a falling liquid film in laminar flow (Nusselt, 1923).

2

i 2\ 5 32
PE R (o y—L | 22— pZPa (5.72)
I dx ay?

with boundary conditions as before. Nusselt (1923) solved this equation by
a difference method for a vertical surface and expressed his results as
shown in Figure 5.6.

Experimental results frequently show mass-transfer rates that are sub-
stantially higher than predicted by these relationships based on a laminar-
flow parabolic velocity distribution. Stirba and Hurt (1955), for example,
found “considerably greater” rates of transfer than the theoretical values
down to Ng., of 300 using surface lengths of 30 to 75 in. These authors
summarize many findings of this kind, which are attributed to eddying and
turbulence within the film, associated with rippling of the free-falling
surface. It is notable that, according to Stirba and Hurt (1955), this
apparently occurs even though the overall thickness of the film may
coincide with that predicted from laminar-flow considerations.

Tllustration 5.3

A storage vessel formerly used to hold stearic acid has been converted to
contain ethanol. Intensive cleaning was undertaken before this new appli-
cation, in order to avoid contamination with stearic acid. After filling with
ethanol, however, it was realized that the inside of a vertical overflow pipe
within the vessel had not been cleaned. If the film of solidified stearic acid
on the inner wall of the overflow pipe is § in. thick, how long would it take
to remove this acid with a steady ethanol overflow rate of 4.09 ft*/hr, and
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what will be the concentration of stearic acid in the contaminated
ethanol?

The system is at a temperature of 77°F, and the overflow pipe has a
length of 10 ft and an internal diameter of 3 in. when clean.

Compare the results with those in Ilustration 6.2.

SOLUTION. The relevant physical properties at the prevailing temperature
are as follows:

pc,n,on =49.0 Ib-mass /ft?

B u,0on=2.66 1b-mass/(ft)(hr)
D=2.48x10"°ft>/hr (from Stirba and Hurt, 1955)

p*=saturation solubility=0.814 1b C, ,H; COOH/ft’ of solution in ethanol

(from Stirba and Hurt, 1955)

The density and viscosity will be regarded as constant in view of the low
solubility of stearic acid in ethanol.

According to J. A. Tallmadge and C. Gutfinger [Ind. Eng. Chem. 59, No.
11, 19-34, (1967)], thin-film flow down a vertical cylindrical surface is
hydrodynamically equivalent to that down a vertical flat plate when the
Goucher number N, is greater than 3. In the present case, using the initial
or minimum radius of the coated pipe and cgs units,

og \!/? (0.785)981 1"
Noo=r| 22} =349 2| =1465
Go "(20) { 2(21.85)

where o is the surface tension. Evidently the thin-film flow of ethanol
down the inner wall of the overflow pipe is equivalent to that on a vertical
flat plate.

40p  4(4.09)49

N A0 =400
Refav™ Yy b 7(2.875/12)2.66

where w,, =T (dinitia1 + Difina) / 2-

Equation 5.71 requires that solute should not penetrate the film beyond
the region of linear velocity gradient. It is therefore restricted to short
contact times, for which experimental confirmation was obtained by
Kramers and Kreyger (1956) and by Oliver and Atherinos (1968). In both
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investigations the soluble plate length did not exceed about 3 in. in the
direction of flow. In the present case, with a soluble length of 10 ft, the use
of Figure 5.6, corresponding to equation 5.72, is more appropriate. As
noted in the text, however, the application of Figure 5.6 using the molecu-
lar diffusivity to evaluate the abscissa results in an underestimate of the
rate of transfer because of some degree of turbulence within the film
associated with waves and rippling of the free surface. It is therefore
proposed to replace D in the abscissa of Figure 5.6 with an “apparent
diffusivity,” D,, read from Figure 5.7. This plot represents the correlation
obtained by Stirba and Hurt (1955) from the application of Figure 5.6 to
measurements of solid dissolution, and equations 5.75 through 5.77 to
measurements of gas absorption, in vertically falling liquid films. Thus for
Nges,ov Of 400, Figure 5.7 gives

D,=13x10" ft*/hr

which exceeds the molecular diffusivity for this system by a factor of 5.24.
From equation 5.68,

3
8 0= 3(2.66)4.09 ’ =0.001285 ft
vl £(2.875/12)(49)(4.17%x10%) |
and
D,x  (13X107°)(2.66)10 00622

p3%g  49(0.001285)*(4.17x 10°)
The corresponding ordinate of Figure 5.6 shows that

Pap ™ P4i _ _ P4p—0
P~ P4 ’ 0.814—0

SO

p.5=0.293 1b C,,;H,; ,COOH/ft? of solution in ethanol.

This will be the average concentration of stearic acid dissolved in the
ethanol leaving the overflow pipe. The average dissolution rate is estimated
as 4.09(0.293)=1.2 Ib C,,H,;COOH /hr.

Taking the density of stearic acid to he 53 Ib-mass/ft?, the amount
initially present is

7 (322752

Z(—T)lo(sa) =4.16 Ib C,,H, ,COOH
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Figure 5.7. Apparent diffusivities causing Figure 5.4 to fit measurements of solid dissolution,
and equations 5.75 to 5.77 to fit measurements of gas absorption, in vertically falling liquid
films (Stirba and Hurt, 1955).

The time required for the removal of this acid by dissolution in the
falling film of ethanol is therefore estimated to be

416 _ 3 47hr

1.2

Small amounts (<0.05 percent) of a wetting agent were used in some—
though not all—of the runs with the organic-acid-water systems in prepar-
ing Figure 5.7. Furthermore, the presence of a free surface means that the
characteristics of a falling-film flow may depend on the Reynolds, Weber,
and Froude numbers of the flow, rather than on the Reynolds number
alone (Fulford, 1964). These considerations suggest the need for further
study before Figure 5.7 is accepted as having general validity. In any event,
it will be appreciated that the transport properties of a falling liquid film
may be influenced by variations in velocity of the adjacent gas phase.
Hikita et al. [Chem. Eng. (Tokyo) 23, 459, (1959)] found no effect of gas
velocity on mass transfer in the film for gas Reynolds numbers Ng,
below 7000. Oliver and Atherinos (1968), however, found some effect of
countercurrent gas velocity on liquid-film absorption rates at gas Reynolds
numbers of 6000, although the influence up to Ng.,=32,000 was de-
scribed as “modest.” According to Stirba (private communication, April 7,
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1971) the gas Reynolds number in the CO, absorption runs of Figure 5.7
was about 700 (CO, velocity =0.75 ft/sec at 1 atm and 30°C).

The calculation presented here has neglected the effects of the entrance
length within which the velocity profile of the falling film is established.
Interpolation between the measurements of entrance length made by S. R.
Tailby and S. Portalski [Chem. Eng. Sci. 17, 283-290, (1962)] for methanol
and isopropanol in vertical film flow suggests that, for a film Reynolds
number of 400, the entrance length in the present case is of the order of 3
to 4 in.—that is, less than 3.5 percent of the total length over which mass
transfer occurs.

Mass Transfer between a Gas Phase and a Falling Liquid Film

Consider now a situation that could be of importance, for example, in gas
absorption in a wetted-wall column for a system in which the controlling
resistance is in the liquid phase. For such a case it would be appropriate to
assume that the solute concentration at the free-falling surface is constant
at p%. It is further assumed that concentrations of A are low, so that
diffusional velocities normal to the wall are effectively zero, and that
diffusion in the x direction is negligible compared to transfer by convective
motion. Consequently, for a parabolic velocity distribution in the film, the
appropriate differential equation is conveniently written as

8,~»\'a 92
Unax 1_( ! y) Pa =D 0a 2 (573)
T ay)

where u,,, is the velocity of the free-falling surface, shown by equation
5.66 to be

: 2
_ pgsinad;

o (5.74)

umax

The inlet concentration of the liquid is constant at p,;, and Johnstone and
Pigford (1942) provide the following solution to equation 5.73 for a vertical
film:

— n* 0
Pan Pt _ S pehT (5.75)

o
Pa ;2
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where the constants for the first four terms are given below:

J % B

1 0.7857 5.1213
2 0.1001 39.318
3 0.03599 105.64

4 0.01811 204.75

and

-4/3 1 1/3

4 3.2

T DX =2.9351(—Qp) (-”—) ~£2 (5.76)
87t pax Wi pD p

in terms of the same groups as in equation 5.71. For low values of T,

%
‘;‘B_gf —1- \/3_ VT (5.77)
Ai A w

An average mass-transfer coefficient over the gas-liquid interface may
be evaluated in the following manner. A balance on solute 4 absorbed by
the film over the differential distance of fall, dx, is

”avwsfdPQB =k%(p%—p4p)wdx (5.78)

where u,, is the average velocity in the film, evaluated with the aid of

equation 5.66 as
1 [ pgsina (¥ y?
uy=1 (80~ %) (5:79)
f p o

Integrating and dividing by equation 5.74 shows that

Mav _ 2
3

- (5.80)

max

Equation 5.78 may then be integrated to give the mean Sherwood number
as

(N )* _ k:mx _ _2— umaxsf In P:'; T
Sh/ m D 3 D P; — P45

(5.81)



140 Mass Transfer in Laminar Flow

At low rates of flow (Nres<100), only the first term of equation 5.75 is
significant. Combination with equation 5.81 gives

‘ 2“max8f 512137
(Nsw)m=3 D o757

O

umax

D

S

=341% (5.82)
6f

I
wiN

Dix
0.241+5.1213
(sfzumax)

where 8, is given by equation 5.68. The coefficient k%, is used in the
following expression for the mass transferred across the total interface:

%umuwsf( pAB_pAi) =k;mwx( P; _pAB)“mea.n" (583)

Equation 5.81 is solved for k%, and the result inserted in equation 5.83
to reveal that

(% —P4:) — (0% —p45)
In[(p%—p4)/( P%—045)]

(5.84)

(P% = PuB) “mean”=

Although results analogous to equation 5.82 are available for high film
Reynolds numbers (Sherwood and Pigford, 1952), they are largely of
academic interest only. This is because of the appearance of readily visible
waves on the film surface when the Reynolds number Ny attains the
order of 20 (Tailby and Portalski, 1960; Fulford, 1964, pp. 186-189). In
consequence, substantial increases in mass transfer occur over that pre-
dicted for films in smooth laminar flow (Fulford, 1964, pp. 198-200).
Stirba and Hurt (1955) summarize many such findings, which are attri-
buted to the increase in the free surface and the partial turbulence within
the film associated with the waves.

Hlustration 5.4

Water at 86°F flows steadily in a thin film down the inside wall of a
vertical, 2-in.-i.d. tube. Pure carbon dioxide flows countercurrently up
the tube at an average velocity of 0.25 ft/sec. Estimate the absorption rate
for a tube length of 3 ft when the water rate is 4 ft>/hr, the average CO,
pressure is 1 atm, and the water is initially pure.
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SOLUTION. The relevant physical properties are as follows at 86°F:
pu,0=62.2 Ib-mass /ft’
faz,0=1.935 Ib-mass/ft hr
D=93x%1077 ft?/hr (from Stirba and Hurt, 1955)
p* =saturation solubility =0.0817 1b CO, /ft? of aqueous solution
(calculated from Perry, 1963, p. 14-4)

As described in Illustration 5.3, film flow on a vertical cylindrical wall is
equivalent to that on a flat plate when Ng,> 3. For the present case, using
cgs units,

172
1/2
o2 (0.996)981
() —2sa| = | -66
Neo "(20) 254[ 2(71.18) >

where o is the surface tension.

N 400 _ 4(4)(622)  _
RS wu  w(2/12)(1.935)

At this Reynolds number the presence of waves and rippling on the
surface of the film will enhance the rate of absorption over that which
would be calculated from equations 5.75 and 5.76 using the molecular
diffusivity. These expressions will therefore be employed with the
“apparent diffusivity” D, read from Figure 5.7 in Illustration 5.3. Thus for
Ngos=982, Figure 5.7 gives D,=18X10"> ft’/hr, which exceeds the
molecular diffusivity for this system by a factor of 1.936. From equation
5.68,

3(1.935) (4) "

5= =0.001196 f
71 w(2/12)(62.2) (4.17% 10%) o6t
Equation 5.74 for this case is
62.2)(4.17 x 10%) (0.001196)°
_ (&22)( )( ) =9560 ft/hr

“max 2(1.935)
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From equation 5.76,
(18X 10%)(3)
" (0.001196)%(9560)

Substituting in equation 5.75,

— X

——’;”” : 2 =0.7857exp[ —5.1213(0.0395) ] +0.1001 exp [ —39.318(0.0395)]
Ai — P4

+0.03599 exp [ — 105.64(0.0395) ] +0.01811 exp [ —204.75(0.0395) ]

=0.664
Alternatively, since T is small. equation 5.77 gives

Paz~ P% —1_3
Pai—P% Vo

v0.0395 =0.664

and because p,; =0,

0.5 = (1-0.664)p% =0.336(0.0817)
=0.02745 Ib CO, /ft> of aqueous solution

The absorption rate is accordingly estimated as 4(0.02745) or 0.1098 Ib
CO,/hr.

The gas flow conditions here are comparable to those for which Figure
5.7 was established, and therefore modify the estimated absorption rate to
a negligible degree.

MASS TRANSFER IN LAMINAR FLOW THROUGH A TUBE

The analogous case of heat transfer to fluids in either laminar or turbulent
flow through tubes is of enormously widespread occurrence in an extensive
diversity of processing equipment, including condensers, heat exchangers,
and evaporators. The study of mass transfer inside tubes may be similarly
justified by a large range of applications, some of which are indicated
below. Flow may be either laminar or turbulent in many of these examples,
depending upon operating conditions.

1. Transpiration and film cooling is used to protect surfaces of combus-
tion chambers and ducts exposed to very hot gases, as in jet engines and
rocket motors. In film cooling, streams of gas (or liquid) are blown through
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slots in a direction tangential to the wall. The mass flow of coolant away
from the wall partially reverses the direction of heat transfer in the vicinity
of the solid surface. When a liquid film is used, mass transfer takes the
form of evaporation from the liquid surface. A more even film is obtained
in transpiration cooling, where the coolant flows through pores in a porous
wall. (See, e.g., Knuth, 1954, 1955; Kinney et al., 1952; Hartnett and
Eckert, 1957; Zucrow and Sellers, 1961.) In ablation cooling part of the
solid surface evaporates into the adjacent gas phase, thereby cooling the
rest of ‘the surface by absorption of the latent heat of vaporization and
convective transport.

2. Gas-liquid wetted-wall columns have been widely used, particularly
in experimental studies on gas absorption (e.g., Vivian and Peaceman,
1956), distillation (e.g., Kaiser, 1961), and humidification (e.g., Cairns and
Roper, 1954).

3. Liquid-liquid wetted-wall columns have been investigated during
work on extraction (e.g., Murdoch and Pratt, 1953).

4. Falling-film evaporators are employed to concentrate heat-sensitive
substances, which flow in thin films down the inside of heated tubes.
Evaporation occurs from the film into the gas core (e.g., Moore and
Hesler, 1963; Sinek and Young, 1962). ‘

5. Thin-film reactors are utilized to provide close control of highly
exothermic reactions, as in the sulfation of liquid alcohols with an SO;—
inert-gas mixture to produce detergent components (e.g., Hurlbert, Knott,
and Cheney, 1967). Related reactions in an annular reactor are described
in U.S. Patent 1,029,029.

6. Corrosion problems are commonplace in pipelines. Allowance for
appreciable corrosion may be incorporated in the design thickness of the
pipe walls (e.g., Perry 1963, p. 23-5).

7. Oxygenation and other mass-transfer processes occur during blood
flow, both in vivo and in artificial blood oxygenators used to exchange
CO, for O, during open-heart surgery (e.g., Landino et al., 1966).

8. Scaling, salting, and fouling of tubes is a progressive mass-transfer
phenomenon during the operation of most evaporators (e.g., Perry, 1963, p.
11-25).

9. Descaling of evaporator tubes with appropriate chemic?’ .ulutions is
often practiced and relies in part upon diffusional and convective mass
transfer (e.g., Badger and Banchero, 1955).

10. The condensation of mixed vapors, which may be either partially or
totally condensible, is frequently encountered in many industrial and
laboratory processes. As an example, the work of Estrin, Hayes, and Drew
(1965) may be noted, in which a study was made of the condensation of
mixed acetone and toluene vapors in an annulus.
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11. Desalination of seawater may be performed by reverse osmosis
during flow in tubular membranes (Sourirajan, 1970, Chapter 4).

12. Hemodialysis is carried out in the artificial kidney using tubular
dialyzers for which optimum dimensions are presented by Wolf and
Zaltzman (1968).

The developments to follow will be restricted to low solute concentra-
tions and transfer rates to permit analogy with the corresponding heat-
transfer processes.

The differential equation expressing the overall continuity of matter in
flow through a tube may be formulated with reference to the annular
differential element of volume 27rdrdx shown in Figure 5.8.The flow rate
of mass into the volume element is

2mrdrup +2ardx vp (5.85)

The flow rate of mass out of the volume element is

d b
2ardr(up+ 2 4\ 4 2max rop+ 2% (5.86)
ox or
The rate of accumulation of mass in the volume element is
dp
2nrdrdx T (5.87)

The rate of flow in equals the rate of flow out plus the rate of accu-
mulation, from which

. d(up) d(rop)  3p

T +ra-=0 (5.88)
Tube *VQ Y dr
U,p —fS NN J— ""ou dx, p + 3 9%
Qv r r+dr
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Figure 58. Flow through a cylindrical tube.
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Expanding and dividing by 7,

du , v, 0o dp dp  p
p( +r+8r)

I tum +v§+§t—=0 (5.89)
For steady-state conditions, 3p/d¢=0. For constant density, under condi-
tions of either steady or unsteady state, the continuity equation 5.89
becomes

du , v, dv

—_— 4 = + — = 5-

ox r Or 0 (5.90)

The differential equation describing the axial and radial distribution of

concentration of solute component 4 in a binary system is derived as
follows for constant diffusivity and density. Consider a fluid in laminar
flow through a cylindrical tube, where component A4 is being transferred to
the fluid from the tube walls which are at concentration p,. The con-
centration of A4 is p,=f(x,r) and a balance may be made on 4 with
reference to the annular differential element of volume 27rdrdx shown in
Figure 5.9. The flow rate of 4 into the volume element is

a (rnAr)
2ardrn,, +2n|rm,, + P dr)dx (5.91)
The flow rate of 4 out of the volume element is
on,,
2ardr|ng, + _é_x—dx +27rn,, dx (5.92)

The rate of accumulation of 4 in the volume element is

ap.
2mrdrdx —éti (5.93)
Tube 2
’v+ 0\: dr ap
up K W—-uﬂgu dx, p + af dx
t, r r+dr
_—_—_,"A -t % — —
na, NS NNNNN LV W X dx
* I—!n +bne[ !
: Ar " 9ar dr !
Tube X x+dx

Figure 59. The distribution of component 4 entering the fluid from the walls of a tube.
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where
)
n, = D% —op, (5.94)
3
My = —D% +up, (5.95)

The rate of flow in equals the rate of flow out plus the rate of accumula-
tion, from which

a (rnAr)
ar

on,, + dp,

i R
r

ox ot

(5.96)

Equations 5.94, 595, and 5.96 may be combined and the indicated
differentiations performed to give

dp, dp, Op, (au v 80)
a5, P4 —+

“ax T T tel e tr S,

I

%, . 1 dp, 3%,
D[ 2 +;?+§ (5.97)

When steady-state conditions prevail, dp 4/ 3t=0. For a constant density,
equation 5.90 shows the quantity in parentheses on the left side of equation
5.97 to be zero, so that at steady state,

I, . dp, %, 193, 3%,
u;; +Da——D Py +77"—+a—x2 (5.98)
If axial diffusion can be neglected, 3%, /3x*=0 and
9, dp, %, 1 3p,
uW +Uw—D o +;-5T (599)

At points sufficiently far from the tube entrance the velocity distribution is
fully developed, so that v=0. In this case,

(5.100)

“ox a2 | r or

Ip, =D( 3%, L1 3PA)
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Equation 5.99 or equation 5.100 is usually solved with either of two
common boundary conditions:

(a) Uniform wall concentration along the tube [ p p # P (X))
(b) Uniform mass flux at the wall [n,, 71,y (x)]-

Solutions in terms of boundary condition (a) (uniform wall concentra-
tion) are often expressed as average Sherwood numbers over the mass-
transfer section of the tube. These values are used to obtain the total
transfer over a given length and the bulk average concentration at distance
x along the mass-transfer section of the tube.

Solutions for boundary condition (b) (uniform mass flux at the wall) are
frequently given as local Sherwood numbers at x. The specified uniform
mass flux at the wall enables the average or “mixing cup” concentration at
any x to be obtained by a simple mass balance on component A. The local
value of the Sherwood number then allows estimation of the local con-
centration at the wall, since

nywd,

_— (5.101)
( pAW—pAB)D

(NSh)§=

Various degrees of velocity- and concentration-profile development may
be identified, depending on the distance downstream from the tube en-
trance at which mass transfer is being considered. The development of the
velocity distribution in the entrance region is shown in Figure 5.10.

At the tube inlet the fluid velocity is equal to ¥ at all radii. The
thickness of the momentum boundary layer is zero at the entrance,
increasing with distance downstream. Retardation of fluid in the boundary
layer is accompanied by acceleration of the axial core, so as to satisfy

Entrance Velocity Is V Tube
VA /
¢ - - S T = - —t
e 1 K 1
Entrance Edge of ] MomenfumX Fully Developed A
Momentum  Boundary Velocity Profile
Boundary Layer
Layer Thickness

Figure 5.10. Development of the momentum boundary layer and velocity profile for laminar
flow in the entrance region of a tube.
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Figure 5.11. Development of the concentration boundary layer and profile for laminar flow
in the entrance region of a tube. Transfer is from the tube walls to the fluid.

continuity. The flow is said to be fully developed at all points beyond that
at which the boundary layer converges on the centerline.

Similar considerations apply to the development of the concentration
profile, shown in Figure 5.11 for the case in which mass transfer is taking
place from the tube walls to the fluid, with transfer beginning at the
entrance. In general the thickness of the concentration boundary layer is
not the same as that of the momentum boundary layer, except when the
Schmidt number is unity.

The following are among the combinations of velocity- and con-
centration-profile development which may be encountered:

1. Developing velocity and concentration distributions. These conditions
prevail near the inlet to a tube when mass transfer begins at the entrance.

2. Fully developed velocity distribution and developing concentration distri-
bution. This set of conditions arises when the mass-transfer section is
preceded by a length of tube in which the velocity profile is established
without mass transfer. A hypothetical variant of these conditions, which
lends itself to analysis, is one in which a uniform-plug velocity distribution
prevails throughout the mass-transfer section of the tube.

3. Fully developed velocity and concentration distributions. These condi-
tions are found at locations far downstream from the entrance to the tube
and to the mass-transfer section.

Each of these three combinations of velocity- and concentration-profile
development may be solved either for boundary condition (a) (uniform
wall concentration) or for boundary condition (b) (uniform mass flux at
the wall). These solutions will now be presented in turn. They are largely
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adapted from the analogous heat-transfer relationships, and accordingly
require low concentrations and transfer rates, such that the bulk velocity
caused by diffusion is negligible.

Developing Velocity and Concentration Distributions

These conditions represent a combination of Figures 5.10 and 5.11 in the
entrance region of the tube, where the momentum and concentration
boundary layers are developing simultaneously.

Uniform Wall Concentration

Even in the entrance region the term vdp,/0r in equation 5.99 becomes
negligible within a very short distance beyond the inlet. This term was
accordingly omitted by Kays (1955), who used Langhaar’s (1942) develop-
ing velocity profiles in a numerical integration of equation 5.100 for this
boundary condition and a Schmidt number of 0.7. The solution was
extended with a digital computer by Goldberg (1958) for Schmidt numbers
between 0.5 and 5.0. Figure 5.12 has been prepared from the tabulated
results of Goldberg; the ordinate gives the average Sherwood number for
use with the logarithmic-mean concentration difference between the wall
and the bulk of the fluid over the mass-transfer section in question. The
abscissa is 1/x,, where x, is a dimensionless distance along the tube,

defined as
a¥p p
_— 5.102

Figure 5.12 includes curves for a uniform-plug velocity distribution and
for a fully developed parabolic velocity distribution throughout the mass-
transfer section, corresponding to relationships developed in the next
section of this chapter. Asymptotic values of the Sherwood number for
fully developed velocity and concentration distributions far downstream
are also shown. These values are derived in a later section of this chapter.

Figure 5.12 shows that, for given values of Ng, Ng., and x/r, the
Sherwood number for a developing velocity profile exceeds—or at least is
equal to—that for the case of a fully developed parabolic velocity profile
throughout. This is because the velocities in the vicinity of the wall are
greater for the developing velocity profile than for the fully developed one.

For decreasing Schmidt numbers, conditions in the entrance region
approach those for a uniform-plug velocity distribution, whereas high-
Schmidt-number fluids approach conditions corresponding to a fully de-
veloped parabolic velocity distribution throughout. The latter conditions
are approximated by all fluids at points far enough from the entrance.

x/r,
NReNSc

=

X+

-~
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Figure 5.12. Average Sherwood numbers for mass transfer in laminar flow through a tube
with uniform wall concentration (Goldberg, 1958).

Uniform Mass Flux at the Wall

Solutions to equation 5.99 for this boundary condition are shown in Figure
5.13, which has been prepared from the tabulated results of Heaton,
Reynolds, and Kays (1964). The figure gives local Sherwood numbers (for
use in equation 5.101) as a function of 1 /x4, where x, is defined in
equation 5.102. Also shown in Figure 5.13 is the asymptotic value of the
Sherwood number for fully developed velocity and concentration distribu-
tions, as derived in a later section of this chapter.

It may be noted that the Schmidt number of 0.01 is unrealistically
low—the results were developed for heat transfer, in which Prandtl num-
bers of about 0.01 are commonplace for liquid metals. The curve for
Ns.=0.01 is retained here to indicate trends and to facilitate interpolation.

Uniform-Plug Velocity Distribution and Developing Concentration Distri-
bution
Uniform Wall Concentration

Solutions to equation 5.100 may be obtained by a procedure analogous to
that used by Graetz (1883, 1885) for heat transfer, assuming that all
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Figure 5.13. Local Sherwood numbers for mass transfer in laminar flow through a tube with
uniform mass flux at the wall (Heaton et al., 1964; lowest curve: Seigel et al., 1958).

relevant physical properties remain constant, p,, is independent of x, the
velocity profile is fully developed when mass transfer begins, and the
concentration at the inlet to the mass-transfer section is uniform at p;.
Following Graetz, two cases may be considered: plug flow, and fully
developed flow with a parabolic velocity profile. For illustrative purposes
the plug-flow case will be considered first in some detail. For plug flow,
equation 5.100 becomes

%4 _D|%%Pa, 10
X Vi or r or
or
9 _D|3% 1030
E_V[a +r r] (5.103)
where
9= Paw — Py
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The boundary conditions are
6=0 at r=r, for x>0
0=10 at x=0

Following conventional procedure, assume a solution of the following
form in order to separate the variables:

6(r,x)=R'(r)X'(x) (5.104)
where R’ is some function of  only, and X’ is some function of x only.
Then clearly

’ ’ 2p’

a0 R,d_X_ a9 _ ,d_R- 820=X,dR

x dx’ o ar’ o dr?

Substituting into equation 5.103 and rearranging,

’ 2p7’ ’
vV 1 dx 1[dR+1dR] _p (5.105)

DX dx R dar* r ar

The definitions of R’ and X’ imply that the left side of equation 5.105 is
independent of r, while the right side is independent of x. Both sides
therefore equal a constant, denoted by — 5% From the first of the two
resulting differential equations,

X’=exp(—%b2x) (5.106)
The second differential equation obtainable from equation 5.105 is
2p/
dr? rodr

This is Bessel’s equation of zero order (Li, 1960, p. 328) and, for the
boundary conditions

a0 _ dR’ —0— R’ _
(a")r-o_o (dr )r=, 0=0=R"atr=r,

the particular solution is (Li, 1960, pp. 328-330)

R'=A4J,(br)
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where J(br) is a series—namely the Bessel function of the first kind of
order zero. The boundary condition R'=0 at r=r, shows that (Li, 1960,
pp. 328-330)

Jo(br,)=0 (5.108)
so that the constant b is a root of equation 5.108. If these roots are denoted
by bl,bz,b:,,...,bj,...,the solution of equation 5.107 is

=]
R'= AJ,(br) (5.109)
j=1

The constants A; will next be evaluated from the boundary condition
9=1 at x=0. First, one can show that (Churchill, 1941)

f Wo(br)o(br)dr=0  if j#k (5.110)
0
and

=47t (br,) if j=k (5.111)
where J, is the Bessel function of the first kind of order 1. Now consider
the multiplication of equation 5.109 by rJ(b;r), giving rR'J (b;r). Although
the entire series is involved in this multiplication, equation 5.110 shows

that the product of r/y(b;r) and all but the jth term is zero. Thus,
integrating,

];rR’JO(bjr)dr=Ajf0 rJ§(b;r)dr
— 4, x 3272 (8

after invoking equation 5.111. Rearranging,

2 "
A=——"——| rRJ,(br)dr
/= iy h

Now at x=0, #=1=R’, and from the definitions of J, and J, (Apostol,
1961) it is evident that

r r
fo Ho(br)dr=7-J,(byr,)

J
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so that

2 1
A==
! bjr' ']l(bjrt)

and inserting this result in equation 5.109,

o0

2,o(br)
R'= 2 — (5.112)
1 bjrtJl(bjrt)

Combining equations 5.104, 5.106, and 5.112,

Z b2 (5.113)

V7

g Paw=pa _ S 2 Jo(br) (- Ho)
Paw — Pai jzlbjrf‘]l(b )

Let aj=bjr,; then since
_ a’Dx _ 2a’(x/r,)
vr? NgeNse

it follows that

o0

Paw —Pa _ 2 2 )Jo(ajf)exp( —2",-2()6/’,)) (5.114)

Paw — Pai =1 ale(aj NgeNs.

where g; is the jth root of equation 5.108—that is, Jo(a)=0. Li (1960, p.
330) cites the following values for the first five roots: a, =2.405, a,=5.520,
a,=8.654, a,=11.792, a;=14.931.
Equation 5.114 gives the point value of p, at (x,7). The bulk average or
“mixing cup” value of p, at a given x is

0]
f p u2ardr
0

- (5.115)
f uardr
()

P4p=

but for plug flow, =V at all r, so that

2
“=7fo prdr (5.116)
[4
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The value of p,j is obtained from a combination of equations 5.114 and

5.116, to give
Pap — Pai —1= Paw — PaB
Paw — Pai Paw — Pai
j= 2
—2a*(x/r)
=1-4 D, a Yexp| ———
Z 4 p( NReNSc

(5.117)

A plot of (psp— P4)/(Paw = Pai) VETSUS (/4)(d,/ x)NgNs, obtained in
this way for plug flow is shown in Figure 5.14. Data plotted at the top left
of this figure were obtained by Gilliland and Sherwood (1934) for the
vaporization of eight different liquids in a wetted-wall column at low air
rates. Although these data fit the curve for plug flow rather well in this
region, Boelter (1943) has explained this surprising result in terms of
distortion of the more probable parabolic velocity profile by natural
convection effects.

Data at the higher values of (7/4)(d,/x)Ng.Ns. agree with predictions
for a parabolic velocity distribution and will be considered later. It may be

noted that

j0-3
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T d,N _
4 x ReNSc_ pr

W
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Figure 5.14, Mass transfer in laminar flow through a tube with plug and parabolic velocity

distributions (Linton and Sherwood, 1950).
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where W is the mass flow rate. The group W/pDx is evidently the
mass-transfer equivalent of the Graetz number, ch /kx, used in heat
transfer. Figure 5.14 shows that for W /pDx greater than about 100 the
plug-flow solution is linear with a slope of —} and may evidently be
represented as follows:

Oun—pa -1/2
48— L =4( W) (5.118)

Paw —Pqi pDx
The local coefficient of mass transfer at x is defined by the following
differential mass balance:

wd? .
4 Vdp,p= kp (wd,dx) (pAW_pAB)

or

24 d, dp 1
N, := [4 '=—'N AB
(Nsu) D 4 RS gy (Paw—p45)

(5.119)

Equation 5.119 is used with p,, obtained from equations 5.114 and 5.116
to give the local Sherwood number as

2” ~24%(x/r))

S T N
Ng )= ——= 5.120
(Nsu)3 S (5.120)

Equation 5.120 is plotted as curve 1 in Figure 5.15.

An average mass-transfer coefficient k%, between the inlet and the outlet
of the mass-transfer section may be defined in terms of an arithmetic-mean
driving force as follows:

d;? —p4)+ -
WT’V(pABO_pAi)=k:a(‘”dtL) (Paw—04) 2(PAW Pano) (5.121)
or
k* d d 2 —p,. —-p,.
(Ng, )%= pa '=l(—t)NReNSc (pABO P4i)/ (Paw Pa;) (5.122)
D 4\L 2—(pABO—pA:’)/(pAW—pAi)
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Figure 5.15. Local Sherwood number for mass transfer in laminar flow through a tube with

uniform wall concentration. Curve 1: Plug flow. Curve 2: Fully developed parabolic velocity
distribution.

so that from equation 5.117,
_ jmoo
—2a*(x/r
1—42 a; *exp — (x/r)
1 d' j=1 NReNSc
(Nsh)2= E(Z)NReNSc = (5'123)
1+4 2 exp __—_2¢1j2(x/r,)
NReNSc
B _

The first five values of g; are given below equation 5.114. Equation 5.123 is
shown graphically as curve 3 in Figure 5.16.

An alternative form of average mass transfer coefficient k%;\ may be
written for use with the logarithmic-mean concentration d1fference over
the mass-transfer section; thus

nd} (paw=Pai) = (Paw—Paso)
_4't V( pABO_pAi)=k;LM(7rdtL) A LA
( Paw ~ Pai )
In{f —m
Paw — PaBo

(5.124)
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or

Paw — Pai )

1
N, N ln(
) Rel"Se Paw ~ Pano

&

kymd
(Ngp)im= pD =Z(

and after combination with equation 5.117,

-1

kbd, 1[4 V(2@
(Nsn)im= pD =z(z')NR3N5cln 4Zajzcxp NNy

j=1
(5.125)
This relationship is plotted as the top curve in Figure 5.12 for compari-

son with solutions for the case of simultaneously developing velocity and
concentration profiles.
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Fully Developed Parabolic Velocity Distribution and Developing Con-
centration Distribution

Two different boundary conditions will be considered in turn for the
situation in which the parabolic velocity profile is fully developed at the
entrance to the mass-transfer section. The first consists of a uniform solute
concentration along the wall of the tube [ p, 7 p u (x)]. The alternative
boundary condition, that of uniform mass flux at the wall [n,,,#n,,(X)],
is encountered more rarely, and in consequence only the final results of the
analysis will be presented for this case.

Uniform Wall Concentration

The complexity of analysis is increased in this situation because of the
replacement of plug flow by a fully developed and constant parabolic
velocity profile. Other assumptions are the same as in the plug flow case.
The original analysis for heat transfer by Graetz (1885) has been recalcu-
lated and extended by many investigators, including Drew (1931), Jakob
(1949, p. 451), and Sellars, Tribus, and Klein (1956). Perhaps the most
detailed restatement of the development is that given by Boelter, Cherry,
and Johnson (1937), a highly condensed version of which is given here in
order to clarify the analytical procedure.

Inserting the parabolic velocity distribution for u into equation 5.100
gives

i D [ Pou 4 1 aﬁ} (5.126)

o ap{i-(r/r)’]| ¥* 7 O

It is convenient to express this relationship in dimensionless form as
follows:

a4 3% . 1 09
- =— 4+ —— 127
(1-A) =T LY (5.127)
where
9=M (5.128)
Paw ~ Pai
r+=rL (5.129)
4
N4/ (5.130)
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The boundary conditions are
é(r,,0)=1,

6(1,x,)=0,
a0 _
'a_r:(o’x+)—0>

6(r,,0)=0.

As in the case of plug flow, an application of the technique of separation
of variables,

0(’+’x+)=¢(r+)r(x+)

in equation 5.127 leads to a simple first-order ordinary differential equa-
tion in T' and to a boundary value problem of the Sturm-Liouville type for

#(r ), namely

d 1 dp N
E*‘;:I"'.B (1-r3)¢=0
¢(1)=0
do(0)
dr, =0

If the eigenvalues of this system are labeled B,,BZ,B3,...,[3j,... in in-
creasing order and ¢;(r,) denotes the eigenfunction corresponding to B,
then the solution for the concentration distribution must accordingly be of
the form [Drew, (1931, p. 65), Jakob, (1949, p. 453), Boelter, Cherry, and
Johnson, (1937, p. X-21, Eq. Xd.-20)]

— Jj=0o0
0(rvix, )= 2224 S Bo(r,)exp(~Bx,)  (5.131)

Paw —Pai  j4

The coefficients B; in this expansion may be calculated from the equation

Jj=o0
1= 2} Big,(r,) (5.132)
j=

which results from requiring the series in equation 5.131 to satisfy the
boundary condition ¢(r,,0)=1. Both sides of 5.132 are multiplied by
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¢, r(1—7r% ) and then integrated with respect to r, from 0 to 1 to obtain

1
forq=rya, )
B=-Y = (5.133)
f<1>,-2'+(1“’i)d’+ B; 24:
0 7 aB =
The calculations utilize the following integral relations used by Graetz:
0 forj+#k,
1
j(;¢1¢kr+(1—r2+)dr+= 1 _d—dl 8_4’ for j=k
2B;| dr, .\ 9B/,
Jlr,=1
(5.134)
1 1 do,
— 2 - | L
j(; or . (1=r%)dr, B]?(dr+ ),+_[ (5.135)
The function ¢; may be represented by the infinite series
%(r+)= ‘20 ajiri- (5.136)
=

where

;= —,sz(a,._z—a,._‘,)/iz

The eigenvalues can be calculated from equation 5.136 using a trial-and-
error procedure. The method has been described by Brown (1960), who
outlines a digital-computer program for the evaluation of the eigenvalues
B, the eigenfunctions ¢; for 0<r, <1, and the derivatives (3¢/38); ,, -
and (d¢;/dr.),, -,- Eigenvalues and derivatives for the first 11 terms in
equation 5.131 as calculated by Brown are given in Table 4 of the
Appendix. The corresponding coefficients B; of course follow from this
table and equation 5.133. Brown’s values for the first six eigenfunctions
appear in Table 5 of the Appendix. Higher eigenvalues, eigenfunctions,
and related constants may be estimated from relationships presented by



162 Mass Transfer in Laminar Flow

Sellars, Tribus, and Klein (1956). Their expressions for B; and B; in the
present notation are

B=4-1)+%  j=1,23,... (5.137)
. )
B,=(—1)" ' x2.846068%/3 (5.138)
Also
—B; ( do,
J J - —1/3
5 (_dr+ ) . 1012768, (5-139)

The bulk-average or mixing-cup concentration at x is given by equation
5.115, which may be written as

Paw—Pap _, 1 rl _
mi——gb_'er 00[2V(1 rﬁ_)]Zwr+dr+ (5140)

Combining equations 5.131 and 5.140 gives
j= , 1 ,
0, = .214Bj[exp(—,Bij,):U(;<13,.r+(1—1r+)dr+ (5.141)
j=

and with equations 5.130 and 5.135,

Jj=®

— —4B, [ do, —B2(x/r
Paw — Pun — 2 2/ i) exp '31( /) (5.142)
Paw — Py; = B \dr. r=1 NgeNs.

The quantity 1—(p,y — P4)/(P4w— P4;) equals (Pap=04)/ (Paw— P4
and this is plotted versus (7/4)(d,/x)Ng.Ng, for a parabolic velocity
profile in Figure 5.14. As noted earlier, values in the lower rangeiof W/pDx
show fortuitous agreement with predictions for plug flow because of
natural convection effects. These data were obtained for evaporation from
a wetted-wall column into an airstream, and in this region Boelter (1943)
has replaced the curve corresponding to a parabolic velocity distribution in
Figure 5.14 with a family of curves in which the following quantity is a
parameter:

dog. (MTy |\ p 4
oD L

pd \MyT,
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These curves provide adequate correction of .the data for distortion of
the parabolic velocity profile because of density gradients. The quantities
M, and T, are the molecular weight and absolute temperature of the inlet
gas, and My, and Ty, are the average molecular weight and temperature of
the gas saturated with the diffusing solute at the liquid surface tempera-
ture.

Measurements shown at the higher values of W /pDx are in agreement
with the predictions for a parabolic velocity distribution. These data were
obtained by Linton and Sherwood (1950) for the dissolution of soluble
tube walls, cast from benzoic acid, cinnamic acid, and B-naphthol; water
flowed through the tubes.

For values of W /pDx above about 400, the plot for the parabolic
velocity profile becomes linear in Figure 5.14 and coincides with the
approximate solution given by Lévéque as

-2/3

Pap ™ Pai w
=5.5 5.143
Paw ~ Pai (pr) ( )

Equation 5.143 is valid for those cases where the tube is short enough
that the concentration distribution does not become fully developed—that
is to say, the outer edges of the concentration boundary layers do not
reach the tube axis. That this is a common situation will be demonstrated
later via equations 5.149 to 5.151.

The local value of the Sherwood number, based on p,y —p4p, has the
following form in terms of the Graetz solution:

B (4 — B2 (x/r)
( ) j=1 2 dr+ ry= P NRCNSc (5 144)
Ng )*=—L .
S (d@) B (x/r)
_ — x —_—
j=1 2,8,2 dr+ r+=1e P NReNSc

Local values of Sherwood number are plotted against the group (7/4)
(d,/ x)Ng N5 as curve 2 in Figure 5.15.

Procedures analogous to those leading to equations 5.123 and 5.125 may
be used with equation 5.142 to obtain the following two expressions for
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average Sherwood numbers:

J=00

S . I B 5 C740)
(Ngp)? 1{4 j=1 B \dr. re=1 NeeNse
Ngp ="(_)NRNSc =
4 2\L € g

'Y 4B, do, ) ~B*(x/r)
( re= lexp ( NReNSc )
R i

(5.145)

The coefficient k%, in (Ng,)* of equation 5.145 is for use with the
arithmetic-mean concentration difference of equation 5.121. A convenient
graphical representation of equation 5.145 appears as curve 2 in Figure
5.16.

-1

d,) 'S -4B, d@) —B(x/r)
N, = — |N eN cl‘n ar X
(Nsn) 1w (L RelVs le g \dr. | _ P NgeNs.

B

s

(5.146)

The Sherwood number in the above relationship is for use with the
logarithmic-mean concentration difference of equation 5.124. Equation
5.146 is plotted as the bottom curve in Figure 5.12 for comparison with
solutions for the case of simultaneously developing velocity and concentra-
tion profiles. The expression is also shown graphically as curve 1 in Figure
5.16, which compares the behavior of (Ngw)3 and (Ng, )%y, along the tube.
Alternatively one may use Hausen’s (1943) representation of equation
5.146:

0.0668(d, /x) Ng Ny,
1 +004[ (dt/x)NRcNSc ]2/3

(Nsn)Im=3.66+ (5.147)

The series in equation 5.144 for the local Sherwood number converges
rapidly for large values of (x/r,)/Ng.Ng,, so that only the first term is
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significant when (x/r,)/ Ng.Ng. exceeds 0.1. Under these conditions equa-
tion 5.144 reduces to

B ( ) (2B

2\, ) _, NeNse

B, ( 4 —BE(x/r,)
Bi\dr+ ], =lexp NgeNs.

2
%L _ —7-3212 —3.656 (5.148)

(Nep )%=

This value coincides with that for a fully developed concentration profile
(Rohsenow and Choi, 1961, p. 141, 402), indicating that the entry length in
which the concentration profile becomes fully developed is approximately
given by

(i) =0.05Ng Ns. (5.149)
dt dev

The corresponding thermal entry length is of course obtained by replacing
Ng. by Np, in equation 5.149:

(i) = 0.05N g Np, (5.150)
d; dev

The entry length in which the velocity profile becomes fully developed is
given by Prandtl and Tietjens (1931) as

(i) 20.05Np, (5.151)
dev

t

Consider, for example, the case of water flowing through a tube at a
Reynolds number of 100 and a temperature of 68°F. At this temperature
the Prandtl number is 7. The Schmidt number for various materials in
water is substantially dependent upon the solute (Perry, 1950, p. 540), but a
typical value of 1200 is suggested by Foust et al. (1960, p. 111). Equations
5.149, 5.150, and 5.151 show that the concentration, thermal, and
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hydrodynamic entry lengths are then, respectively, as follows:

X
(—) = 6000
d, dev, concen distribution

X
(—) =35
dt dev, temp. distribution

X .
d, dev, velocity distribution

These calculations serve to show why a fully developed concentration
distribution is frequently not attained for fluids with high Schmidt number.
Lévéque’s approximate solution for (p,,— P4/ (4w —p,4) in such cases
was given as equation 5.143. The local and mean Sherwood numbers
corresponding to Lévéque’s solution will now be presented, since they
coincide with the respective Graetz solutions at high W /pDx (> c.a. 400),
but are simpler in form.

Lévéque’s (1928) approximate solution to equation 5.100 for a constant-
property fluid is obtained, in mass-transfer terms, by assuming that the
concentration boundary layer is confined to a thin zone near the wall of
the tube in cases of high mass velocities through relatively short tubes in
laminar flow. Linear velocity distributions are assumed within such thin
concentration boundary layers, so that u= B,(r,—r), where B, is the
velocity gradient at the wall. Lévéque’s expression for local Sherwood
number with uniform concentration along the wall is then

(5.152)

Ny Ked 4 ( B\
(N )%= D  0.893\9Dx

The velocity distribution in fully developed laminar flow of Newtonian
fluids in a tube is u=2V[1—(r/r)%, and assuming this to hold in the
laminar boundary layer in the entry region,

de\ _(_du\ _4v_sv
(dy)y_o—( dr),-,, v _ 8] (5.153)

Inserting equation 5.153 for B, in equation 5.152,

1/3
(Nsh):=l'077(%) (NRcNSc)]/3 (5.154)

where k% is for use with p,,;, —p,,.
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Lévéque’s expression for the average Sherwood number is

k* d B 1/3
(Vo)1= = 16154 g7 (5.155)
and substituting equation 5.153 for B,,
a3
(NSh):;=1.615(z') (NreNse)'”? (5.156)

where k%, is for use as in equation 5.121. The assumptions regarding the
velocity dlstnbutlon within the concentration boundary layer restrict the
use of equations 5.154 and 5.156 to values of W/pDx above about 400.

Uniform Mass Flux at the Wall

The more esoteric boundary condition of uniform mass flux at all points
along the tube wall may occasionally be encountered. The heat-transfer
analog is of course more commonly found—for example, in tubes which
are uniformly heated electrically, in radiant or nuclear heating, and in
those countercurrent heat exchangers in which the product of the mass
flow rate and specific heat is the same for each fluid. In mass transfer the
condition would arise, for instance, if the walls of the tube were porous
and the solute were forced through these walls at a fixed rate per unit
surface all the way along the tube. The appropriate differential equation is
again equation 5.126, and the boundary conditions are

x=0a 0<"<I‘1, pA=pAi
x>0, n =constant

004p
ox

= constant

The solution for the local Sherwood number was provided by Sellars,
Tribus, and Klein (1956) as

k%4, —Ajz 1)/ NgreNse
(NSh):= Z) (__l 2 exP[ ();/}»4)/ ]

The quantity 4 is the asymptotic value of N%, corresponding to fully
developed concentration and velocity distributions. Values of the first
three eigenvalues and constants were given by Sellars et al. (1956), and

) (5.157)



168 Mass Transfer in Laminar Flow

Table 5.1. Eigenvalues and constants in
equation 5.157.

J N G

1 25.68 7.630%x10°3
2 83.86 2.058%10°3
3 1742 0.901%x10°3
4 296.5 0.487x 103
5 450.9 0.297x 103

these were subsequently revised and extended by Seigel, Sparrow, and
Hallman (1958), as shown in Table 5.1. Eigenvalues and constants C, for j
greater than five may be estimated from

N=4j+4% (5.158)
C;=0.358)\" 232 (5.159)

The local Sherwood number from equation 5.157 is plotted as the
bottom curve in Figure 5.13. A material balance using the specified
uniform n,y, gives p,p at any x. The local value of p,, may then be
calculated from the corresponding (Ng,)* using equation 5.101.

Fully Developed Velocity and Concentration Distributions

Attention is directed under this heading to the asymptotic or limiting
values to which the Sherwood number reduces in the region where laminar
flow is fully developed, both in terms of mass transfer and hydrodynami-
cally. These conditions are located downstream from the points at which
the outer edges of the hydrodynamic and concentration boundary layers,
respectively, meet at the centerline of the flow channel. The boundary
conditions of uniform wall concentration and of uniform mass flux at the
wall are considered in turn.

Uniform Wall Concentration

The asymptotic or limiting value reached by the Sherwood number for this
boundary condition was given earlier by equation 5.148 as

*
o4

N§h= D

=3.656 (5.160)
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This result is plotted in Figure 5.12.
Uniform Mass Flux at the Wall

The uniform flux at the wall is given by n,, =k%(paw—p4p); With
constant k% the quantity p,y —p,p is also independent of x and

_____—T=constant (5.161)

2V r 30,45 19 90,4
D 1 ( ,) ]( d0x )Const_ r ar('W) (5.162)
Also,
b
at r=0, 4_o
ar

at r=r, P4=Paw

Integrating equation 5.162 for these conditions at a given x gives

2,7V ( 3p4p 3 1(rY, 1 (r\
pAW_pA——b—( ax )wm g—z(r—’) +R(7.) (5.163)

This expression gives p, at any r for a cross section where the local
concentration at the wall is p,,, the latter varying with x. The mass-
transfer coefficient is defined as

3
nAW ,'="r
k%= = (5.164)

Paw — Pan Paw ~ PaB

where

fo '( Paw — Pq)urdr

Paw —PaB= 7,
f urdr
0

(5.165)

Combination of equations 5.163 and 5.165 with the parabolic velocity
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distribution 2V [1—(r/r)?] for u gives

_ 11 2V ( 3p,
Paw —P4p= ST(_B; ot (5.166)
From equation 5.163,
9p, r.V (dp,
). 5(%). (16D

Equations 5.166 and 5.167 are substituted in equation 5.164 to obtain

k*d
Ng=—2" = %=4.36 (5.168)

This value is shown as the asymptote in Figure 5.13.

Assuming a Cubic Polynomial Concentration Distribution

The radial distribution of component A4 is assumed to follow a cubic
polynomial form:

Pa=Paw— @y — @y —asy’,  y=r—r (5.169)

To evaluate a,, a,, and a,, consider a differential length of tube dx, where
the mass transfer through a layer immediately adjacent to the wall occurs
by molecular diffusion, so that

3
dqw=—D2n(r, —y)dxai; (5.170)
Then

asz=_ d4.w __1 2‘_’1
y? D277(r,—y)2dx =y

but y equals zero at the wall, so that

K 2
(—p;) =l(%) (5.171)
ay y=0 r’ y y=0

The derivatives in this expression are evaluated from equation 5.169 to
obtain a,=a,/2r,. At the axis of the tube,
—2a,

2
3r;

dp,
(_a-y_)y-rf—'o_ —201—3037',2, a3_
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Substitution for @, and a; in equation 5.169 gives

2
o, — ry_z(»
Pa=Paw—ay| 1+ D) ( ":) 3('.1) ] (5.172)
The ratio of p, —p,y aty to p, —p,y at the centerline is therefore
P4~ P, 6 yY 4 ’
_A__ﬂ=_y+§(_) __({) (5.173)
Pas™Paw N S\ S\rn

For Newtonian fluids a combination of the momentum and rheological
equations results in

. =LA£=£(_Q) (5.174)

Integrating with u=0 at r=r,

APg,
u= (r7
apL
The ratio of u at y to u at the centerline is therefore
2
2

l=—y-—(1) (5.175)
us rl rl

Equations 5.173 and 5.175 are solved for p, —p,y and u, respectively,
and the results inserted in equation 5.165. After expanding, integrating,
and simplifying, one obtains

Pas— Paw=0.583( 4= Pyw) (5.176)

The flux of component A from the wall is as follows at low concentra-
tions and transfer rates:

dp,

6 D
ay ) == g ( Pas™ pAW)

M= —k5(pap— PAW)—"D(

and introducing equation 5.176,

k*d, k*(2r
Sh=-—;)’= "(D % =4.12 (5.177)
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Equation 5.177 gives a value for the Sherwood number for mass transfer
under fully developed conditions. It is evident that the Sherwood number
calculated from the assumed cubic-polynomial concentration distribution
—with unspecified wall conditions—falls between the values for uniform
wall concentration and uniform mass flux at the wall. Extensions to
provide asymptotic Nusselt and Sherwood numbers for heat and mass
transfer in non-Newtonian fluids have been provided by Skelland (1967).

Illustration 5.5.

A tube with an internal diameter of 1 in. is cast from solid naphthalene.
Pure air enters the tube at a velocity of 3 ft /sec. If the average air pressure
is 14.7 psia and the system is at 113°F, estimate the tube length required
for the average concentration of naphthalene vapor in the air to reach a
value of

(a) 2.24x 1073 Ib-mass /ft? (i.e., 10 percent of saturation),

(b) 5.6%107° Ib-mass/ft> (i.e., 25 percent of saturation).
Compare with Illustration 6.3 for turbulent conditions.

SOLUTION (a). The relevant physical properties for this system at these
conditions of temperature and pressure are available from Illustrations 5.1
and 5.2. The naphthalene surface temperature will be considered to be
113°F (see Illustration 5.1).

_ (1/12)(3) (3600) (0.0694) _

Re 0.0457 1365

Flow is therefore laminar.

NeNs. _ 1365(2475)(05) _ 1408

x/r, 12x x

Quw _ md7Vp, _ 3(3600)(224X10°%) 000504

A T 4ndx 12(4)x x

A (0.000224 —0) — (0.000224 — 0.0000224)
PAM™ 5 303 10g [0.000224 /(0.000224 — 0.0000224) ]

=0.000211 1b naphthalene /ft’

Komd _ gquw 4 000504(1/12) 747
D Abpyy D 0.000211(0.2665)x  x

(NSh)Y.M=
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Therefore

_ 147 NgeNse _ 1408
(Nsn)im x/r x

Various values are assumed for x, and the corresponding (Ng;)f is read
from the interpolated curve for Ng,=2.475 in Figure 5.12. The correct x is
found when the assumed value equals 7.47 /(Ng,)fy. The result is

NReNSc

x =045 ft, /7,

=313, (Ng)tm=166

The value of (Ng)ty is 4.54 times greater than the limiting or asymp-
totic value of 3.656 (equation 5.160), demonstrating the very substantial
contribution of the entrance effects to the transfer process in this case.
(Equations 5.149 and 5.151 show that the entrance lengths required to
achieve fully developed concentration and velocity distributions are about
14.08 and 5.69 ft, respectively, along the tube.)

SOLUTION (b). Proceeding as in Solution (a),

m 202 NgelNse _ 140.8
(New)im’ x/n X

and by trial-and-error use of Figure 5.12,

cm204f, Drellse g (Ngy )* =99
. » x/r, s Sh/ LM

The average flux at the wall over the first 2.04 ft along the tube is

Quw _ TdVBp,  3(3600)(5.6x107°)
A 4ndx 12(4)2.04

=0.00617 1b naphthalene/ (ft?) (hr).

Illustration 5.6

Pure water flows at an average velocity of 0.05 ft/sec througha }-in.-
diameter metal tube. At a distance of 1 ft from the inlet the metal tube is
replaced by a tube of the same diameter, cast from benzoic acid, and
having a length of 4 ft. If the system is at a temperature of 77°F, estimate
the average concentration of benzoic acid in the water at the outlet from
the cast tube.
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SOLUTION. The relevant physical properties are as follows at the prevail-
ing temperature:

Pr,0=62.24 Ib-mass /ft’
Pu,0=2.16 Ib-mass / (ft) (hr)
D=4.695%10"° ft?/hrt
p% = saturation solubility=0.213 Ib CsH,COOH /ft® of aqueous solutiong.

The density and viscosity will be regarded as constant in view of the low
solubility of benzoic acid in water.

(0.25/12)(0.05) (3600) (62.24)
Re™ 216 =108

The flow is therefore laminar, and from equation 5.151,

Xaee=0.05(108) % ~0.1125 ft
Thus the velocity profile is fully developed to parabolic form at the

entrance to the benzoic acid section of the tube.

N = 2.16 _
S 62.24(0.00004695)

NxeNs. _ 108(740)(0.125) _

x/r, 4(12)

740

Figure 5.12 yields (Ng,)%\ = 12.
Alternatively, from equation 5.147,

0.0668[2(208)]

5 =12.26
1+0.04[2(208)]

(Nsn)1m=3.66+

1From R. C. Reid and T. K. Sherwood, The Properties of Gases and Liquids, 2nd ed., McGraw
Hill, New York, (1966), p. 555.

fFrom A. Seidell, Solubilities of Organic Compounds, 3rd ed., Vol. II, Van Nostrand, New
York, (1941), pp. 500-501.
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This exceeds the asymptotic value of 3.656 (equation 5.160), correspond-
ing to complete development of both velocity and concentration distribu-
tions, by a factor of 3.35.

L 1226(000004695)
M= o5/ 0276 1t/br
A=mdx= w( %22—5 )4=0.262 2
(0213—0)— (0213 ppo) 2

~0.0276(0.262 L
Gaw (0:262) S 303108 [0213/ (0213 —pypa)] 4 (pazo~Pai)

2
7 (025
-2 ( T) 0.05(3600) p,450
0213 \_
o ( i E— ) =0.0512

p.1p0=0.024 1b C;H,COOH/ft’ of solution.

As an alternative procedure the mass-transfer equivalent of the Graetz
number may be calculated as follows:

wo_m4 7 ~
pDx 4 xNReNSc— 4(2)(208) 327

The corresponding ordinate of the parabolic-flow curve in Figure 5.14 is

Pazo™P4i - 0,116
Paw — Pai

in agreement with the value obtained from equation 5.143. Since p,; =0
and p,,, =0.213, this corresponds to p,p,=0.0247 Ib C,H,COOH/ft> of
solution, which, of course, agrees satisfactorily with the previous estimate.

Dispersion in Tube Flow

When a soluble material is injected locally into a fluid flowing through a
tube, it is dispersed by a combination of two mechanisms: convection
associated with the velocity distribution across the tube, and either mo-
lecular or eddy diffusion, depending upon the flow regime. In laminar
flow, when the injected material has spread to occupy a length of tube
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much greater than the diameter, Taylor (1953) finds that axial convection
and radial diffusion combine to disperse the solute axially (relative to a
plane moving at the mean velocity of flow) by a mechanism which follows
the same law as one-dimensional molecular diffusion in a stationary fluid.
The governing expression parallels equation 2.93, with z replaced by x — V't
and with D replaced by r’¥'/48D. A solution is presented for the case of
momentary injection, giving the solute concentration after a time ¢ at a
distance x downstream from the point of injection. A similar result is
provided for the case in which a solution containing a given concentration
of solute starts to flow at 7=0,x=0 into a tube initially filled with pure
solvent. The reader is referred to the original papers for details, for
application to diffusivity measurement, and for extension to turbulent
conditions (Taylor, 1953, 1954a,b,¢).

MASS TRANSFER IN LAMINAR FLOW BETWEEN FLAT PARALLEL
PLATES

Applications of this geometry in mass transfer under either laminar or
turbulent conditions include the desalination of sea water by reverse
osmosis during flow between flat, parallel membranes (Sourirajan, 1970,
Chapter 4), hemodialysis for the replacement of kidney function during
renal failure (Wolf and Zaltzman, 1968; Colton et al., 1971), transpiration
and film cooling, gas absorption (e.g., Sherwood and Woertz, 1939), and
the condensation of mixtures (e.g., Rohsenow and Choi, 1961, Chapter 10).
Corrosion, scaling, and descaling problems may arise in heat exchangers of
the plate and plate-fin varieties and of the flat-plate type sometimes used
in evaporators (e.g., Perry, 1963, pp. 11-13, 11-28).

Consideration will be confined to low solute concentrations and transfer
rates. The development is analogous to that given earlier for tubes, and the
results are summarized in Table 5.2 and Figures 5.17 and 5.18. The
coefficients k%,, k%, », and k% in equations 5.182, 5.183, and 5.184 are for
use in the following expressions:

H,wV(papo—Pai) =k3a(2wL) X 3[ (000 —04:) + (Paw — Pago) ]

(pAW_pAi) —( pAW_pABO)
ln[( Paw—P4i)/ ( Paw —Pano) ]

HpWV( PaBo— Pai) = k:LM(2WL)

_ Myw
Paw,localat x =Papt+ T
p
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Figure 5.17. Average Sherwood numbers for mass transfer in laminar flow between flat
parallel plates with uniform wall concentration (Sparrow, 1955).
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Figure 5.18. Local Sherwood numbers for mass transfer in laminar flow between flat parallel
plates with uniform mass flux at the wall (Heaton, Reynolds, and Kays, 1964).
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To emphasize the analogy with the tube development, the last column of
Table 5.2 indicates the equation in the tube analysis which is analogous to
the expression for parallel plates. Thus equation 5.145 for a tube corre-
sponds to equation 5.182 for parallel plates.

Equation 5.183 is plotted as the bottom curve in Figure 5.17, where it
may be compared with solutions for simultaneously developing velocity
and concentration distributions.

MASS TRANSFER IN LAMINAR FLOW THROUGH CONCENTRIC
ANNULI

The annulus represents a geometry of frequent occurrence in many heat-
transfer applications, ranging from sophisticated nuclear reactors to simple
heat exchangers. Mass-transfer problems of corrosion, scaling, and descal-
ing may arise under laminar or turbulent conditions in some of these
devices, while further mass-transfer phenomena are involved in annular
reactors (e.g., U.S. Patent 1,029,029), in annular condensers for mixed
vapors (e.g., Estrin, Hayes, and Drew, 1965), and in transpiration and film
cooling of annular ducts. A

Mass transfer during flow through an annulus may occur under a variety
of conditions of concentration and mass flux at each of the two cylindrical
surfaces. Thus a specified distribution of concentration or mass flux along
one surface may be combined with a possibly different distribution of
either quantity along the other surface, to yield a proliferation of possibili-
ties which will not be considered in detail here. Solutions of the relevant
equations have been obtained for systematic combinations of these al-
ternatives by Lundberg, Reynolds, and Kays (1963), for the analogous case
of heat transfer in hydrodynamically fully developed laminar flow of
incompressible, constant-property fluids. Superposition of the solutions
provided by these authors enables any general axially symmetric boundary
conditions to be satisfied. The heat-transfer solutions can of course be
converted to the corresponding mass-transfer ones, under conditions for
which the bulk velocity due to diffusion is low, by the substitution of
molecular diffusivity for thermal diffusivity, Sherwood number for Nusselt
number, and Schmidt number for Prandtl number. The reader is referred
to the original 194-page report for details of the various solutions.

Relationships in the entrance region of an annulus, where velocity and
concentration distributions are both developing, have been presented by
Heaton, Reynolds, and Kays (1964).

Asymptotic solutions for fully developed velocity and concentration
distributions far downsteam from the entrance are given by Lundberg,
Reynolds, and Kays (1963).
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Further annulus studies are reported in a series of papers by Reynolds,
Lundberg, and McCuen (1963); Lundberg, McCuen, and Reynolds (1963);
and Kays and Leung (1963)—the last paper dealing with turbulent flow.

TRANSFER WITH A HIGH MASS FLUX

The mass-transfer relationships developed so far in this chapter have been
for processes in which the solute concentrations and mass flux are low.
Under these conditions the velocity components associated with the mass
transfer are small enough to exert a negligible influence on the velocity
field. A simple analogy then prevails between the processes of momentum,
heat, and mass transfer. Physical properties in such systems are indepen-
dent of location, since concentration variations are small.

Consideration is now given to high-mass-flux conditions, in which the
associated components of velocity introduce significant differences be-
tween mass transfer on the one hand and heat- or momentum-transfer
processes without mass transfer on the other. The influence of mass
transfer when superimposed on momentum and heat transfer processes
also receives mention. A useful review of this field is given by Nienow
(1967), who provides a bibliography of nearly fifty references.

Much of the published work on high-mass-flux problems expresses
concentrations in terms of mass per unit volume or mass fraction. These
units will accordingly be used here to facilitate further literature study of
the subject.

Consider the transfer of a single component A from the surface of a flat
plate to a laminar stream of fluid B flowing parallel to the plate. The
momentum- and concentration-boundary-layer equations have already
been developed as equations 5.10 and 5.8, respectively, and may be written
as follows with constant physical properties:

B, B} _d, _ _
;To—p(ay )y-O_ dxj;(u‘” u)udy —vgu, (5.10)

—D(a&) = ifac( Pa ™ Pacc) U —05( P10~ Pac)  (58)
ay =0 dx Jy

The first term on the right-hand side of equation 5.10 is always positive,
whereas the second term is negative for mass flux from the wall. The
gradient (du/dy), ., is therefore reduced, and since u changes by the fixed
amount u_, to zero, this corresponds to an increase in the momentum-
boundary-layer thickness for a finite v,. The local shear stress at the wall,
7o, 18 also reduced under these conditions.
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Similar reasoning applied to equation 5.8 indicates that a finite mass flux
from the wall increases the thickness of the concentration boundary layer
and reduces the mass-transfer coefficient, defined as

D ap,
Ko=————— | = 5.188
P P40~ P4 ( ay )y=0 ( )

The reverse conclusions hold for a significant mass flux to the wall,
resulting in reduced thickness of the boundary layers, accompanied by
increases in the mass-transfer coefficient and surface shear stress. Corre-
sponding qualitative conclusions may be'obtained for;the thermal boundary
layer in the presence of high mass-transfer rates, as outlined by Nienow
(1967).

These qualitative indications of the influence of a high mass flux are in
accordance with the results of more rigorous analyses by Schuh (1950),
Mickley et al. (1954), Hartnett and Eckert (1957), and Stewart (1962). The
results of Hartnett and Eckert are perhaps the most frequently cited, but
the phenomena are also well illustrated by the findings of Schuh (1950),
and these will be outlined here.

Schub’s development is for constant-property fluids in steady flow over
a flat plate oriented parallel to the undisturbed stream, and with com-
ponent 4 being transferred between the plate and the fluid. The treatment
begins with the familiar differential equations for the boundary layer, the
derivation of which may be found, for example, in Schlichting (1967) and
Knudsen and Katz (1958). For the two-dimensional steady-state process
considered here, neglecting frictional heat generation and assuming that
transport in the x direction by diffusion and by conduction are both
negligible, the starting equations are: the continuity equation

du , dv
U L oY _ 5.189
ox + ay 0 ( )

the momentum conservation equation

uh pp 8 0 (5.190)

the equation for the conservation of component A4

9 9 97
e, B0, %,
ox dy ay?

(5.191)
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and the energy conservation equation

T | AT _  3°T
ug o 3y 57 (5.192)

The mass-transfer process is assumed to introduce negligible fluxes of
energy and momentum, and the boundary conditions are
y=0, u=0, v=vy Ps=Pao
T=T, P40 To independent of x

y=o00, U=u,, Pas =P T=T,

Schuh converted the velocity, concentration, temperature, and y
coordinate in these equations into the following dimensionless forms:

u P4~ Pao
w(f) =1, c(p)=a"Pro
¥ " (%) b —Pe

T-T, Vo [Pl Y
o(g)_ﬁ’ 5—5 > T 2x V Nge,x

The boundary conditions for the velocity, concentration, and temperature
fields then read

y=0, £¢=0,w=0,C=0,0=0

y =00, (=w,0=1,C=1,0=1

The bulk velocity in the y direction at the wall, vy, was expressed, after
Nusselt, as

—D aPA)
S A ] (5.193)
° (P/PAO—I)pAO( ¥ /-0

where P is the total pressure and p,, is the partial pressure of component
A at the plate surface. The appearance of the mole fraction (p,,/ P) in this
expression for the mass-average velocity may perhaps be surprising at first
sight. The development, however, is for fluids with constant properties. In
the case of gases (to which Schuh’s results are confined), constant density
at fixed P and T requires constancy of the average molecular weight, M, as
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in p,g.=PM /RT. This necessitates equal molecular weights for all com-
ponents of the gas mixture, so that mass and mole fractions of a given
component are the same. The mass- and molal-average velocities of the
mixture are then equal. The bulk velocity in dimensionless form becomes

P __ 1D (Paw=Pao) (42) \/P“_w
U 2 P40 (P/pao—Dug, \ d§ /0¥ nx (5.194)
Solutions obtained by Schuh (1950) for the velocity and concentration
fields are presented in dimensionless form in Figures 5.19 and 5.20 for a
Schmidt number of 0.6, with M as parameter. The value 0.6 for the
Schmidt number is applicable, for example, to the diffusion of water or
ammonia in air, although the assumption of constant physical properties

(independent of composition) would not be completely satisfied for such
systems. The quantity M is defined by

1 (Piw—P40) (dC) 20,
M=————2= A0 (&) _Z0N\/No (5195
Ns. pAO(P/pAO—l) 3 y=0 Uy Re, ( )

Negative values of M correspond to mass transfer towards the plate;
positive values, to transfer from the plate to the fluid. Figures 5.19 and 5.20
show that both velocity and concentration profiles are strongly influenced
by M. The profile slopes increase with increasing mass transfer towards the
surface, corresponding to reduced boundary-layer thicknesses and in-
creased surface shear stress and mass-transfer coefficient. The reverse is
true when mass transfer occurs from the surface. These conclusions also
follow from Figure 5.21, which shows the dimensionless concentration
gradient at the wall and the quantity M as functions of N, a dimensionless
quantity proportional to the driving force p,,—p,., and therefore to the
rate of mass transfer to or from the plate. The local mass-transfer
coefficient at a given value of N follows from the definitions of C and £ as

_D dc
k=2 V., ( « ) (5.196)

y=0

where (dC/d§), .., is obtained from Figure 5.21.

It appears that the velocity and concentration boundary layers are lifted
off the plate when M reaches a value of 1.238 (Emmons and Leigh, 1953;
Hartnett and Eckert, 1957). Boundary-layer equations will therefore not

apply as v, approaches 0.619u,,/ VNg, ,
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1.0
|8 os
"
" -
3 02 .
: M Given by Eqn 5.195
| L | L

1.0 2.0 3.0 4.0

€=_2y;—‘\/ NRe,x

Figure 5.19. Velocity field in steady laminar flow over a flat plate with a high rate of mass
transfer between the plate and the fluid (Schuh, 1950).

Illustration 5.7

Pure air at a temperature of 150°F and a pressure of 14.7 psia flows with a
velocity of 20 ft/sec along the surface of a porous flat plate. The plate is
thoroughly wetted with water and is maintained at a temperature of 150°F
by a technique similar to that used in the experiments of Mendelson and
Yerazunis (1965). If the plate is continually supplied from beneath with
water at 150°F, estimate the rate of evaporation at a point 9 in. from the
leading edge.

1.0

1Py ™ Pag

Ag

M Given by Eqn 5.195
| 1 1 | 1

20 3.0 4.0

S A
E‘Zx NRG.X

Figure 5.20. Concentration field in steady laminar flow over a flat plate with a high rate of
mass transfer between the plate and the fluid (Schuh, 1950).
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Figure 5.21. Dimensionless concentration gradient at the wall and the quantity M as
functions of N (Schuh, 1950).

SOLUTION. At a temperature of 150°F the vapor pressure of water is
found from steam tables to be 3.718 Ib-force /in.2, Thus, at the surface,

= 3718 _ 253~ mole fraction H,0

Ya= 147

Yp=1-y,=0.747 =mole fraction air

One pound-mole of this mixture contains
18(0.253) =4.551b H,0
29(0.747) = 21.68 Ib air
M,=26231b

The volume occupied by 1 Ib-mole of gas at 150°F is

460+ 150

359( 492

)=445 ft3
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sO
4.55

Pa0= ’m =0.01022 1b-mass/ft3

pAoo=0

po= %253 —~0.059 [b-mass /ft’

-2 _ - 3
Po= 245 0.0652 Ib-mass /ft

0., = $(0.059+0.0652) =0.0621 Ib-mass /ft’

The viscosity of dry air at 150°F and 1 atm is 0.0195 cP (Perry, 1963, p.
3-197), and for moist air containing a mole fraction 0.253 of water vapor it
is 0.0188 cP (ASHRAE Handbook of Fundamentals, 1967, p. 109). There-
fore

sy = 4(0.0195+0.0188) =0.0192 cP

The diffusivity for the air-water-vapor system at 150°F and atmospheric
pressure is 0.32 cm?/sec (ASHRAE Handbook of Fundamentals, 1967, p.
109). Thus

n 0.0192(2.42)

Ng=——= =0.602
S~ oD 0.0621(0.32)(3.88) 0

which coincides with the N, value for which Schuh’s solution was devel-
oped; evidently his requirement of constant physical properties is also
approximately satisfied. The term N in Figure 5.21 is evaluated as

N=06102 0.01ozli;o 0563
0.01022( Sl 1)
From Figure 5.21,
dc
C\ o444
(dg )y—O
M= N( ‘—’Q) ~0.563(0.444) =0.25
& |,
0.75(20) (3600) (0.0621
_ 07500 (3600)00621) o

Rex ™ 0.0192(2.42)



188 Mass Transfer in Laminar Flow

which corresponds to laminar flow in the boundary layer. Equation 5.196
gives

0.32(3.88) 1
0_ To\0Y) /2 _
kp 2(0.75) (72, 100) (0.444) 98.6 ft/hr

Equation 5.188 shows that

ow, 9p,,
e
2 Y /0

=k9( Dg0— Paa) =98.6(0.01022—0)
=1.01 1b-mass/ (ft?) (hr)

The quantity v, is obtained from equation 5.195:

Mu,  0.25(20)(3600) 335 ft/he
Vn= = = .
P VAL, 27210007
and
455
Wao=5¢55 =0.1734

so that substitution in equation 5.197 yields

0=33.5(0.059) (0.1734) + 1.01 = 1.353 Ib H,0 vapor /(ft?) (hr)

This is the local mass flux at the specified position on the plate.

Some correction procedures are now indicated which attempt to relate
mass-transfer coefficients under high-mass-flux conditions to the corre-
sponding—and somewhat more easily predicted—coefficients at low mass
flux. Theoretical approaches have been mainly in terms of the stagnant
film and the laminar boundary layer concepts. Experimental work has
been very limited and indicates only partial success for the theoretical
expressions to be noted below.

If all components in a mixture have the same molecular weight, then
mass fractions and mole fractions are of course equal. This is the case, for
instance, in a constant-property ideal-gas mixture, for which the diffusivity
is essentially constant, viscosity variations with composition are slight, and
the density p=PM/RT. Constancy of p at a given temperature and
pressure requires that M, the average molecular weight of the mixture, is
independent of composition (i.e., M, = My=---). Several of the theoreti-
cal results to follow are for constant-property fluids.
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A commonly used definition of the driving force under high-mass-flux
conditions will first be given.

The Driving Force B

During transfer of the single component A into the nontransferring stream
B, the mass transfer from the surface (y =0) is the sum of two mechanisms
as outlined above equation 5.1, namely the diffusive flux caused by the
concentration gradient and the convective flux associated with the bulk
flow. Thus

aw
N40M, ="Ao=UoP0WAo_PoD(—a)TA) (5.197)
y=0
aw,
="A0WA0‘"P0D(——) (5.198)
ay =0

A mass-transfer coefficient is commonly defined in terms of the diffusive
flux as

- _pOD(awA/ay)y=0

K° 5.199
Wi0 ™ Wi ( )
and
W40=P40/ P05 Wacwo=Paw/Poo
Combination with equation 5.198 gives
_of WaoT W4
nAo—kw(—1 . ) (5.200)

The allowance for convective flux in equation 5.200 should render K
less dependent on mass flux than the more commonly defined coefficient
in which the denominator 1 —w, is replaced by unity. Equation 5.200 also
defines a driving force B for the transfer of a single component A as

W0 " Waeo
=— 201
B —w,, (5.201)
Spalding (1960, 1963) has generalized the driving force B in equation
5201 for a variety of situations. For the case in which more than one
component is being transferred without reaction, he shows that

Weo—W
B=-A40 _Ax (5.202)
War — Wao
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where w, ;- is the mass fraction of component A4 in the transferred material.
Clearly w,; equals unity for the transfer of a single component. In
the aqueous dissolution of crystals of sodium thiosulfate pentahydrate
(Na,S,0,:5H,0), if component A4 represents the anhydrous salt, then
w,r=0.637,

At low concentrations and transfer rates k0 approaches k*, the
coefficient when bulk flow due to diffusion is negligible, and p,=p., =p. In
this case

Lo=Ngo=K%(Weo—Wys) (5.203)
k*
= T(PAo—pAw) (5.204)
=k (Pa0— Paw) (5.205)
SO
k= pk* (5.206)

The coefficients k2 and k* may be compared with k,,, defined in general
as

ny0=K,(Ws0— Wieo) (5.207)

Equation 5.207 is often used without regard for the degree of convective
flux or bulk flow which may be occurring. Equations 5.200 and 5.207 show
that

k3=(1—wA0)kw (5.208)
and for low concentrations and transfer rates,

k,=kl=k*  (w,—0) (5.209)

The question of interest is the relationship between &, or k2 for high
mass flux and the corresponding &} for low mass flux. This problem is
considered in outline below.

Corrections from Film Theory

Transfer of the single component 4 through nontransferring B is pos-
tulated as occurring by molecular diffusion and associated convective flux
through a stagnant film between the surface and the bulk of the fluid. Thus
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at some point in the film the mass flux of 4 with respect to stationary
coordinates is

)
&

and integrating over the film thickness for constant properties at steady
state,

Ny, =ngw,—pD

_ PD(W40—Wy0)

Nyo= 5.210)
490 AL(I"‘WA)LM (
where
W O_WAeo
(1—=w)im= 4 (5.211)
ATIM ln[(l_WAoo)/(l"WAo)]
Then
M40 pD
k = = 5.212
Y W0 Wan AL(I_WA)LM ( )
SO
) pD
* -
k% lirgokw A, (5.213)
Thus
k 1
BAL AR S (5.214)
k3, (l_wA)LM
and with equations 5.201 and 5.208,
k° 1—w In(1+B
== w__n(1+5) (5.215)
ks (1=wy)im B

Equation 5.215 is independent of Schmidt number and has received
experimental confirmation in the case of molecular diffusion without
forced convection. It has also been widely used with considerable success
in correlating results from complex flow systems under both laminar and
turbulent conditions where rigorous analysis is not feasible (see Chapter 6).
Although kO /k* values from equation 5.215 do not coincide with those
indicated by laminar-boundary-layer theory, they are nevertheless compar-
able in form and magnitude, as shown in Figure 5.22 (after Nienow, 1967).
(B of course assumes positive or negative values according to whether the
transfer is from or to the surface at y =0.)
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Figure 5.22. Comparison between various corrections for effects of a high mass flux
(Nienow, 1967).

Corrections from Laminar-Boundary-Layer Theory

The complexity of boundary-layer problems with a high mass flux of
course stems from the need for simultaneous solution of the coupled
momentum and mass conservation equations. In a series of analytical
papers Spalding et al. (1960; 196la,b,c; 1963) presented laminar-
boundary-layer developments for plane and axisymmetrical flow with a
high mass flux for a large range of Ng_ and constant physical properties.
The following expression was offered as giving good approximate correc-
tion for the effect of a mass flux with a given Ny, and surface geometry
(Spalding and Evans, 1961c¢):

=(1+8)"™ (5.216)

0
v
*
ks

Equation 5.216 is plotted in Figure 5.22. For mass transfer into the fluid
it gives higher correction factors than those obtained from the film theory
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(equation 5.215). This is opposite to the finding in Spalding’s earliest paper
(1954), in which independent polynomial expressions had been assumed
for the momentum and concentration distributions in the boundary layers.
This work had indicated corrections lower than equation 5.215 for positive
B.
Spalding’s earlier studies were followed by Merk (1959), who considered
flow with constant physical properties over a flat plate. Two approximate
expressions were proposed, with respective errors of up to 3 and 4 percent
from the exact solution:

K° _
% —(1+0.724B) " 5217
k*

for —0.5< BK1.5, 0.6< Ny <2, and

K2 _
o = (1+0.566B) : (5:218)

w

for —0.5<B<1.0, Ng.—>oo (effectively Ng,>40). These relationships
appear graphically in Figure 5.22.

Ranz and Dickson (1965) present a variety of correction factors relating
low- to high-mass-flux conditions in the vicinity of a stagnation point with
either bilateral or axial symmetry. For single-component transfer they give
the following simple expressions corresponding to each end of the N
range:

kg -1/2

™ =(1+B) , Ng.—0 (5.219)
KO _

e =(1+B)"""  Ny—oo (5:220)

Equations 5.219 and 5.220 are plotted in Figure 5.22.

Additional theoretical studies on high-flux mass transfer in laminar
boundary layers are presented by Acrivos (1962a,b); Hanna (1963); Spald-
ing, Pun, and Chi (1962); Erickson, Fan, and Fox (1966); Evans (1962);
Stewart and Prober (1962, 1963); Stewart (1963); Cho (1963); and Anfi-
mov and Altov (1966). High-flux mass transfer from stationary and slowly
moving spheres has been treated by Fuchs (1947) and Faeth (1965),
respectively.
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Corrections from Penetration Theory

In addition to corrections based on the film and laminar-boundary-layer
theories, further corrections for the effect of high mass flux on transfer
rates have been provided by Bird et al. (1960) on the basis of the
penetration theory. As in the case of the film theory, the result is indepen-
dent of Ny, because, in contrast with boundary-layer solutions, no allow-
ance is made for velocity distributions. The corrective function arising
from the penetration theory is approximately enclosed by the band of
curves in Figure 5.22, which also shows that the effects of Ny, are in any
case fairly small.

Experimental work at high mass flux has been very limited, with
principal orientation towards the laminar boundary layer. The studies by
Mickley et al. (1954) were later found by the authors to be unacceptable
because of defects in the apparatus. Ranz and Dickson (1965) provide
some experimental verification of equations 5.219 and 5.220, and the
theoretical conclusions of Stewart and Prober (1962) were confirmed
experimentally by Christie (1962), Nicholson (1961), and Mendelson and
Yerazunis (1965, evaporation of CCl,). In contrast, studies disagreeing
with Stewart and Prober’s (1962) predictions were conducted by Spalding
and Christie (1965) and Mendelson and Yerazunis (1965, evaporation of
water). Related effects of high mass flux on heat transfer from a cylinder
and a sphere were measured by Johnson and Hartnett (1963) and Short
and Dana (1963), respectively. Nienow et al. (1969) measured high-flux
mass transfer from single spheres and concluded that equation 6.132
(Chapter 6) is preserved only when the coefficient in Ng, is evaluated from
the data using driving force B of equation 5.201.

Corrections for Variation in Physical Properties

The large variations in concentration associated with transfer under high-
mass-flux conditions may give rise to important variations in the relevant
physical properties. Before attempting to make allowance for these effects,
however, it must be recognized that the magnitude of these variations
depends upon whether the phase under consideration is a liquid or a gas.
Thus in liquids the viscosity and diffusivity may vary substantially with
concentration, whereas the density changes only slightly. In gases, on the
other hand, strong variations in concentration may be accompanied by
significant changes in density, with only minor effects on viscosity and
diffusivity. Correctional emphasis will therefore be determined by the
nature of the phase under consideration.

The case of isothermal binary diffusion in a perfect-gas mixture in which
the density varies with composition, whereas the viscosity and diffusivity
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are constant, has been considered by Hanna (1962). He presented the
following approximate correction:

(kg)varp - ln(MO/Moo)
(kg)constp MO/ M°°_l

(5.221)

where M, and M are the molecular weights of the mixture at the wall and
in the bulk or free stream respectively. Equation 5.221 is valid for both
laminar and turbulent flow, for any geometry, and for all relevant Schmidt
numbers. The approximate nature of this equation stems from the assump-
tion that the mass flux at the wall is relatively insensitive to variations in
the velocity distribution caused by the changes in density with concentra-
tion.

In a subsequent study Hanna (1965) considered in greater detail the
problem of isothermal binary diffusion in a laminar boundary layer
consisting of a perfect-gas mixture with variable density. The viscosity and
diffusivity were considered constant. An approximate formula was pre-
sented as follows to correct for high rates of mass transfer under these
conditions for all Schmidt numbers near unity:

4/3 1/3
k_§= {[ln(1+Bx)]/Bx}4 : My/M,—1 (522
k¥ [1+4ln(1+B)]"° | exp(Mo/ M~ 1)1

This expression was considered to apply reasonably well to all geometries.
However, it is for use with concentrations expressed in mole fractions.
Thus for the transfer of component A through a nontransferring com-
ponent,

X40" X400
= 223
Bx I—XAO (5 )
also
N —c,D(0x,/9dy),_
kpm a0 o Z D (/@) (5.224)
X410~ X400 X40 " X400

Knuth (1963) devised reference compositions for gaseous laminar
boundary layers with variable fluid properties. Physical properties are then
evaluated at the reference composition, which is a function of the con-
centrations at the wall and in the bulk of the fluid. It was shown that the
arithmetic average of these two values is suitable only for low transfer rates
or small differences in molecular weight.
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Large variations in concentration in liquid systems could cause signifi-
cant changes in viscosity, depending upon the components involved. Little
direct investigation of such effects has been reported, although for a
constant-density laminar boundary layer on a flat plate, Hanna (1962)
suggests correction by analogy with his analysis for heat transfer in a liquid
of variable viscosity (Hanna and Myers, 1961). The work of Schuh (1950)
outlined earlier also included solutions for variable physical properties.

The influence on the mass-transfer coefficient of variation in diffusivity
with concentration has been studied by Nienow et al. (1966, 1968, 1969)
for cases of aqueous dissolution of solid electrolytes. Mass-transfer rates
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Figure 5.23. Dissolution of single ammonium alum spheres in aqueous solution at 20°C
(Nienow et al., 1966).
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were measured from single spheres of ammonium alum [NH,-Al(SO,),:
12H,0] suspended in vertically upward-flowing streams of solution at
20°C. For this temperature the concentration range from saturation to
infinite dilution corresponds to changes in density, viscosity, and diffusiv-
ity of —4, —30, and + 110 percent, respectively. Figure 5.234 correlates
their results for three different concentration driving forces, using bulk-
solution physical properties except for the diffusivity, which was evaluated
at the surface concentration in accordance with the suggestion of Ranz
and Dickson (1965) (i.e., N&=4k2d./0Dg Née=to/PoPo Nre
=du,p./ly) It is important to note in Figure 5.234 that an increase in
mass flux from the surface is accompanied by an increase in the Sherwood
number, instead of the decrease predicted by boundary-layer theory when
physical properties are constant. Improved correlation of the same data is
achieved in Figure 5.23B by evaluating the density and viscosity at the
arithmetic mean of the surface and bulk concentrations, and particularly
by using the integrated mean diffusivity over the concentration range p,q
t0 P4, SO that in Figure 5.23B, Ng,=kJd,/p,Dini» Ns.= s/ PDinry and
Nre=d,u P/ e Entirely similar results were obtained for potassium
alum.

Allowance for simultaneous variation in density, viscosity, and diffusiv-
ity with concentration in the presence of a high mass flux was attempted
by Olander (1962) for various laminar-boundary-layer-type flows of binary
liquid solutions. The analysis was primarily for solid-liquid systems with
N, values greater than 100, so that the velocity distribution approximates
a linear form within the concentration boundary layer. A perturbation
method was used to solve the diffusion equation, assuming that density
and diffusivity vary exponentially with mass fraction over the relevant
concentration range, as follows:

dlnp Po
ep=—(wA0—wAw)7w-:=ln(p—o) (5.225)

dinD D
eD=—(WA0—WAw)Td;VnT=ln(—D-O—) (5226)

The solutions for three flow geometries—the rotating disk, the flat plate,
and the falling film—were shown to be the same if the geometry was
characterized appropriately in each case. Olander therefore considered that
his result might be applicable to any external, laminar boundary-layer
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flow, regardless of geometry. The general relationship obtained was

N1, = [1+05¢,+0262,-0.5668

+0.166¢2 +0.046¢, +0.407B> +0.215¢ ¢,

Poo Foo ) (5.227)

—0.566¢ B—0.232¢, B (
b »5] Po ko

For the flat plate and the rotating disk, m=1; for the falling film, m=1.
The left-hand side of equation 5.227 defines the ratio of Sherwood num-
bers based on properties at the surface. The numerator corresponds to
varying physical properties and to finite bulk velocity normal to the
surface, whereas the denominator corresponds to physical properties which
are constant at their surface values and to zero bulk velocity due to
diffusion.

The theories for constant physical properties reviewed earlier all indicate
that k2 /k* is less than unity for B greater than zero. In contrast, equation
5.227 shows that certain variations in physical properties may exist for
which Ng,,/N¥%, is greater than unity for positive B, that is, for mass
transfer from the surface. Evidently this could occur, for example, if D
decreased sufficiently with increasing concentration. These indications are
in accordance with the experimental findings of Nienow et al. (1966) in
Figure 5.234.

Equation 5.227 is simple to use, in conjunction with equations 5.225 and
5.226, but it holds only for the range —0.4< B<0.4. Furthermore, equa-
tion 5.226 is an oversimplification in many cases (e.g., it will not represent
minima in D). These considerations led Emanuel and Olander (1964) to
apply a modified integral technique to solve a revised form of the diffusion
equation for high-Schmidt-number systems in boundary-layer-type flow.
Equation 5.225 was retained to characterize the density-composition re-
lationship, but the variation of diffusivity with composition was written as

2
D Wi~ Woeo Wa " Wieo
—=1-B{1-— |- 1—(—) 5.228
D, [ Wa0 ™ Waoo ] Y[ Wio ™ Waco ] ( )
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The result of the analysis was

NShO 2
e =[1-0222y ~0.1678"[1-0027y + B(0.544+0012y)
Sh

m/3

—e,(0.656—0.545y —0.388;8)]_'(M3) (5.229)
Po Mo

for the ranges

—07<B<3.0, —04<e, <03, 0.33<D_/D,<30

Experimental results for mass transfer from rotating disks of potassium
bromide and copper sulfate pentahydrate into water showed good agree-
ment with equation 5.229{m = %). Marked deviations were found, however,
in the case of sucrose at higher levels of driving force (w,q—w,, >0.1).
This was attributed to the 200-fold change in viscosity of this solution from
saturation to infinite dilution. Satisfactory agreement was found even in

this system, though, for py/p. < 10.

Conclusions Concerning Transfer with a High Mass Flux

A number of conclusions may be drawn regarding transfer under high-
mass-flux conditions; many of them have been summarized by Nienow
(1967). Most studies to date have been restricted to constant-property flow
in laminar boundary layers. Extensions to allow for variation in physical
properties with concentration have also been presented in a very limited
number of papers. Some experimental confirmation of the theoretical
studies has been noted, but substantial deviations between theory and
experiment are also common.

The driving force B most frequently assumes a value between —0.25 and
1.0 in applications commonly encountered by the chemical engineer.
Effects resulting from variations in physical properties may outweigh those
associated with high mass flux in this range, particularly for liquid systems.
Clearly, more experimental effort is needed in this area, in order to
discriminate between the various theoretical relationships available. When
constant-property assumptions are applicable, this might be done for a
given geometry and Ng, by comparison between experimental plots of
k% /k* versus 1+ B and theoretical curves such as those in Figure 5.22.
The similarity between the various curves in this figure, irrespective of
theory, geometry, and Schmidt number, implies that a generalized correc-
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tion procedure may eventually be found which will be adequate for many
engineering needs.

Illustration 5.8

A very porous solid plate is oriented at zero incidence to a pure air stream
flowing with a velocity of 30 ft/sec at points remote from the plate surface.
The underside of the plate is immersed in a reservoir of carbon
tetrachloride, the temperature of which is equal to that at the air-plate
interface. The latter is thoroughly wetted with CCl, as a consequence of
capillary action through the plate. If the air pressure is 14.7 psia and the
temperature in the bulk of the air stream is 262°F, estimate the surface
temperature of the CCl,, the local mass-transfer coefficient, and the rate of
evaporation at a point 6 in. from the leading edge of the plate.

SOLUTION. The local sensible heat flux g in general contains the follow-
ing contributions [A. P. Colburn and T. B. Drew, Trans. A. I. Ch. E., 33,
197-215, (1937)]:

1. sensible heat carried by convection in the normal manner without
mass transfer,
2. sensible heat carried bodily by the transferring substances.

Thus

dt
qs=hca + (nAcpA + nBch)(t— to)

where ¢, is the surface temperature, h; is the gas phase heat transfer
coefficient, and n=y /y; (v being distance measured into the gas stream
from—and normal to—the surface, and y,; the thickness of a fictitious
gas-phase film; see Chapter 4). Then

t
" dt 1 1o
=L [
j::, qS_(nAcpA+nBch)(t_t0) thO

Integrating,

qs=( l_ae—a )hc(‘oo_’o)

where
_ MaGpu +ngc,p

= "o

and a/(1—e™?) is the Ackermann factor, allowing for the effect of mass
transfer on heat transfer.
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It may be noted that n,,n, will be negative if 4, B diffuse in a direction
opposite to the sensible heat transfer. The total heat flux to the surface is

q,=qs+ Mo+ Apolts

where A, and A, are the latent heats of vaporization of 4 and B at ¢,. In
the present case ng =0, so that

a .
qt=( 1—e™ ¢ )hG(tuo_tO)-FAAOnA (1)
n,c
a= —’;l:‘ (ii)

and from equation 5.200,
W0~ Wy -
nA=nA0=(kg)varp(_l__—w_—°i) (lll)
AQ
The procedure for evaluating the coefficient in this expression will be as
follows:

1. Calculate k% from equation 5.23, using suitably evaluated physical
properties.

2. Compute k%, from k% via equation 5.206.

3. Estimate (kQ)cons: , from k%, with the appropriate relationship selected
from equations 5.215 to 5.220.

4. Evaluate (k2),,. , from (%) const , by applying equation 5.221, ex-
tended to nonisothermal conditions as described later.

The quantity h is obtained from the heat-transfer analog of equation
5.23. The steady-state temperature of the plate surface will be such that all
sensible heat arriving at the surface is carried away by the evaporating
carbon tetrachloride. The quantity g, is therefore zero. The temperature ¢,
is selected by trial and error so as to satisfy equations i to iii above with
q,=0.

Assume, for the final trial, that t,= 80°F.

Graphical interpolation of vapor-pressure data for CCl, as a function of
temperature (from Perry, 1963, p. 3-49) shows Pccy go-r =P, =119 mm
Hg. Thus at the surface,

119 _ _ .
Y4= 760 =0.1565=mole fraction CCl,

yg=1—y,=0.8435=mole fraction air
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One pound-mole of this mixture contains

153.84(0.1565) = 24.06 Ib CCl,

29(0.8435) = 24.45 Ib air

M,=48511b
_ 2406 _
Y40~ 4851 0.496

B M40 Wi _ 04960
1-w,,  1-0.49

=0.986

In comparing high experimental rates of mass transfer near a stagnation
point with theoretical developments for constant-property mixtures, the
physical properties were evaluated as:

1. Interfacial values (except for mainstream p in Ng.) by Ranz and
Dickson (1965).

2. Averages of interfacial and mainstream values (except for interfacial
D in Ng;) by Mendelson and Yerazunis ( 1965).

3. Mainstream values by Spalding and Christie (1965).

Various other approaches have also been used (e.g., see text; also Schuh,
1950; Nienow et al., 1966, 1967, 1968, 1969; Hanna, 1965; Knuth, 1963;
Olander, 1962; Emanuel and Olander, 1964; and Treybal, 1968).

With regard to the approach by Mendelson and Yerazunis (1965), the
use of the interfacial or wall value of D in Ny, 1s certainly consistent with
equations 5.22 and 5.23. Several ways of evaluating the physical properties
in Ng, and N, were investigated by these authors for both isothermal and
nonisothermal conditions. The use of averages of the interfacial and
mainstream values, followed by application of Hanna’s equation (equation
5.221), was found to give the closest agreement between theory and
experiment for the evaporation of CCl, into an air stream (Mendelson,
1964, 1971). The extension of Hanna’s isothermal equation (5.221) to
nonisothermal conditions in this way has been described by Hanna (pri-
vate communication, September 24, 1971) as “a reasonable expedient.”
This procedure will accordingly be followed here, with corresponding
physical-property evaluations for the heat-transfer analog of equation 5.23.

Average Viscosity

The viscosity of pure CCl, vapor at 80°F (26.65°C) will be estimated by
the method of corresponding states (R. C. Reid and T. K. Sherwood, The
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Properties of Gases and Liquids, 2nd ed., McGraw-Hill, New York, 1966,
pp. 404-405):

34.0% 107 5T %M}/ *P2/?
b= Tcl/6

cP for T,< 1.5

where the critical constants are T,=556.4°K, P,=45 atm (Reid and
Sherwood, p. 582).

340% 10-5[(273.2+26.65) /556.4]* (153.84) /% (45)”

pea, (80°F) =
ccle (556.4)"°

=0.01035 cP
For pure air at 80°F (Perry, 1963, p. 3-197)
fhyirr (80°F)=0.018 cP

The viscosity of the air-CCl, mixture at the interfacial or surface
conditions will be estimated by means of Wilke’s equation, written by Reid
and Sherwood (p. 421) as

b= Py + (9%
1+()’B/)"A)¢AB 1+(J’A/)’B)¢BA
where
2
. [14 (a/in) > (Ma/ M) "]
42 V8 (1+M, /M)
b4 = a5 te/ig) (M /Mg)
Substituting,

[1+(001035/0.018)"/(29/153.84)"/ T

15— ~03156
2 V8 (1+153.84/29)"°
_ 0.018 \(153.84) _
o 0.3156(0.01035)( 2 ) 291
0.01035 0.018

Hmsurtace) = 7770 8435 /0.1565)0.3156 1+ (0.1565/0.8435)2.91
—0.0155 cP
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The viscosity of the bulk gas (pure air) at 262°F is 0.0221 cP (Perry,
1963, p. 3-197), so that the average viscosity is

1(0.0155—0.0221) =0.0188 cP

Average Density

As calculated earlier, M,=48.51 Ib, which at 80°F occupies 359(460 + 80)
/492=394 ft*. The gas density at the surface is then 48.51 /394=0.1231
Ib-mass/ft>. In the bulk of the gas stream (pure air) 29 Ib occupies
359(460+262)/492=526 ft’. The gas density in the bulk is therefore
29/526=0.0551 Ib-mass/ft>, and the average density is

$(0.1231+0.0551) =0.0891 Ib-mass /ft>

Average Diffusivity

The diffusivity will be estimated by the expression of Fuller, Schettler, and
Giddings(equation 3.5), where, from Table 3 of the Appendix,(Zv) , =94.5
and (Zv)z =20.1. Thus at the surface temperature of 80°F (299.81°K)

0.001(299.81)"7 1 1

D,p (80°F) = + 55
1[(94.5)1/3_*_(20'1)1/3]2 153.84 ~ 29

=0.082 cm?/sec.

A similar calculation at the bulk temperature of 262°F (400.86°K) gives a
diffusivity of 0.1366 cm?/sec. The average diffusivity is then

1(0.082+0.1366) =0.1093 cm? /sec.

Average Thermal Conductivity

The thermal conductivities of pure CCl, vapor and pure air at 80°F were
graphically interpolated as 0.00348 and 0.01517 Btu/(ft®)(hr)(°F /ft) re-
spectively. The respective sources were Int. Crit. Tables V, 215 (1929) and
R. E. Bolz and G. L. Tuve, Eds., Handbook of Tables for Appl. Eng.
Science, C.R.C., (1970), pp. 38-39.

The thermal conductivity of the air-CCl, mixture at the interfacial or
surface conditions is estimated by means of Mason and Saxena’s equation,
written by Reid and Sherwood (p. 483) as

k, kg
k,, = +
1+1.065(ys/va)bap  1+1.065(y,/v5)¢p,
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where ¢, and ¢p, are the same as those used in estimating the viscosity of
the surface gas mixture. Substituting:

X _ 0.00348 + 0.01517
msurface) =1 +1.065(0.8435/0.1565)0.3156 ~ 1+ 1.065(0.1565/0.8435)2.91

=0.01087 Btu/ (ft?) (hr) (°F /ft)

The thermal conductivity of the bulk gas (pure air) at 262°F is found from
the above source to be 0.0195 Btu/(ft?)(hr)(°F/ft). The average thermal

conductivity is therefore

4(0.01087+0.0195) =0.0152 Btu/ (ft2) (hr) (°F /ft)

Average Specific Heat

The specific heats of pure CCl, vapor and pure air at 80°F were interpo-
lated graphically to be 0.133 and 0.249 Btu/(Ib)(°F), respectively. The
respective sources were Int. Crit. Tables, V, 81 (1929) and Perry (1963), p.
3-127. The mass composition of the gas mixture was calculated earlier as
W40=0.496, wgo=0.504, so that the specific heat of the gas mixture at the
surface is

0.496(0.133) +0.504(0.249) =0.1915 Btu/(Ib) (°F)

The specific heat of pure air at 262°F is 0.25 Btu/(1b)(°F) (Perry, 1963, p.
3-127), so that the average specific heat is

$(0.1915+0.25) =0.221 Btu/(1b) (°F).

Equation 5.23 will be evaluated with interfacial D in Ng, and with
average physical properties in N, and Ng, as discussed earlier:

_0.5(30)(3600) (0.0891)

= =105,900
Re,x 0.0188(2.42) 0

corresponding to laminar flow in the boundary layer.
0.0188(2.42)
<™ 0.0891(0.1093)3.88

0.221(0.0188)2.42
Pr— 0.0152 -

0.661
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From equation 5.23,

0.082)(3.88
k* =o.323—($(105,900)‘/ 2(1.2)'=71.1 ft/hr

and the heat-transfer analog is

0. 01087

he=0.323 =" (105,900)'/*(0.661)'/* = 1.99 Btu/(t?) (hr) (°F).

Equation 5.206 gives
k3, = pk%=0.0891(71.1) = 6.345 lb-mass/ (ft*) (hr)

One of the most extensive studies of high mass flux through a laminar
boundary layer on a flat plate is that by Spalding et al., leading to equation
5.216. This result will be used here:

(K)const p =K% (1+ B) ~**=6.345(1+0.986) ~**=4.82 Ib-mass/ (ft?) (hr)
Then using equation 5.221,

o 482(2.303)log(48.51/29)
(Foo)vac = 48.51/29—-1

The local value of the mass flux of CCl, is obtainable from equation iii
above as

=3.69 Ib-mass/ (ft*) (hr)

n4o=3.69(0.986) = 3.64 Ib-mass/(ft?) (hr)

The influence of mass transfer on the heat-transfer process is allowed for
by combining h; with the Ackermann factor, as in equation i above:

—_a_ \_ 1 1
hG( l—e"’)—hc+( 1—e° a)n”c”“

In this case the flux n, takes place in a direction opposite to the sensible
heat transfer, so that

__3sous)
=T 7199 T

where 0.115 is the specific heat of CCl, at the average temperature of
160°F, interpolated as before from Int. Crit. Tables, Vol. V, (1929), p. 81.
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Then

1—e

a 1 1
hc( _a)=1-99+( [ 02108 _0_2104)(—3.64)(0.115)

=1.789 Btu/ (ft*) (hr) (°F)

Evidently mass transfer reduces the heat transfer in this case by 100
X (1.99—1.789)/1.99=10.1 percent. The latent heat of vaporization of
CCl, at 80°F is 89.4 Btu/Ib (Perry, 1963, p. 3-114). Substitution in
equation (i) above gives

q,=1.789(262 — 80) +89.4( —3.64)

=325.5-325.5=0

This balance demonstrates that the value selected for the surface tem-
perature is correct. The answers to the problem at the specified location on
the plate are therefore

Surface temperature #,=80°F
(KS)yar ,=3.69 Ib-mass/ (ft*) (hr)
n,o=3.64 lb-mass/ (ft*) (hr)

Ilustration 5.9

Rework Illustration 5.7 in terms of equations 5.23, 5.200, 5.201, 5.206,
5216, 5.217, and 5.221. Compare the results with those obtained using
Schuh’s analysis.

SOLUTION. The bulk, average, and surface values of the compositions and
physical properties will be as in Illustration 5.7, from which Ng, ,=72,100,
N, =0.602. Then using equation 5.23,

(0.32)(3.88) 12

ks =0.323———=—(72,100)

(0.602)"/° =121 ft/hr
Equation 5.206 gives
* =pk*=0.0621(121) =7.51 Ib-mass/ (ft*) (hr)

W,40=0.1734
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so from equation 5.201,

B= Wi0" Wyeo _0.1734—-0 _
1—wy, 1-0.1734

0.21
and from equation 5.216,

(k) const =K% (1+ B) ~**=7.51(1+0.21) ~**=6.96 Ib-mass/ (ft) (hr)
Applying the isothermal equation 5.221,

_ 6.96(2.303) log (26.23/29)

(k)var p= 26237291 =7.36 Ib-mass/ (ft’) (hr)

The local mass flux is obtainable from equation 5.200 as

n40="7.36(0.21) =1.545 1b H,0 vapor/ (ft2) (hr)

This is 14.2 percent higher than predicted by Schuh’s solution, which
required constant physical properties. If the correction for varying density
provided by equation 5.221 is omitted, then 7n,,=6.96(0.21)=1.46 1b H,0
vapor /(ft*)(hr), which is 7.9 percent higher than the value found in
Illustration 5.7. Alternatively, if equation 5.217 is selected instead of
equation 5.216 to evaluate (kD),, e o> the corresponding estimates of local
n,o with and without application of equation 5.221 are, respectively, 6.9
and 1.1 percent higher than predicted by Schuh’s solution.

NOMENCLATURE

A, B Components 4 and B.

A Area, ft2.

4; Coefficient in the jth term of an infinite series.

a, b, e, d Constants in equation 5.11.

a,, by, ¢, 4, Constants in equation 5.14.

a; The jth root of the equation Jo(a)=0.

B A mass-transfer driving force defined by equations
5.201 and 5.202.

B Coefficient in the jth term of an infinite series.

B, A mass-transfer driving force defined by equation

5.223.
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Coefficients in equations 5.35 and 5.36.

The jith root of equation 5.108.

(pa— 40)/ (Paco = Pa0)

Coefficient in the jth term of an infinite series.
Total concentration, at y=0, in free stream,
1b-mole /ft’.

Concentration of component 4, Ib-mole/ft’.
Concentration of component 4 at the surface (y =0),
in the bulk or free stream, Ib-mole /ft>.
Specific heat, Btu/(lb-mass)(°F).

(Volumetric) molecular diffusivity, ft?/hr.

Integrated mean molecular diffusivity over a given
concentration range, ft>/hr.

Molecular diffusivity at the surface concentration,
ft>/hr.

Molecular diffusivity in the bulk of the fluid, remote
from the surface, or outside the concentration
boundary layer, ft*/hr.

Diameter of a sphere, ft.

Tube diameter, ft.

Defined by equations 5.225 and 5.226.

Gravitational force, 1b-force.

External force in the x direction, 1b-force.
Coefficient in the jth term of an infinite series.
Acceleration due to gravity, ft/hr?.

Conversion factor, 32.174 lb-mass ft/(Ib-force)(sec?)
or 4.17 % 10® Ib-mass ft/(Ib-force)(hr?).

Normal distance separating flat, parallel plates, ft.
Normal distance from midplane, ft.

h/(H,/2)

Bessel functions of first kind of order zero and one.
Thermal conductivity, Btu/(ft?)(hr)(°F /{t).

Individual mass-transfer coefficient for any con-
centration range, n, /Aw,, Ib-mass/(ft?)(hr}.

Individual mass-transfer coefficients for any con-
centration range: i, /Aw,, Ib-mass/(ft®)(hr); J,, /Ax,,
1b-mole/(ft?)(hr); i /Dp,, ft/hr. (For iy and J, see
Chapter 2.)
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*
k3, k2, k%,

* *
Kk, KXo

pm

RXRREER~LSEC
S

Individual mass transfer coefficients for low con-
centrations and transfer rates: n, /Aw,, Ib-mass /(ft?)
(hr); N,/Ax,, Ib-mole/(ft>)(hr); ny/8p,, ft/hr;
ny / (ApA )a.riLhA mean?’ ft/ hr 5 (”A)av/ (ApA)logA mean> ft/ hr.

Integrated mean value of k., defined above equation
5.24, ft/hr.

Length; plate length in direction x, ft.

Film thickness, ft.

Characteristic length dimension, ft.

Height of control volume, ft.

Average molecular weight.

Parameter defined by equation 5.195.
Molecular weights of components 4 and B.
Molecular weight of inlet gas.

Molecular weight of mixture at the wall.

Average molecular weight of gas saturated with solute
at the liquid surface temperature.

Molecular weight of mixture in bulk of free stream.
Constant.

(pAO—pAoo)/NScpAO(P/pAO_ 1

Molal flux of component A4 relative to stationary
coordinates; at the surface y =0, lb-mole /(ft®)(hr).

Grashof number for mass transfer, equation 5.44,
Prandtl number.

Reynolds number, 4,Vp /p, 2H,Vp/p.

Film Reynolds number, equation 5.70.

Lup/p; xu p/p.

Schmidt number, u/pD.

o/ PuDo

Sherwood number: kL_/D, k*L_/D.

k3d,/peDo.

Sherwood number in terms of k2 and in the presence

of property variations and interfacial velocity
(Olander, 1962; Emmanuel and Olander, 1964).
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Sherwood numbers .in which the coefficient k is,
respectively, k%, K m, kf and £, the latter being a
local value.

Constant.

Mass flux of component A relative to stationary
coordinates; in direction 4; at the surface (y =0); in
direction r; at the wall; in directions x and y, lb-

mass/(ft*)(hr).

Total pressure, 1b-force /ft%.

Partial pressure of component 4 at the plate surface,
1b-force /ft2

Volumetric flow rate, ft*/hr.

Rate of transfer of 4 at the wall, Ib-mass /hr.

Gas constant, 1545 ft lb-force /(Ib-mole)(°R).

Some function of r only, equation 5.104.

Radius, radius of a tube, ft.

r/r,.

Absolute temperature; of inlet gas; at the surface
(»=0); of the liquid surface; outside the boundary
layer, °R.

Time, hr, or temperature, °F.

Mass-average velocity in the x direction; of the
liquid-liquid interface; at the centerline; outside the
momentum boundary layer, ft/hr.

Mean velocity in the x direction. W/ p(cross-sectional
area), ft/hr.

Mass-average velocity in direction A, r, or y, ft /hr.
Statistical mean velocity of component 4 in the y

direction relative to stationary coordinates at y =0,
ft/hr.

Mass-average velocity in the y or —y. direction at the
surface (y =0) and at y =/, respectively, ft/hr.

Mass flow rate, Ib-mass/hr.

Width normal to flow, ft.

Velocity component in the z direction, ft/hr.
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Was Waer Wars Wyoo

X45 X400 Xg00

N
&R NS X

R

T Pm® W

P
§
P> Pgs P> Poo

Mass fraction of component A4, p4/p; at the surface
(»=0); in the transferred material; in the bulk of the
stream or outside the concentration boundary layer.

Some function of x only, equation 5.104.
Distance in direction of flow, ft.

Dimensionless distance in the direction of flow, equa-
tion 5.102 and Table 5.2.

Mole fraction of component 4, ¢, /c; at the surface,
€40/ Co; in the bulk or free stream, ¢, /c.,.

Critical value of x at which laminar flow ends in the
boundary layer, ft.

Distance along plate at which mass transfer begins, ft.
Distance from and normal to the surface, ft.
Coordinate direction.

Angle between an inclined plane and the horizontal.
Coefficient in the jth term of an infinite series.
Thermal diffusivity, ft?/hr.

Constant in equation 5.228.

Volume expansion coefficient, equation 5.26.
Eigenvalues.

Velocity gradient at the wall, hr .

Constant in equation 5.228.

Eigenvalues.

Thickness of the momentum and concentration
boundary layers, ft.

Film thickness, ft.

Paw =040/ (Paw—Pa); (Paw = Pus)/(Law — Pas)-
(- To)/(Tw - To)-

Factor in equation 5.32, ft/hr.

Eigenvalues.

Viscosity, 1b-mass /(ft)(hr).

Viscosity at the arithmetic mean of the surface and
bulk concentrations, Ib-mass /(ft)(hr).

Viscosity at bulk concentration, 1b-mass /(ft)(hr).

YV Ng.. /2x.

Total density; at the arithmetic mean of the surface
and bulk concentrations; at the surface (y =0); at the
bulk concentration, Ib-mass /ft°.
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P P* Mass concentration of component A; saturation or
equilibrium concentration, lb-mass /ft’.
P4 P40 Paco P4 —Pao Pao—Pao=0: Pyoo—Pyo Ib-mass/ft’.
P4aB> PaBo> Pai> Pao
Pass Paws Paco Bulk average or “mixing cup” value of p,; p,p at the

outlet; mass concentration of A at the inlet; at the
surface (y =0); at the centerline; at the wall; in the
bulk or outside the concentration boundary layer,
1b-mass /ft>.

P> Pros PBoo Mass concentration of component B; at the surface
(y=0); in the bulk or outside the concentration
boundary layer, Ib-mass /ft’.

To=(T,x)y=0 Shear stress at the surface (y =0), Ib-force/ft>

Tyx Shear stress in the x direction on a surface normal to
y, Ib-force /ft2.

T Quantity defined by equation 5.76.

o, 1, O, 8./8; for streams 1 and 2, respectively.

¢ Eigenfunctions.

Y Eigenfunctions.

w=w(f) u/u,.

Subscripts: 1 and 2 refer to streams 1 and 2 in equations 5.53 to 5.56.

PROBLEMS

5.1 A flat plate measuring 1 ftX2 ft is immersed at zero incidence in a
stream of ethanol, with the shorter sides of the plate parallel to the
direction of flow. The surface of the plate contains a semicircular disc of
solidified stearic acid with a diameter of 2 ft, the latter constituting the rear
edge of the plate. The remainder of the plate surface is insoluble in
ethanol. If the velocity of the ethanol at points remote from the surface is
1.2 ft/sec and the temperature of the system is 77°F, determine the total
rate of dissolution of stearic acid fron one surface of the plate. Relevant
physical properties may be taken from Illustration 5.3.

5.2 Repeat Problem 5.1 with the direction of flow reversed.

53 Water at a temperature of 77°F flows parallel to a flat plate of
benzoic acid which is 1 ft long in the direction of flow. If the velocity of
the water at points remote from the surface is 0.75 ft/sec, plot the local
mass-transfer coefficient, the thicknesses of the momentum and concentra-
tion boundary layers, and the local Sherwood number as functions of



214 Mass Transfer in Laminar Flow

distance from the leading edge of the plate. Relevant physical properties
appear in Illustration 5.6.

54 Determine the average rate of mass transfer per unit width of plate in
Problem 5.3.

5.5 A flat plate with low thermal conductivity is coated on one side with
an 0.1-in.-thick layer of solid naphthalene and on the other side with a
layer of benzoic acid of the same thickness. The coated plate forms one
vertical side of a tank which is completely filled with pure water at 77°F.
The naphthalene-coated surface is in contact with pure air at 1 atm and
110°F. The water and the air are both free from forced convection, and for
present purposes the solid surface temperatures will be assumed equal to
the bulk temperatures of the fluids with which they are in contact.
Confining attention to the uppermost 2 in. of the plate, on which side will
the average coating thickness first be reduced to 90 percent of its original
value? What will be the average thickness of coating on the other side at
this instant?

Relevant physical properties may be found in Illustrations 5.1, 5.2, 5.6,

and 6.5, although adjustment will be needed for the new air temperature.

5.6 A vertical tube with an i.d. of 2.5 in. and a length of 4 ft is cast from
benzoic acid. Pure water enters the tube at a rate of 5 ft*/hr and flows in a
thin film down the inner wall. Dry air at 1 atm and 85°F flows into the
tube and moves countercurrent to the water at an average velocity of 0.75
ft/sec. The benzoic acid and the water remain at a constant temperature
of 50°F throughout. Estimate the following quantities:

(a) The water film thickness.

(b) The average and maximum velocities of the water film.
(c) The concentration of benzoic acid in the outlet water.
(d) The concentration of dissolved air in the outlet water.

For the solubility of benzoic acid in water at the appropriate tempera-
ture see Seidell (reference in Illustration 5.6). The solubility of air in water
appears in Perry (1963), p. 14-3.

5.7 Estimate the average concentration of water vapor in the air stream
leaving the wetted-wall column in Problem 5.6.

5.8 Calculate and plot the radial concentration distribution of benzoic
acid at the outlet from the mass-transfer section of the tube in Illustration
5.6.

5.9 The differential equations expressing continuity and solute distribu-
tion during mass transfer in laminar flow between flat parallel plates are
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given by equations 5.178 and 5.179 in Table 5.2. Present full derivations of
these expressions with labeled sketches of the relevant control volumes. To
what forms do these equations reduce for the cumulative conditions of (a)
steady state, (b) negligible axial diffusion, and (c) fully developed velocity
distribution?

5.10 Equations 5.180 and 5.181 in Table 5.2 express local and bulk-
average values of the solute concentration in mass transfer during laminar
flow between flat parallel plates under the conditions indicated. Give full
derivations of these two relationships.

5.11 Beginning with equation 5.181, develop equations 5.182 and 5.183 of
Table 5.2 for mass transfer in laminar flow between flat parallel plates
under the specified conditions.

5.12 Equation 5.186 in Table 5.2 expresses the asymptotic value of N§,
for mass transfer in laminar flow between flat parallel plates when n,y, is
independent of x. Derive this relationship, beginning with the appropriate
differential equation.

5.13 Equation 5.187 in Table 5.2 gives the asymptotic value of N§, for
mass transfer in laminar flow between flat parallel plates, assuming a
cubic-polynomial concentration distribution. Present a complete derivation
of this expression.

5.14 The two larger sides of a rectangular duct are made from solid
naphthalene, separated by a normal distance of 4 in. Pure air at an average
pressure of 14.7 psia flows through the duct with a mean velocity of 2
ft/sec. Estimate the average concentration of naphthalene vapor in the air
at a distance of 2 ft downstream from the entrance, if the system is at
113°F and the width-to-height ratio of the duct is great enough for the
flow to be regarded as occurring between flat parallel plates.
The relevant physical properties may be found in Illustration 5.1.

5.15 A flat rectangular duct has two large sides separated by } in. and a
width-to-height ratio sufficiently great that the two small sides exert
negligible influence on the transfer processes. Pure ethanol flows through
the duct at a mean velocity of 0.1 ft/sec. At a point downstream from that
at which the velocity profile is fully developed, the two insoluble large
sides are replaced by plates of solidified stearic acid. Estimate the distance
downstream of the start of the soluble section at which the mean con-
centration of stearic acid in the ethanol reaches 30 percent of saturation.
The temperature of the system is 77°F, and the physical properties are as
in Illustration 5.3.
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5.16 For the conditions of Problem 5.15, calculate and plot the con-
centration distribution of stearic acid over the duct cross section located 5
ft downstream from the start of the soluble section.

5.17 Potassium chloride in the form of a solid flat plate is submerged in a
stream of pure water flowing parallel to the plate with an upstream velocity
of 0.5 ft/sec. If the plate is 1 ft square and the system is at a temperature
of 18.5°C, estimate the total dissolution rate of KCI from a single surface.
Compare results with and without allowance for the high mass flux. Some
relevant physical properties are obtainable from Illustration 3.5.

5.18 A tube with an internal diameter of  in. is made from solid potassium
chloride. Water flows through the tube with an average velocity of 0.25
ft/sec. If the system is at 18.5°C, what is the average concentration of KCl
in solution at a point 2 ft downstream from the tube inlet? (See Illustration
3.5 for physical properties.)

5.19 A short tube has a mean diameter of 1 ft and a length of 8 in., and
its thin, porous walls are kept saturated with liquid water. Dry air at 14.7
psia and 200°F flows with a velocity of 15 ft/sec over and through the
tube in the axial direction. Estimate the combined rate of evaporation from
the outer and inner cylindrical surfaces when the tube and water supply
are maintained at 200°F by a separate heat source.

5.20 Repeat Problem 5.19 for the case in which the separate heat source
is removed and after the temperature of the wet surface has assumed an
appropriate equilibrium value.
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6

Mass Transfer in Turbulent Flow

This chapter deals with mass transfer in the turbulent boundary layer on a
flat plate under conditions of either forced or natural connection, with
mass transfer into a falling liquid film, with analogies between mass and
momentum transfer, with the phenomena of interfacial turbulence, and
with transfer when the mass flux is high.

Much of the chapter considers low-mass-flux conditions in constant-
property systems and in terms of compositions expressed as p, and Ap,, as
explained at the beginning of Chapter 5. Procedures for extending the
results to high-mass-flux conditions, with and without physical-property
variations, are then given in the final section of the chapter.

MASS TRANSFER IN THE TURBULENT BOUNDARY LAYER ON A FLAT
PLATE

Measurements on the time-averaged velocity distribution in the turbulent
boundary layer on a smooth flat plate at zero incidence to flow are usually
correlated as follows for Reynolds numbers (xu_p/p) up to about 10:

()" o

Equation 6.1 is known as Prandtl’s one-seventh-power law. Corresponding
expressions for concentration distribution have not been established, but
21

L
uDO



222 Mass Transfer in Turbulent Flow

results consistent with observations are obtainable by assuming a re-
lationship analogous to equation 6.1:

, 1/7
Pa"Pa0 _ Pa _ ()
)

<

(6.2)

Pgoo ~Pao p:'iw

Neither equation 6.1 nor 6.2 can be valid at the surface—as shown, for
example, by differentiating 6.2 with respect to y, which erroneously indi-
cates an infinite concentration gradient at y=0. The mass-transfer
boundary-layer equation 5.8 may be written as follows for negligible v:

i 8(' 14 — / — 92"4_ —_ * 7
dx.f; (oo PA)udy_D( y )y=0_kaAoo (6.3)

where the inability to evaluate the concentration gradient at y =0 from
equation 6.2 has necessitated the introduction of k% p, . The develop-
ment of mass-transfer relationships will again require an expression for 4,
the thickness of the momentum boundary layer. In the boundary-layer
equation 5.10, the velocity gradient at y =0 cannot be evaluated from
equation 6.1, so the expression developed experimentally by Schultz-
Grunow (1940; see also Eckert and Drake, 1959, p. 143) for flat plates will
be used for 7,:
1/4

'rogc=0.0228pu§°( 3: ) (6.4)

o0

This expression holds up to xu_p/p of about 107, and for negligible v,
equation 5.10 becomes

1/4

d (%. _ _ 2 _H
s fo (u,, u)udy—0.0228uw( Suwp) (6.5)
Combining equations 6.1 and 6.5 leads to
8=0376xNg2?2 (6.6)

The important assumption is now made that § =4, at a given x, requir-
ing restriction to Schmidt numbers of unity. The development is therefore
confined to gaseous fluids. Combining equations 6.1, 6.2, and 6.3 under

these conditions gives
)G 5] e

p 10
* — = —
ky uwdx[8f [1 (
0

1/7

;<
> =
[~1R
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or

Tuy, d8

7 dx (6.8)

ky=
where d8 /dx is evaluated from equation 6.6 to obtain the following result,
after multiplying 6.8 throughout by Np.  Ng.:

*

(Ng,)E= % =0.0292N%% (6.9)
since Ng.=1.0. The integrated mean k%, over the range 0<x<L is
obtained in a manner similar to that used for the laminar boundary layer,
leading to

*
pm

(Ngp)X= =0.0365Ngs, (6.10)
Approaches for systems in which N is not unity are noted later beneath
equations 6.57 and 6.123, and in Problem 6.6 at the end of the chapter.
Momentum, heat, and mass transfer in turbulent non-Newtonian
boundary layers have been treated by Skelland (1966, 1967).

Ilustration 6.1

A smooth plate of solid naphthalene is oriented at zero incidence to a pure
air stream flowing with a velocity of 115 ft/sec at points remote from the
surface of the plate. If the air pressure is 14.7 psia and the system is at a
temperature of 113°F, calculate the following for comparison with Illustra-
tions 5.1, 5.2, and 6.4, assuming that the boundary layer is turbulent from
the leading edge of the plate and that the influence of the non-unity
Schmidt number can be neglected (Illustration 6.4 shows the result of
allowing for the deviation of Ny, from unity):

(a) The average mass-transfer coefficient over the first foot of plate
length.

(b) The average rate of mass-transfer per unit width over the first foot of
plate length.

(c) The local mass-transfer coefficient at a point 1 ft from the leading
edge of the plate.

(d) The local naphthalene concentration gradient at the plate surface at
a distance of 1 ft from the leading edge.

(e) The local thicknesses of the momentum and concentration boundary
layers 1 ft from the leading edge of the plate.
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If the plate is smooth enough to sustain a laminar boundary layer over
the leading portion of the surface, derive the following quantities, assuming
that transition to a turbulent boundary layer takes place at the commonly
occurring value of x.u_p/u=3.2%10° and that the influence of the
non-unity Schmidt number can be neglected (check the latter assumption
against Illustration 6.4):

(f) The relationship for the mean Sherwood number when L > x,.
(8) The average mass_transfer coefficient over the first foot of plate
length under these new conditions.

Take the naphthalene surface temperature to be 113°F (see Illustration
5.1).

SOLUTION (a). The physical properties at the temperature and pressure of
this problem are available from Illustrations 5.1 and 5.2. Thus

_ 1(115)(3600) (0.06935)

— hi
Re,L 00457 =6.28x10

The Ny, for this system is 2.475 (Illustration 5.2); if this departure from
Ns.= 1.0 is neglected, substitution in equation 6.10 gives

k2, =0.0365( Qz—f“)(s.zs X 10%)%8 =425 ft /hr

SOLUTION (b).

Luw =K (1X 1) (040 p4) =425(1 X 1) (0.000224— 0)

=0.0951 Ib naphthalene /hr

SOLUTION (¢). From equations 6.9 and 6.10,

0.0292
* o U ULTL =
° =~ 0.0365 (425) =340 ft /hr
SOLUTION (d). Assuming that naphthalene leaves the solid surface by
molecular diffusion, then for the differential element of surface wdx,

dp
dqaw=k;wdx (040=p4o) = ~ Dwdx (8_;)
y=0



Mass Transfer in Turbulent Natural Convection on a Vertical Plate 22§

At 1 ft from the leading edge,

d 340(0—0.000224
(ﬁ) _ 340 ) _02851b naphthalene /ft*

Wy 0.2665

SOLUTION (e). From equation 6.6,

§=0.376(1)(6.28 X 10°) ~**=0.026 ft

Neglect of the deviation of Ng, from unity implies that §=4_. In fact,
however, since Ng =2.475, §, will be less than the value calculated for 8.

SOLUTION (). If the turbulent boundary layer extrapolates to zero thick-
ness at the leading edge of the plate, then

X L
kx = % [ fo k2 (equation 5.23)dx + [ et (equation 6.9) dx

For a Schmidt number of unity this gives

*

D
If Ng,,, =32X10%,

=0.646 N3/ —0.0365NR8, +0.0365NR;

Re, x,

#

D

L
=0.0365( N33, —15,350)

SOLUTION (g).

00365( 0.2665 )[

(6.28x10°)** —15,350] =276 ft /hr

The reader is again cautioned to note the differences resulting from
allowance for the non-unity Schmidt number, as shown in Illustration 6.4.

MASS TRANSFER IN TURBULENT NATURAL CONVECTION ON A VER-
TICAL PLATE

The process of mass transfer in turbulent natural convection on a vertical
plate may be analyzed by a procedure essentially analogous to that
described earlier for laminar natural convection in Chapter 5. The
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approach given here is for low solute concentrations and transfer rates and
is based on that presented by Eckert and Jackson (1950) for the heat-
transfer analog. The concentration of solute (component A) is constant at
P40 along the surface of the plate and is P4 at points remote from the
plate.

The momentum equation for the turbulent boundary layer is given by
equation 5.29, but with the term p(du/ dy), o replaced by g 7,:

d 82’_ 8:To
dx Oudy p

3
+B.g fo (P4 Paeo) B (6.11)

The equation for the concentration boundary layer (8 =§,) with negligible
bulk velocity due to diffusion is given by equation 5.30, but with the term
—D(3p,/),_, replaced by n,:

L}
[ Campayudy=nyg (6.12)

These replacements are made because the momentum and mass fluxes at
the wall (r, and n,,) cannot be estimated from the gradients at y =0 of the
expressions that are used to approximate the distributions of velocity aud
concentration in the boundary layer. Instead, experimental values -vill be
used for 7, and ny,.

The time-averaged concentration and velocity profiles in the turbulent
boundary layer will be approximated by the following equations, which
have been found effective in the heat-transfer analog:

pA—pAw=(pAo—pAw>[1—(§)m] (6.13)
u=A(%)l/7(l—%)4 (6.14)

An assumption will now be made corresponding to that of Eckert and
Jackson (1950) in the heat transfer case—namely, that the momentum and
mass fluxes at the wall are governed by the same respective relationships in
both natural and forced convection boundary layers. In consequence, 7, is
obtained from equation 6.4. The mass flux » 40 18 taken to be that given by
Colburn’s analogy between momentum and mass transfer for a flat plate,

0y K ey G (6.15)
C 29 *
(pAO—pAoo)uco Ue 2
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where (C,, =2g,7,/pu%) is the local drag coefficient. The flux n,, occurs
at y /80, where u,, and A are similar, as shown by equations 6.1 and
6.14. Thus, combining with equation 6.4 and substituting A for u,

1/4
|t -
n10=00228(pa0—pa) A 355 ) N (6.16)
Equations 6.4, 6.13, 6.14, and 6.16 are inserted into equations 6.11 and
6.12 and the integrations performed to give

1/4
4 A28y = — of P _
0.0523 4 (A%) = —0.0228A (8 Ap) +0.1258,8(pg0—Pan)d  (6.17),

1/4
0. 0366i (A8)=0. 0228A( 55 ) NS? (6.18)

The following functional forms are now assumed:
A=B;x? (6.19)
0=B,x1 (6.20)

Equations 6.19 and 6.20 are incorporated into equations 6.17 and 6.18
and the resulting expressions solved for B,, B,, p, and ¢ in a manner
similar to that shown in Chapter 5 for the laminar-flow case. Eckert and
Jackson (1950) give the results as

g

r= l’ q=
=0.0689%B; N8/

u?

B.20* (P40~ Pac)

B'°=0.00338 [140.494N2/3|Ng 16/3

If the Grashof number is introduced from equation 5.44, together with the
definition of B, from equation 5.27, the expressions for A and § at x are,
respectively,

A=1185— Né{f,(1+0494stc/3) (6.21)

><|°o

—0.565 NG NG/ 15(1+0.494N2/3)"! (622)
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The local Sherwood number, defined as

NgoX kyx
(pAO_pAco)D D

is therefore obtained from equations 6.16, 6.21, and 6.22;

(NShy: =

-2/

(Ngp)¥ =0.0299N/F N2/ (1+0.494N2/3) (6.23)

This expression shows that the local coefficient is proportional to the 0.2
power of x, the distance from the leading edge of the plate. Accordingly, if
the boundary layer is assumed to be turbulent from the leading edge, the
mean coefficient over the range x=0 to L is

* - * 1. *
f k}dx= 2 (k¥)e-r (6.24)
and the corresponding mean Sherwood number is

(N2 =0.0249NY/3NI/15(1+0494N2/3) (6.25)

Equation 6.14 shows that the maximum velocity in the boundary layer is
given by

Upnax =0.537A =0.537B,x?
or

Uy =0. 636—(1+0494N2/3) Ny (6.26)

In reality the turbulent boundary layer is preceded by a section in which
the flow is laminar, in accordance with “equations” 5.51 and 5.52. Equa-
tions 6.24 and 6.25 therefore hold only at Grashof numbers large enough
for the laminar boundary layer to occupy just a small fraction of the total
length L. This appears to be the case for Grashof numbers higher than
about 10'°,

MASS TRANSFER IN A FALLING LIQUID FILM IN TURBULENT FLOW

The situation to be considered is analogous to that described under this
heading in Chapter 5, where the film was in laminar flow. Attention is
confined to the following case.
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Mass Transfer between an Inclined Plate and a Falling Liquid Film

The physical situation is that detailed in Chapter 5 with Figure 5.5.
Equation 5.61 still applies, provided that solute penetration is confined to
the laminar sublayer adjacent to the solid surface. Solute concentrations
are low, so that bulk velocities due to diffusion are negligible. Equation
5.65 is also valid with these restrictions, so that

pgsinad
Bv=(%) T L (6.27)
-

In the case of turbulent films falling down a vertical wall, Brotz (1954)
found experimentally that the film thickness is given by

= > 2360 (6.28)

S\ 173
0 4Qp
wg ’

which is similar to the finding of Kamei and Oishi (1955). From equations
5.63, 6.27, and 6.28,
2/9

k2 32
(Ns)s =5 =0.327N§£?N§°/3(%) (6.29)

where Ny ,=4Qp/wp. Equation 6.29 requires conditions such that solute
does not penetrate beyond the laminar sublayer in the region where mass
is being transferred from the plate surface. It will be shown later that the
thickness of the laminar sublayer is believed to be given by

L _yute
s

=5

y

where the friction velocity u* is

Togc du)
u*=\/— , To8.=u| 5 =pB,
V p 08 #(ay o 1B,

so flow will be laminar in the region
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in which B, is obtained from equations 6.27 and 6.28. Kramers and
Kreyger (1956) reported “fairly good agreement” between values predicted
from equation 6.29 and measurements made on the rate of dissolution of
benzoic acid plates in falling water films. Their data were in the range

4
3200<NRef=w£:<7000, 5 mm < x <80 mm.

The values were obtained with an entrance length upstream from the
benzoic acid surface of 330 mm.

IHlustration 6.2

Repeat Illustration 5.3, but with the ethanol overflow rate increased to 40.9
ft3 /hr.

SOLUTION.

N 800 4(409)(4#)
Refav ™y o 7(2.875/12)(2.66)

4000

As in the case of Illustration 5.3, the relatively long contact time
precludes the use of equation 6.29. However, C. Stirba and D. M. Hurt [4.
I Ch E J., 1, 178-184, (1955)] used Figure 5.6 with Figure 5.7 of
Illustration 5.3 successfully up to film Reynolds numbers of about 4000,
and this procedure is followed here. Figure 5.6 involves use of the film
thickness estimated from equation 5.68; it may be noted that M. L.
Jackson [4. I. Ch. E. J., 1, 231, (1955)] found experimentally that, for
liquids with viscosities around that of water or less, equation 5.68 describes
the thickness of a liquid film falling down a vertical wall up to Ny, of at
least 4000. Some controversy on this point was noted below equation 5.71,
but equation 5.68 is used for the present purpose. For an Ng,,,, of 4000,
Figure 5.7 of Illustration 5.3 gives D,=56X 10" ft?/hr, which exceeds
the molecular diffusivity for this system by a factor of 22.6. From equation
5.68,

1/3

3(2.66)(40.9) =0.002767 ft

O av= 7(2.875/12) (49) (4.17 X 108)

and

Dyx  (56X107°)(2.66)(10)
P88  49(0.002767)%(4.17 X 10%)

=0.0124
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The corresponding ordinate of Figure 5.6 shows that

PaB”Pai _15_ PaB— "
ot =4 0.814—0
SO

p,5=0.0977 Ib C,;H,sCOOH /{t’ of solution in ethanol

This is the average concentration of stearic acid dissolved in the ethanol
leaving the overflow pipe. The average dissolution rate is estimated as

40.9(0.0977) =3.99 Ib C,,H,;COOH /hr

From Illustration 5.3, the amount of stearic acid initially present is 4.16
Ib, so that the time required for its removal by dissolution in the falling
film of ethanol is estimated as

4.16
399 = 104 hr

The amount of ethanol contaminated under the slower overflow condi-
tions of Illustration 5.3 is only 14.2 ft*, compared to 42.6 ft’ for the present
case.

Questions concerning the generality of Figure 5.7 were posed in Illustra-
tion 5.3; as in that calculation, entrance effects have again been neglected
here. Interpolation as before between the measurements of entrance length
by Tailby and Portalski {Chem. Eng. Sci., 17, 283-290, (1962)] for vertically
falling films of methanol and isopropanol, respectively, suggests that, for a
film Reynolds number of 4000, the entrance length in the present case is
somewhat less than a foot—that is, less than 10 percent of the total length
over which mass transfer occurs.

ANALOGIES BETWEEN MOMENTUM AND MASS TRANSFER

Rigorous solution of the equations governing the transport of matter in a
turbulent stream is complicated because of the unknown fluctuations in
components of the velocity. Substantial progress has been made in this
field, however, by the continuing development and refinement of analogies
between heat, mass, and momentum transfer. Although attention has
centered to a greater extent on the analogy between heat and momentum
transfer, the resulting expressions are in general readily converted into
terms of mass and momentum transfer, and it is the latter analogy that will
be primarily considered here.
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Some of the principal contributors to this area include the following, in
chronological order:

Reynolds (1874); Prandtl (1910, 1928); Taylor (1916); Murphree (1932);
Colburn (1933); Chilton and Colburn (1934); von Karman (1939);
Sherwood (1940); Hoffman (1940); Reichardt (1940); Boelter, Martinelli,

.and Jonassen (1941); Martinelli (1947); Jenkins (1951); Lyon (1951);
Seban and Shimazaki (1951); Deissler (1952, 1954, 1955); Lin, Moulton,
and Putnam (1953); Metzner and W. L. Friend (1958, 1958a); Metzner and
P. S. Friend (1959); Clapp (1961); Gowariker and Garner (1962); Skelland
(1970); and Hanna and Sandall (1972). Some excellent reviews are given
by Knudsen and Katz (1958, Chapter 15) and by Sherwood (1959).

The analogies to be described here will follow a historical pattern so as
to provide a clearly evolving picture of the concepts which have been
developed for describing turbulent mass transfer. Of key importance in the
formulation of nearly all of these analogies is the structure of the velocity
distribution and the corresponding distribution of eddy diffusivities be-
tween a solid boundary and the bulk or core of the turbulent stream. The
second, third, and fourth analogies to be described make use of part or all
of the so-called “universal velocity distribution” for turbulent fluids in
smooth tubes, and this is accordingly developed below. Constant-property
fluids, with low solute concentrations and mass-transfer rates, are consi-
dered throughout.

A dozen examples showing important applications of mass transfer in
internal flows through tubes and ducts of other geometries under laminar
or turbulent conditions are given in Chapter 5 under the -heading “Mass
Transfer in Laminar Flow Through a Tube.” The subject is clearly of
sufficient importance to merit extensive study.

The Universal Velocity Distribution in Smooth Tubes

The relationship described in this section was derived by Prandtl (1933)
from his mixing-length theory. It is first necessary to develop the expres-
sion for stress distribution in the flow of any fluid through a cylindrical
tube, as shown in Figure 6.1.

The fluid is flowing upward in the inclined tube of radius r,, and for
steady, uniform flow the sum of all the forces acting on the fluid between
sections 1 and 2 will be zero. The relevant forces are those due to static
pressure, gravity, and shear, so that

wr2P, —ar?P, —ar’Lp £ coso- 2qr, Ly, =0
C
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Figure 6.1. Stresses acting on a cylindrical element of fluid of radius r, in steady flow
through an inclined tube.

or

P —P 2Lt
——1——2——L5c039= v

6.30
P 8 rp ( )

Now the total mechanical-energy balance for the steady incompressible
flow of a unit mass between points 1 and 2 may be written in general as
shown by Perry (1950, p. 377):

g P g
Z, >+ L +(KE),—W/=Z
e T p (KE), 2y

—+%+(KE)2+2F (6.31)
where Z is vertical height above an arbitrary datum plane, P is static
pressure, KE is the average kinetic energy per unit mass, and W’ is the
shaft work done by a unit mass of fluid. W,’ is negative when work is done
on the fluid by an outside source such as a pump. The term > Frepresents
mechanical energy converted into thermal energy as a result of fluid
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friction, and is given by

Sr= AP + frictional losses per unit mass|due to en-
P trance effects, flow through fittings, etc.

in which AP is the frictional pressure drop associated with fully developed
flow through the tube. Applying equation 6.31 to Figure 6.1,

P—P
B —Lg§ cosf=3F= % (6.32)

where Lcosf=Z,—Z, and (KE), =(KE), in fully developed flow. There-
fore, from equations 6.30 and 6.32,

rAP

('T,X),=,,='TW= 12L (6.33)

Similarly, if the shear stress at any r is r,,, where r<r,, then

rAP
=— 34
r= 0 (634)
and from equations 6.33 and 6.34,
T =T (6.35)

t

which indicates a linear distribution of shear stress in the fluid, regardless
of the flow regime.

At any point y in the fluid in Figure 6.1 the shear stress is as follows,
where y=r,—r:
+7

T, rx, turbulent

e =T,

rx,laminar

and for a Newtonian fluid,

C_Bdu o du
Togd g My

where €,, is the eddy momentum diffusivity or eddy kinematic viscosity. In
isotropic turbulence the main-stream velocity in the x direction will have
superimposed upon it a mean eddy velocity u,, acting randomly in the x, y,
and z directions.
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Prandtl defined his “mixing length” / as the mean distance that an eddy
travels in a direction perpendicular to the main flow before losing its
identity by mingling with adjacent fluid. It is possible to show that the
eddy momentum diffusivity ¢,, is proportional to #, multiplied by /. A
further assumption by Prandtl is that u,cc/du/dy, from which e,
oc I%du / dy. The mixing length is not readily evaluated, and a proportional-
ity constant of unity is therefore convenient, implying a modified signifi-
cance for /. The result is €,, = /> du /dy, and the relationship for r,, becomes

2
Y du p z(du)
T =—=—4+—[" =
g d g \&

Prandt] considered the flow in the tube to be made up of three regions: a
very thin region of laminar flow immediately adjacent to the wall, called
the laminar sublayer; a turbulent core in the bulk of the fluid; and a thin
buffer zone between the laminar sublayer and the turbulent core. The
effects of turbulence are regarded as negligible in the laminar sublayer,
turbulence and viscous shear exert comparable effects in the buffer zone,
and the effects of viscosity are assumed to be negligible in the turbulent
core. The second term on the right-hand side of equation 6.36 is therefore
negligible compared with the first in the laminar sublayer, where / is
effectively zero. The velocity gradient is approximately linear in the
laminar sublayer, because the latter is so thin. In consequence 7, is
constant, and

(6.36)

ro=g, =Y
rx w gcy
Tw8e  yu*p
u+=ui*=—":£u*—y=T=y+ (6.37)

Equation 6.37 is found to hold for values of y* up to 5.

The first term on the right-hand side of equation 6.36 is negligible
compared with the second in the turbulent core. Prandtl assumed that the
mixing length is directly proportional to the distance from the wall: /=ky,
where k is a constant. The shear stress at y may therefore be expressed in
terms of r,, from equation 6.35 to give

TW(1_1)=£(@%) (6.38)
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For regions not far removed from the wall,! the term 1— y /r, is near
unity. In these regions equation 6.38 may be restated as

‘/TL& =y O
. u kyajz (6.39)

where u* is called the friction velocity. Integrating,

u* Iny
U= Iny + constant = u* -t constant’ (6.40)
Let constant’ equal
1 B
k X In o (6.41)
in which k' is another constant, so that
w1 e (6.42)
u* k @

Equation 6.42 was obtained by assuming that 1— y/r, is close to unity,
and it might therefore be expected that the expression would be confined
to regions of the turbulent core near the wall. It is found, however, that
equation 6.42 correlates experimental measurements over nearly all the
turbulent core, except at the centerline, as shown below. Equation 6.42
may be rewritten with the definitions u* =u/u* and y* =yu*p/p, together
with experimentally evaluated constants, to give

u*t =25Iny* +5.5 (6.43)

Equations 6.42 and 6.43 indicate a value of — oo for u at the wall (y =0).
This erroneous result arises from neglecting the viscous forces represented
by the first term on the right-hand side of equation 6.36. Equation 6.43
may be differentiated and the definitions of u*, u*, and y* inserted to
obtain

ﬂ — é TWgc

&y P
which is in error in showing a nonzero value for du/dy at the tube axis
(y=r,)). In spite of these inadequacies at the wall and at the centerline,
equation 6.43 has been very successful in correlating turbulent velocity
distributions for y* greater than 30.
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An equation widely used in the buffer zone for y* values between 5 and
30 is

ut=50lny* —-3.05 (6.44)

The universal velocity distribution for the turbulent flow of Newtonian
fluids in smooth tubes is therefore as follows:

Laminar sublayer, y*<5: ut=y* (6.37)
Buffer zone, 5< y*<30: ut=50lny* —3.05 (6.44)
Turbulent core, 30<y™*: ut=25Iny* +5.5 (6.43)

At the edge of the laminar sublayer (y* =35), equations 6.37 and 6.44
intersect and are continuous in slope, since du™ /dy* is the same for both
equations at this point. At the junction between the buffer zone and
turbulent core (y* =30), however, equations 6.43 and 6.44 intersect, but
with a discontinuity in slope. Equations 6.37, 6.44, and 6.43 are compared
with experimental data in Figure 6.2.

Although developed for tubes, this time-averaged velocity distribution is
found to give good representation of the flow between parallel plates and

25 T T [TTTT T T T TTTTTT
__Laminor ‘__Buffer Turbulent
Sublayer Zone Core
20 ]
15— T
- ut=25Iny*+55
10 —
~ut=50Inyt-305

—

o Nikuradse-(1933)
e Reichardt-(1951)

0 Loy Lol Lo Ll Lot

| 5 10 30 100 1000
y+

Figure 6.2. The universal velocity distribution for turbulent flow of Newtonian fluids in
smooth tubes.
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in boundary layers on flat plates, but with some deviation towards the
outer edge of the boundary layer (Schlichting, 1955, p. 440). Corrections to
equation 6.43 for small but systematic deviations from experimental mea-
surements in tubes have been made by several investigators, notably
Millikan, Reichardt, and Hinze. These are reviewed by Bogue and Metzner
(1963), who also evolved an effective correction procedure from a compre-
hensive examination of available data.

The Distribution of Resistance to Mass Transfer in Turbulent Flow

For a Newtonian fluid in turbulent flow past a rigid boundary, the flux of
component A4 at y in the direction y normal to the wall may be written as

nAy=—(D+£D)% (6.45)

where ¢, is an eddy mass diffusivity. For regions of small y near the wall,
N4, = N4y, and so

1=_( 1 +_€P__.)Ldﬁ
Ns. /o) nwp dy

A dimensionless concentration is commonly defined as

(6.46)

+ (pAW_PA)“*,
A= dp,
aw

+
nyuwdpy
B

and, since y* =yu*p/p,

1 €p dPJ
1= + 2 14 6.47
(Nsc w/p ) dy* (647)

Consider now some point close enough to the wall for ¢, to approach
zero for two fluid systems with equal Reynolds numbers and with Schmidt
numbers Ny, and N ,, where system 1 could, for example, be gaseous and
system 2 liquid. Then

(dPA+/d)’+)W,2 _ Ns,
(dpA+/dy+)W,l Nser

(6.48)

For inorganic gases N, is usually between 0.2 and 2.2; for many organic
liquids Ny, is between 300 and 2000. Equation 6.48 shows that increasing
the Schmidt group leads to a corresponding increase in the dimensionless
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concentration gradient in the wall region (where €,—0, n,,—n,y ). This of
course corresponds to locating more and more of the major resistance to
mass transfer within the sublayers near the wall as Ny, increases. For this
reason assumptions concerning €, near the wall, the nature and thickness
of the laminar sublayer, and other quantities in the wall region become of
crucial importance to the success of mass-transfer relationships based on
analogies when the Schmidt number is high, as in liquid systems.

Conversely, assumptions concerning wall conditions are less critical
when Ng. is small, because concentration gradients then assume only
moderate values near the wall and remain significantly above zero to much
greater y*. In the analogous process of heat transfer, Np, can attain much
lower values than Ng—as, for example, in the case of liquid metals. Thus
Np, for liquid sodium is 0.0072 at 400°F. The heat-transfer analog of
equation 6.47 is

1 €y \dT*
1= —+— 6.49

(NPr V‘/p)‘aﬁ' ( )
where

+_ (TW_ T)pcpu*
9w

In such cases of very low Np,, the quantity 1/ Ny may exceed €, /(p/p)
at all locations, which means that molecular conduction may exert a
substantial and possibly dominant influence on the temperature profile
and transfer mechanism even in the turbulent core.

Relationships based upon several different assumptions about conditions
in the vicinity of the wall are now considered. A more comprehensive
study would of course require examination of all the references cited on
page 232.

Analogy Assuming Only a Turbulent Core

Osborne Reynolds (1874) was the first to recognize an analogy between the
convective transfer of heat and momentum, and his expressions are readily
extended to mass transfer. In Reynolds’ model the turbulent core extends
all the way up to the solid wall; the buffer zone and laminar sublayer are
absent, although the fluid velocity is zero immediately adjacent to the wall,
in accordance with the requirement of zero slip. Consider the turbulent
flow of a constant-property fluid in the vicinity of a solid surface from
which mass transfer is occurring. Velocity and concentration changes are
significant only in the y direction, as shown in Figure 6.3.
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Figure 6.3. Momentum and mass transfer in turbulent flow near a solid surface, assuming
only a turbulent core.

It is convenient to visualize the randomly turbulent, fluctuating motion
as caused by small aggregates of fluid moving back and forth across the
stream in the y direction. This movement involves transverse transfer of
momentum because the time-averaged velocity u is a function of y, with
the result that turbulent shearing stresses exist in the fluid. Similarly, if the
concentration of component A4 is a function of y, then a net transfer of
component 4 must occur by the same mechanism. In particular, suppose a
fluid aggregate of mass m travels from a level y, to another level y,,
carrying with it the momentum and concentration corresponding to level
»,- Continuity relationships require that another fluid aggregate, also of
mass m, travels from level y, to level y,, carrying the momentum and
concentration corresponding to level y,. The net transfer between levels y,
and y, is then

Net transfer of x-directed momentum towards the surface =m(u, —u,)
Net transfer of component 4 away from the surface = = (p42—041)
o

Suppose that, on the average, the fluid aggregates travel between the solid
surface (u=0, p,=p,,) and locations where velocity and concentration
have bulk average values (u=V, p,=p,;); then

Rate of mass transfer _Paw _ (Paz—Paw)
Rate of x-momentum transfer 7,8, pV
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or
“Maw w8 f

V(pAB_pAW) B PV2 2

where f is Fanning’s friction factor. The mass-transfer coefficient k' is
defined as n,y. /(04w —045)> SO that
k*d,  —n, N, N
Nsh= p ™t - AW*" Re’ ' Sc (650)
D V(pas—Paw)

and

Ng =L NN, (651)
Equation 6.51 is found to be a good approximation only when the Schmidt
number is close to unity. This is a consequence of the simplifications
involved in the derivation, and particularly the neglect of the so-called
laminar sublayer. Thus it is incorrect to assume that momentum and mass
transfer occur by fully turbulent motion right up to the wall. Transfer
through the laminar sublayer will be mainly by momentum and molecular
diffusion processes. The relationship therefore applies best when momen-
tum and molecular diffusivities are equal, that is to say, when the Schmidt
number is unity. This, in fact, is approximately the case in most gas-phase
transfer processes.

Analogy Assuming a Laminar Sublayer and a Turbulent Core

The limitations which have been noted in the Reynolds analogy and the
resulting equation 6.51 were pointed out by Prandtl (1910, 1928) and by
Taylor (1916), who introduced an extension to allow for the effects of the
laminar sublayer. This, coupled with the turbulent core, constitutes two
regions of flow in the vicinity of a solid surface, as shown in Figure 6.4.

In the laminar sublayer (0<y<$,), the shearing stresses are purely
viscous, and mass transfer from the solid surface is by molecular diffusion.
In the turbulent core (y >8,) the transfer of momentum and mass is as
postulated in the Reynolds analogy.

Consider first the transfer in the laminar sublayer, which is supposed to
be thin enough to permit assuming linear distributions of velocity and
concentration.

Tw8e = uzy—u = u%ﬁ
L

dp (PAL_P W)
i T A A
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Figure 6.4. Momentum and mass transfer in turbulent flow near a solid surface, assuming a
laminar sublayer and a turbulent core.
from which

Paw D(pyr—paw) _ (Par—Paw)
Tw8 ruy Ngepuy

(6.52)

Transfer in the turbulent core is described by the Reynolds analogy, in
which aggregates of fluid travel, on the average, between the edge of the
laminar sublayer (u=u,, p,=p,;) and locations where velocity and con-
centration have bulk average values (u=V, p, =p,p), so that

Paw _ (Pap—ParL)

TWgc - p( V_uL)

(6.53)

Equations 6.52 and 6.53 both apply at y=3$,. Solving 6.52 for p,, —p,,
and 6.53 for p,; —p,; and adding the results,

Maw _ "wé 1

V(psw —Pap) B pV? 1+ (u,/V)(Ns.—1)

or, in terms of equation 6.50,

* _ (f/z)NReNSc
* 1+ (V) (N5~ 1)

(6.54)

This expression reduces to that resulting from the Reynolds analogy
(equation 6.51) for a Schmidt number of unity. The problem remaining is
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to evaluate #, / V, and this depends on the geometry of the flow system. In
the case of turbulent flow through a smooth tube, the laminar sublayer is
considered to be determined by equation 6.37:

u/V
yt=ut=—= / yr<s

w2

and at the edge of the laminar sublayer, u=u,, y* =u* =5, so

“o_\ /L
syt
Substituting in equation 6.54,

k:dt (f/z)NReNSc
NE=—"— (6.55)
D 45Vf/2 (Ne—1)

A material balance may be made on component A for the flow through
an element of tube having length dx in the direction of flow:

md? .
TVdpAB=kp7le(pAW_pAB)dx (6.56)

Integrating over length L between sections 1 and 2 for constant p,, and
substituting for k¥ from equation 6.55,

- 2fL/d,
In Paw ™ PaB1 _ fL/d, (6.57)

Paw ~PaB2 1 4+5Vf/2 (Ng,—1)

Equation 6.55 is found to be a distinct improvement over equation 6.51,
although deviations from experimental measurements increase with in-
creasing Schmidt number.

An expression analogous to 6.55 is readily developed for a flat plate
from equation 6.54 (Knudsen and Katz, 1958, p. 486-487), and this could
replace equation 6.9 when N, does not equal unity (see Problem 6.6 at the
end of the chapter).

Analogy Assuming a Laminar Sublayer, a Buffer Zone, and a Turbulent
Core

A further substantial refinement was obtained by von Karman (1939), who
allowed for three regions of flow—the laminar sublayer, the buffer zone,
and the turbulent core. The development in mass-transfer terms will now
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be given in some detail. Transfer will occur from the walls to a constant-
property fluid in turbulent flow through a tube, under conditions such that
the mass-average velocity v, in the y direction due to diffusion is neglig-
ible. Changes in velocity and concentration are assumed to be substantial
in the y direction only (Eckert and Gross, 1963, p. 134).

In the laminar sublayer,

;oo Bdu
Yog dy

dp, __ Du*p dp,
- 5

(nAy)y=0=nAW= _DW =

@
Integrating over the limits p,,, <p, <p,;, 0< ¥+ <5,

SNy,
ParL = Paw= — ur aw (6.58)
Next, consider the buffer zone. The laminar sublayer and buffer zone
are so thin that 7, and n,, are assumed constant at 7, and n,,, in these
regions; thus

_P(E du
Ty = gc(p+€M)dy (6.59)
nAW=—(D+6D)d—‘:;i (6.60)

where €,, is the eddy momentum diffusivity and ¢, is the eddy mass
diffusivity. It is assumed that ¢,,= ¢, =¢. Equation 6.44 shows that

dut _ 5 du_TwE
oyt ot
and substituting in equation 6.59,

=€M=%()%—1) (6.61)

Inserting this expression in equation 6.60,

dp, _ dp, p —NywNs.

* & put  y*[Ney*/5—(Ng.—1)]
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The integration limits are p,; <p, <4 <y * <30, giving
Sy
Pap—ParL=— ?IH(SNSE"I) (6.62)

In the turbulent core, for y© somewhat greater than 30, p./p and D may
be neglected in comparison with €, and dividing equation 6.60 by equation
6.59 under these conditions,

PNy p _ —dp,/dy
Tw8. du/dy

If the velocity and concentration distributions are similar in form
(Rohsenow and Choi, 1961, p. 185) this relationship can be written

aw _ — (P45 —Pab)

T, (6.63)

where p,, and V are the concentration and velocity in a region having
bulk average values of these quantities, and u, is the velocity at the outer
edge of the buffer zone (y* =30). From equation 6.63,

_nAW( V' —u

Pap ™ Pap= u* (6.64)
where V'* =V /u*. Equation 6.44 shows that
w" —u =5In 2 =5In6 (6.65)

and from equation 6.37, u; =y} =5. Therefore,

u =5(1+1n6) (6.66)
Substituting in equation 6.64,
u*

iy
pAB—pAb=J[F—su+m6)] (667)

Equations 6.58, 6.62, and 6.67 may be added to obtain the overall
concentration difference as follows:

PaB ~Paw ™= _nAW[ (u_l,:)z + u—s*[(NSc_ 1)+1n(§NS6C—+1)] } (6.68)
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The Sherwood number for mass transfer is defined by equation 6.50.

.Inserting equation 6.68 for p,;—p,y, V1,8 /p for u*, and then replac-
ing 7,,8./0V? by f/2,

_ (f/z)NReNSc
1+5VF/2 {Ng= 1+In[1+§(Ns.—1)]}

Ng, (6.69)

which again reduces to Reynolds’ equation 6.51 when Ng, equals one.
Equation 6.69 enables mass-transfer rates to be predicted from the use of
the conventional friction-factor-Reynolds-number chart for smooth tubes.

The development of equation 6.69 was performed assuming that ¢,, = €.
Sherwood (1940) refined the analysis to the extent of eliminating this
assumption; his result is expressed as

Ng = (f/z)NRe(fu/f,w)NSc (6.70)

1+5Vf/2 {e—DNSC—1+ln[1+%(€—DNSC—1)”
€u €y

Alternative expressions to equations 6.69 and 6.70, resulting from the
approaches of Reichardt (1940) and of Boelter, Martinelli, and Jonassen
(1941), are well summarized in Perry (1950, pp. 542-543).

The ratio €5/¢, was evaluated by Sherwood and Woertz (1939) in
measurements of the rate of transfer of water vapor across a vertical
rectangular duct. Transfer occurred between a water film flowing down
one wall of the duct and a calcium chloride solution flowing down the
opposite wall. Pitot-tube sampling traverses across the duct established
velocity and concentration distributions, enabling du/dy and dp, /dy to be
evaluated. Measurements of the frictional pressure drop in the duct then
permitted the calculation of ¢,, and ¢, from equations 6.59 and 6.60. For
these experiments ¢, /¢,, was found to be roughly constant at about 1.6.
Using this value for ¢, /¢,,, Sherwood (1940) showed equation 6.70 to give
good agreement with Gilliland’s (1934) data on vaporization of nine
different liquids into a turbulent air stream in a tubular wetted-wall
column for Reynolds numbers between 1840 and 30,000.

The von Kérman analogy, equation 6.69, becomes a much poorer
approximation at higher Schmidt numbers (greater than 40), and particu-
larly for Ng, values occurring in liquid-phase mass transfer—as found, for
example, by Lin, Denton, Gaskill, and Putnam (1951). This is also the case
for the modification given by equation 6.70 (Linton and Sherwood, 1950),
and is, of course, consistent with the conclusions reached earlier (below
equation 6.48) regarding the crucial importance of assumptions on condi-
tions in the wall region for systems with high Schmidt number.
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Analogy Assuming an Eddying Sublayer, a Buffer Zone, and a Turbulent
Core

Although the concept of three regions of flow—the laminar sublayer, the
buffer zone, and the turbulent core—has been widely adopted, most
investigators have conceded that this division into three layers represents a
simplification of reality. In particular, the existence of the laminar sublayer
has been challenged from time to time. Fage and Townend (1932) made
ultramicroscopic observations of the colloidal particles in tap water and
found that sinuous motion involving velocity components normal to the
solid surface occurred as close as 0.000025 in. from the wall. When
molecular diffusivities are low, as in the liquid phase, the influence on
mass transfer of slight eddies in the wall layer would be significant. These
considerations led Lin, Moulton, and Putnam (1953) to abandon the
concept of the laminar sublayer, necessitating the development of a new
velocity distribution.

In the immediate vicinity of the wall (0< y* <5) they introduced an
eddy momentum diffusivity formulated as

wf vt \
€M=;( 14._5) (6.71)

This relationship is arbitrary and was chosen on the basis of simplicity
and the best agreement between experimental measurements and their
equation for the mass transfer coefficient. Equation 6.59 may then be
written for the eddying sublayer or wall layer and integrated, assuming the
shearing stress is constant and equal to 7y, near the wall:

u_ _ u _ dy
Tw8/P (u"‘)2 f([.t/p)[l+(y+/l4.5)3]

+C  (672)

The integration is performed with dy* in place of dy and with C
evaluated in accordance with the boundary condition u* =0 for y* =0, to
obtain

29+ /145—-1 =V3
s+ V3tan! "/ +
1—y* /1454 (y*/145) V3 6

u+=£[” (1+y*/14.5)°
3 2
(6.73)

This replaces equation 6.37 for the eddying sublayer or wall layer (y* <5).
Equation 6.43 is retained to describe the turbulent core in this approach,
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but equation 6.44 for the buffer zone is replaced by the following expres-
sion in order to satisfy the velocity and eddy conditions at y* =5:

u*=—327+5In(y* +0.205) (6.74)
or

+
u* =4.77+51n(Z5~ +0.041) (6.75)

Equation 6.74 for the buffer zone and equation 6.43 for the turbulent
core intersect at a y* of about 33, and the relationships for the three flow
regions are compared with experimental data in Figure 6.5. The curve
corresponding to equation 6.73 differs only slightly from that correspond-
ing to equation 6.37 (u* =y™*). The point, however, is that the concept of a
purely laminar sublayer has been discarded.

Equation 6.75 may be differentiated to obtain

du __ p(w*)’
& u(y*/5+0.041)

(6.76)
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Figure 6.5. Generalized velocity distribution for turbulent flow of Newtonian fluids in
smooth tubes, assuming an eddying sublayer, a buffer zone, and a turbulent core (Lin et al.,
1953).
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The factor (u*)* is replaced by 7,,g./p, and equations 6.59 and 6.76 are
combined, assuming the shear stress in the buffer zone is also constant and
equal to T, to give

_m(y
€= . ( 5 0.959) (6.77)
The distribution of eddy momentum diffusivity from the outer edge of
the turbulent core to the tube wall is now provided by equations 6.71 (for
y*<5) and 6.77 (for 5<y* <33).
The flux of component A at any point in the fluid is given by

Ry = — (1>+e,))%;i (6.78)

Equation 6.78 has been integrated in the wall layer and buffer zone
assuming 7 is constant at Ty, n,, is constant at n,y, and €, =€, as given
by equations 6.71 and 6.77, respectively. In the turbulent core it is assumed
that v/n,, is constant and that eddy diffusivities are dominant, with
€, = €p. If the Sherwood number is defined by equation 6.50 Lin, Moulton,
and Putnam (1953) present the following result:

k*d,
Ng,= ;)t=¢LD(’§)NReNSc (6-79)
where
—1+\/i 14'5( s )Z/SF( a )+51n 1+564u/0D 44
o 2|73 \pD oD 6.64(1+0041x/pD)
(6.80)
in which
17312
5 ( m
[”14.5(,00) ]
F(—“D—)=%ln 1/3 2 2/3
P o5 [~ +(L) L)
14.5\ pD 14:5 oD
0 (e
2O =)
wsl;) s
+V3 tan™! ‘:/_ + 7 63 (6.81)
3
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Figure 6.6. Relation between F(p/pD) and p/pD from equation 6.81 (Lin et al., 1953).

Equation 6.81 is shown graphically as a plot of F(u/pD) versus u/pD in

Figure 6.6.

Equations 6.79 to 6.81 are of course readily converted into terms of heat
transfer if equality of the eddy momentum diffusivity €,, and eddy thermal
diffusivity €, is assumed, by the substitution of Nusselt number for
Sherwood number and Prandtl number for Schmidt number.
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Figure 6.7. Comparison between mass-transfer data in turbulent liquid streams and the
relationship k%¢,/ ¥ =f/2 indicated by equation 6.79 (Lin et al., 1953).
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The agreement between equation 6.79 and a large variety of experi-
mental data is remarkably good, as shown in Figures 6.7 and 6.8 for
turbulent liquid and turbulent gas streams, respectively. The two figures
cover Schmidt numbers from 0.54 to 3200 and Reynolds numbers from
3000 to 70,000. The analysis approaches that of von Karman for Schmidt
numbers in the vicinity of unity, because of the increase in the rate of
molecular diffusion compared to eddy diffusion in the wall layer.

The concentration distributions given by Lin, Moulton, and Putnam
(1953) were found by integrating equation 6.78 with the appropriate
expression for €, namely, equations 6.71 and 6.77 for the wall layer and
buffer zone, respectively. The results are as follows: In the wall layer,

IAS(JL)NZ{_ﬂ_y+)
Pa " Paw 3 \pD oD’
" PaB " Paw 2/3
V3 + EE(JL) Ft&)+5m 1+564p/0D __, 4
f pD eD 6.64(1+0.041p/p0D)
(6.82)
I T PTTTT i LI BRI
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Water-Air 0.60 | Jackson-Ceagiske (1950)
2-Propanol-Air | 1.60
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Rectification 690

o Water-Air 0.60 Barnet-Kobe (1941)
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-2 |
10 | X Binary 0.54 | Johnstone-Pigford(i942
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Figure 6.8. Comparison between mass-transfer data in turbulent gas streams and the
relationship %,/ V'=£/2 indicated by equation 6.79 (Lin et al., 1953).
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RENE)
(%) (s () (35s)

V3 an (#/0D) P (1 /145) -1 2V3
V3 6

where
2

2

(6.83)

In the buffer region,

14’5(L)2/3F(;';—))+51n 1+ (p/pD)(y*/5-0.959)

ba=aw _ 3 (oD 1+0.041/pD
P4~ Paw 2/3
\/3 + B—S(L) F(L)+51n I+564p/eD __ 40
7 3 \oD oD 6.64(1+0.041/pD)

(6.84)

The concentration gradient does not extend appreciably into the turbu-
lent core for fluids with high Schmidt number, so that in such cases the
bulk average concentration p, ; could be replaced by p,,,, the concentration
at the centerline of the tube.

At moderate flow rates and high Ng. the term V2/f is negligible
compared with the quantity in braces in the denominators of equations
6.82 and 6.84. This enables (o, —p, ) /(P45 —P4w) to be expressed directly
as a function of y* and plotted in a generalized form as in Figure 6.9.
Figure 6.10 shows the concentration distribution for various Ny, at a
Reynolds number of 10,000 and with y/d, as abscissa. A high mass-
transfer resistance is of course associated with a high concentration
gradient, so that these two figures serve to show the location of the
principal resistance to mass transfer as a function of Schmidt number. At
low Schmidt numbers the resistance is evidently distributed throughout the
fluid, whereas at high Schmidt numbers the resistance is mainly in regions
close to the wall. The zones of high resistance to mass transfer become
progressively narrower and nearer to the wall in dimensionless terms as
Ny, increases.

Optical interferometric techniques were used by Lin, Moulton, and
Putnam (1953) to measure concentration distributions close to the surfaces
of concentration-polarized electrodes in turbulent liquid streams at a
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Figure 6.9. Generalized concentration distribution for mass transfer in turbulent streams at
moderate flow rates along smooth tubes, assuming an eddying sublayer, a buffer zone, and a
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Figure 6.10. Concentration distribution for mass transfer in turbulent streams at a Reynolds
number of 10,000 along smooth tubes, assuming an eddying sublayer, a buffer zone, and a

turbulent core (Lin et al., 1953).
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Figure 6.11. Comparison between experimental data and the generalized concentration
distribution at moderate flow rates along smooth tubes, assuming an eddying sublayer, a
buffer zone, and a turbulent core (Lin et al., 1953).

Schmidt number of 900. The electrochemical reaction involved—the
electrodeposition of cadmium metal from cadmium sulfate solution onto a
thin layer of fresh mercury—is diffusion-controlled, so that the rate of
deposition was dependent on the rate of supply of material from the main
body of the fluid by diffusion and convection. The measured values of the
cadmium sulfate concentration, expressed as (p, —Paw)/ (Pus —P4w), are
plotted versus y* in Figure 6.11, and compared with the generalized
theoretical curve corresponding to equations 6.82 to 6.84 for Ny, =900. The
agreement is evidently good, and Lin et al. (1953) consider this to be proof
that the laminar sublayer does not exist near the wall.

Analogy Assuming No Discrete Fluid Layers Near the Wall

The artificiality of the three-layer concept involved in the universal veloc-
ity distribution of equations 6.37, 6.43, and 6.44 has already been noted,
together with discontinuities in slope of the profile at y* =30. The exact
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character of the so-called laminar sublayer for y* <5 has also been the
subject of much controversy, and the likelihood of some eddying in this
layer was indicated, for example, in the previous analogy, due to Lin,
Moulton, and Putnam. These considerations prompted Gowariker and
Garner (1962) to abandon the concept of three fluid layers. Instead, they
developed continuous expressions for the distribution of velocity and eddy
diffusivity in smooth tubes as follows. '
The starting point is the familiar relationship

=ﬂ(f‘— +eM)Zy—“ (6.85)

where u is the time-average velocity in the x direction. In the vicinity of the

wall, where most of the resistance to transfer is assumed to be, 7,.8./p

=1,8./p=u*)? so that
du*

du M 1
— = (6.86)
&t () Moy
w/p
Corcoran and Sage’s (1956) measurements on velocity distribution show
that ¢,, is dependent on the Reynolds number. This, together with the form
of equation 6.86, suggests that an appropriate form of expression for

€y /(1/p) might be

S _ »
y,/p F'(NRC)[ ut F2(NRe)] (687)

where F,(Ng,) and F,(Ng,) are to be determined. Inserting equation 6.87

into 6.86 gives

dy+ Fl (NRe)

—— ——— " =1-F(Ng)F5(Ng) (6.88)
du

This equation has the solution

_ FI(NRe)FZ(NRe) —1
- F\(Ng.)—1

+

y

)u++c(u+)p'(N"°) (6.89)

where ¢ is the constant of integration. The functions and the constant ¢
were evaluated from velocity-distribution data, to obtain

Fi(Nge)=T—exp [ —23X 1075 (Ng,)’] (6.90)
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Fy(Nge) =1+exp [ —383(Ng,)"”] (6.91)

c=3.0%10"7 (6.92)

Equation 6.89 has considerable merit in accommodating the significant
variations in the u* vs y* plot which occur up to Ng. of 14,000; in
eliminating the concept of sharply defined fluid layers, thereby avoiding
the previous discontinuities in the relation between €s/(n/p)and y *; and
in describing both upper laminar and turbulent flow, as demonstrated in
Figures 6.12 and 6.13. This follows because the data used in evaluating
equations 6.90 to 6.92 covered the range 2X10°< Ny, <40X10°. The
division of equation 6.86 by equation 6.47 with the assumption that
€y =€p=¢, followed by integration and the substitution of equation 6.87
for ¢/(n/p), leads to

+

Ng.—1 (* +
pA+ =u*t+ S f " +du (6.93)
Nse 0 Fy(Nr)[y*/u ~ F)(Nge) ] +1/Ng,

where F\(Ng,) and F,(Ng,) are given by equations 6.90 and 691, and u*
and y* are related by equation 6.89. Equation 6.93 defines the concentra-
tion distribution in the tube as a continuous function of »*t over at least
the range 0 y* <700, enabling evaluation of p .5 and hence the Sherwood
number from equation 6.50. A closed solution is not obtainable from
equation 6.93; Gowariker and Garner (1962) accordingly expressed the
relationship in the following generalized form:

+

oi=utta [ A (6.94)
o, Buh) +1

Numerical methods were used to obtain 4 and B as functions of both
Ng. and N, and p as a function of Ny, only. These functions are shown
in Figures 6.14, 6.15, and 6.16. Plots of equations 6.93 and 6.94 confirm
that at high Schmidt numbers most of the concentration gradient is located
near the wall, with negligible gradient in the main bulk of the fluid.

Stanton numbers (N& /N Ns,) calculated as described above for Ng, of
10,000, 25,000, and 50,000 are plotted against Ng (or Np) in Figure 6.17
for comparison with experimental heat- or mass-transfer data. The agree-
ment is evidently good over a wide range of Ng. (or Np,). Further data
(shown in Figure 6.18) were in good agreement with predictions at Ng,
=870 in the low Ng, range of 1000 to 20,000. In this region agreement
between experiment and theory was much better than that obtained by
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Figure 6.12. Generalized velocity distribution in smooth tubes at a Reynolds number of
2000 according to equations 6.89 to 6.92 (Gowariker and Garner, 1962).
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Figure 6.13. Generalized velocity distribution in smooth tubes at high Reynolds numbers
according to equations 6.89 to 6.92 (Gowariker and Garner, 1962).
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Figure 6.16. Dependence of the exponent p from equation 6.94 upon Ng, (Gowariker and
Garner, 1962).

Deissler (1955) using the empirical equation

€p €y
—— = ——=0.0154u*y*[1—exp (—0.0154u*y*)], *<26 (695
P’/P V'/p Y [ p( u'y )] BARS ( )

For y* >26 Deissler’s treatment links up with that of von Karman.

A plot of Sherwood number (equation 6.50) against Reynolds number
with Schmidt number as parameter is given by Gowariker and Garner in
Figure 6.19.

The importance of achieving the correct representation of €, in the
vicinity of the wall at high N, has been shown from a comparison of the
various analogies with experimental data. In the analogies of von Karman,
Lin et al., and Deissler, ¢, is assumed equal to €,, and is given by the same
expression in the turbulent core, obtained as follows. Combining equations

6.35 and 6.85,
Tw8e y 2 y I du
I—-=)=(u*)|1-=)=|—+ - 6.96
P ( r,) (u)( r,) (p €M)a’y (6:56)
or .
(1= 2\ E e
€y = (u*) (1 r,)du P (6.97)
and evaluating dy /du from equation 6.43,
*(1=y/r
eM=%[)i—(,,—5y/—Q—l], 3+ >26 10 33 (6.98)



T T 1
o Ethylene Glycol and Water ( Heat Transfer):Bernardo,
Everett and Eian (1945). )
o Water (Heat Tronsfer): Kaufman and Iseley (1950).
a Water (Heat Transfer):Eagle and Ferguson (1930).
4 Diffusion Controlled Electrode (Mass Transfer):
Lin, Denton, Gaskill and Putnam (1951).
Vaporization (Mass Transfer):Barnet and Kobe (1941).
v Air(Heat Transfer ). Deissler and Eian (1952).
v Sodium Hydroxide (Heat Transfer):Grele and
Gedeon (1959).
< Sodium Hydroxide (Heat Transfer ): Hoffman (M.W.)

o
1]

T
v

%*

Stanton Number, Ny, /Nge Np,,0r Ngp /Ngo Ng,
o
r

10°3

Lower Curve Np,=50000
10-4 |- Middle Curve NgRe 25000
Upper Curve Ngpe = 10000

Each Type of Symbol Represents a Mean T hrough Data.
Solid Lines are Based on the Analysis of
Gowariker and Garner.

Io-5 | 1 |
0.l | 10 100 1000

Prandt! or Schmidt Number, Np, or NSc

Figure 6.17. Comparison between experimental data and calculations according to the
analogy of Gowariker and Garner (1962).



5
/NreNsc )X 10

100 T T T T — T T T T
@ Eisenberg, Tobias and Wilke {(I1955),
a Few Points From a Continuous
Experimental Curve Based on Above
<o A King and Brodie (1937)
z o)
5 20| X} Sherwood and Ryan (1959) |
o ° ® Bennett and Lewis (I1957)
znL — Based on Analysis of Gowariker
e 10 ~~ee and Garner (1962) -
z -
~ - -
z
I A -
] -=- Based on Deissler (1955)
£ 2 .
>
z
s I S R B I [
= 0? 0* 2 4 6 100° 2 4 6 10°
» Reynolds Number, NRe

Figure 6.18. Comparison between experimental data and calculations based on the analyses
of Gowariker and Garner (1962) and Deissler (1955).

=3
x W0

Z 10000 , .

o Schmidt or Prandt!
‘g Number

E 10004 870

z 500

©

g 100

2 |ooo | .
2 10

[¥5]

o

E] |

=z

2

b 100 |- i
fal

£

=1

P

o

72

(7]

3

= 10 | i

1000 10000 100000

Reynolds Number,Np,

Figure 6.19. Dependence of the Sherwood (or Nusselt) number upon Ng, and Ng, (or Np,)
for turbulent flow in smooth tubes, according to the analogy of Gowariker and Garner (1962).

261



(2961) Jouren

€ R n
szvuklP Aozzv_km’":w .
A o i pue 1YLRMOD
R TR L 9T [« J
c - +4 5100 - ) dxo — _w
AM - _vt« 1] LA, 151070 3 (ss61) 19188100
_ 4 d
I . — =" €€ A%ET Wv 9wy Syl V I (gs61) wewng pue
AI\N - v+A. +>s 7 . +A. ) 0= UOHNOW ﬁﬂm)—
_ ST d
I 1, MHEW o€ A I%vMHEw T
= A.\m - v+a LA 0="2 (6€61) upuLIRY] UOA
< & 90
+ + 76 X 0
X > A4>¢ ¢S A KFopey

"$3130[RUE JUSIOHIP JNOJ UI PAsn SAIAISNIJIP APPH  °I'9 QL

262



Analogies between Momentum and Mass Transfer 263

Table 6.2. ¢/(p/p) corresponding to analogies
developed by von Karman and by Lin, Moulton,

and Putnam.
e/(p/p),von  €/(p/p), Lin et
Distance y* Karman al.
1 0 0.0003
10 1 1.04
30 5 5.04

The expressions proposed to represent eddy diffusivities in various
regions of flow for four of the analogies referred to here are summarized in
Table 6.1. Gowariker and Garner compared the values of €/(u/p) pre-
dicted by the respective expressions of von Karman and Lin et al. for three
short distances from the wall, as shown in Table 6.2. The values at y ™ =30
were obtained from the buffer-zone relationships.

Although the differences between €/(p/p) from the two approaches
seem slight, the consequence is that von Karman’s equation 6.69 is

AA: Von Karman.

BB: Lin, Moulton,Putnam.
B CC: Gowariker and Garner.
(i) Vertical Lines Show the
Discontinuities in the Value
of €/(p/p) in Lin's and
Karman's Treatments.

(ii) Deissler's (1955) Line
Follows Closely That of Lin
and isI not Shown Separately.

»DO

10 100

y+

Figure 6.20. Comparison between values of ¢/(u/p) predicted by four different analyses of
turbulent transport at very high Reynolds numbers in smooth tubes (Gowariker and Garner,
1962).
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applicable only up to Ng, of 40, whereas the relationship of Lin et al.
(equation 6.79) gave good correlation with experimental data up to N, of
3200, as shown in Figures 6.7 and 6.8. These considerations underline the
importance of obtaining the correct formulation of €/(p/p) in the wall
region at high Ny . Nevertheless, the first three models in Table 6.1 contain
a considerable discontinuity in €/(p /p) at y;t (the outer edge of the
turbulent core). This is shown for very high Reynolds numbers [F,(Ng,)
—7, F)(Ng)—1] in Figure 6.20, after Gowariker and Garner, whose model
(curve CC) avoids the discontinuity common to the others, The good
results obtained by Lin et al. despite their discontinuity at y* of 33 are
presumably related to their arbitrary selection of equation 6.71 so as to
ensure agreement with mass-transfer data. Deissler’s equation 6.95 has a
comparable justification. It may be noted that single continuous equations,
although again of complicated form, have been provided by Spalding
(1961) for relating €,, /(1 /p) and y * to u*. The reader is again referred for
further study to the extensive list of analogy developments on page 232.

Analogies in Terms of j Factors

The empirical relationships for heat, mass, and momentum transfer were
manipulated by Colburn (1933) and by Chilton and Colburn (1934) to
obtain an analogy between these processes in terms of quantities desig-
nated as j factors.

In drawing analogies between heat and mass transfer it must be noted
that most heat-transfer data are for zero mass transfer. Analogous mass-
transfer rates are therefore closer to equimolal counter-diffusion processes,
for which the net mass transfer is zero. Attempts have been made to
“correct” transfer coefficients for unimolal unidirectional diffusion pro-
cesses to allow for significant net mass transfer and therefore permit
application of the analogy. This has been done in terms of the film or
two-film theory, presented in Chapter 4. Inspection of equations 4.16, 4.19,
and 4.25 shows the following relationship for gases, where a prime on k,
denotes equimolal counterdiffusion and the absence of a prime indicates
unimolal unidirectional diffusion:

k
G_ P 1 (6.99)

k;c; Prim B (l—yA)LM

Similarly, for liquids, from comparison between equations 4.21 and 4.27,

&E — C - (p/M)av — 1
ki, cpim (pB/MB)LM (l_xA)LM

(6.100)
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Evidently &, ¢ o . =Kk, —k;—k, as the concentration of 4 becomes increa-
singly dilute. Equations 6.99 and 6.100 are analogous to equation 5.214
and equation 6.160 given later for transfer with a high mass flux. It is
considerations of this sort which account for the appearance of the term
k, Pgim/ 'P in many common definitions of'the mass-transfer j factor. The
Jj-factor analogies will be presented here, however, in terms of k), corres-
ponding to low concentrations and transfer rates for component A.
Approximate correction for effects of a high net mass flux may be made by
use of equations 6.99 and 6.100 above, setting k, =k, or by the methods
presented later for high-mass-flux conditions.

Two general definitions may be written as

*
NSh

j = — 6.101
I ]VRe‘]VSl({3 ( )
N
Ju= 7 (6.102)
NReNPr

where j, and j, are the j factors for mass and heat transfer, respectively.
The formulation of these quantities and of the analogy will be de-
monstrated first for the case of flow through tubes.

j Factors for Tubes

Consider a fluid in turbulent flow through a tube with mass transfer taking
place between the fluid and the tube wall. The mass-transfer coefficient in
the fluid may be assumed to be some function of the following variables:

k*=f,(d,V,p,p,D) (6.103)

and by dimensional analysis,

k*d dV
b _ [ 222 (L (6.104)
D g pD

N&=fo[Nre Nscl (6.105)

or

Experimental rates of mass transfer were measured by Gilliland and
Sherwood (1934) for evaporation of various liquids in a wetted-wall co-
lumn with co- and countercurrent air in turbulent flow. Their results were
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expressed in terms of equation 6.105 as

(Nsn) 1m=0.023NR NG44 (6.106)

where the velocity is relative to the stationary tube wall and the ranges
covered were 2000 < Ny <35,000, 0.6< Ny <2.5. The small range of
Schmidt number cast uncertainty on the exponent on Ns., which was
removed in a subsequent study by Linton and Sherwood (1950). In this
work, mass transfer occurred to water flowing through tubes cast from
such soluble substances as benzoic acid, cinnamic acid, and B-naphthol.
Combination of these data with the previous evaporation studies increased
the range of Schmidt-number coverage to 0.6 < N5, <2500. The combined
results of Sherwood and Gilliland and of Linton and Sherwood were
correlated by the equation

(Ngp) tm=0.023Ng N/ (6.107)

Division of this expression by Ng N and rearrangement yields

N *
MU (6109
Re* " Sc

The exponent on Ny, in equation 6.107 is often reduced slightly to 0.8,
causing the factor (Ng)*® in equation 6.108 to become unity. This is
Justified by noting that, under conditions prevailing for equation 6.106, the
liquid surface in the wetted-wall column would exhibit rippling and wave
formation. This increases both the interface available for transfer and the
transfer coefficient in the gas, with consequently greater dependence of ky
on Ng.. Such anomalies were absent in the case of the experiments with
liquids flowing through soluble tubes. The result of this “rounding” of the
exponent on Ny, is then

. (NSh):,M _ —-0.2
Jp= _N_WS_ =0.023Ng, (6.109)
Re‘ " Sc

where the coefficient in (Ng,)*,, is defined by

(Myw)ay
kX = AW (6.110)

(pA w —pAB)log mean
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In the case of heat transfer between a tube and a fluid in turbulent flow
through it, the analogs of equations 6.103, 6.104, 6.105, and 6.110 are

h=£(d,V,p,p.c,.k) (6.111)
hd, dVp\ [k
7=f4( m )(”7)] (6.112)
Nnu=fa[ Nge Np:] (6.113)
h O (6.114)

AW( TW_ TB )log mean

Colburn’s (1933) correlation of experimental data in terms of equation
6.113 is

(NNu)f=0'023(NR3);)'8(NP1)}/3 (6115)

where the subscript f indicates that the physical properties are evaluated at
the arithmetic average of the wall and bulk temperatures along the tube.
Dividing this expression by (Ng.){(Np,); and rearranging yields

(NNu)[

—-0.2
Re/f Pr/f

Ju

The friction factor for flow through a cylindrical tube is defined as

thch/4L TWgc
pV?/2 oV?/2

(6.117)

For turbulent flow through smooth tubes the following empirical corre-
lation is widely used over the range 30,000 < N, < 1,000,000:

f=0.046 N >? 6.118)
Re

Combination of equations 6.109, 6.116, and 6.118 shows that

jD=jH=% (6-119)
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The ranges of validity in the case of mass transfer are 2000 < Ng <
300,000, 0.6 <Ng <2500; and for heat transfer, 10,000 < Ng, < 300,000,
0.6 <Np, <100. Equation 6.119 is the empirical Chilton-Colburn analogy
between heat, mass, and momentum transfer in tube flow.

It is evident that this empirical analogy amounts to the substitution of
the quantity NZ/3 for the entire denominator in the final expressions for
either the Prandtl or von Karmin analogies (equations 6.55 and 6.69). The

expressions reduce to the Reynolds analogy (equation 6.51) for Ny, or Ng,
of unity.

Illustration 6.3

A smooth tube with an internal diameter of 1 in. is cast from solid
naphthalene. Pure air enters the tube at a velocity of 30 ft/sec. If the
average air pressure is 14.7 psia and the system is at 113°F, estimate the
tube length required for the average concentration of naphthalene vapor in
the air to reach a value of 5.6 X 10~ Ib-mass/ft*—that is to say, 25 percent
of the saturation value.

Use all relevant relationships presented in this chapter in order to obtain
minimum and maximum estimates of the required length, neglecting en-
trance effects.

Compare with Ilustration 5.5 for laminar conditions.

SOLUTION. Relevant physical properties are obtainable from Illustrations
5.1 and 5.2. The naphthalene surface temperature will be taken to be
113°F (see Illustration 5.1).

£(30)(3600) (0.0694)
0.0457

Nge= = 13,650

The flow is therefore turbulent. The Schmidt number under the prevailing
conditions has a value of 2.475 (Illustration 5.2), so that the Reynolds
analogy between momentum and mass transfer (equation 6.51) is inapplic-
able. Attention is therefore confined to analogies represented by equations
6.55, 6.69, 6.70, and 6.79 through 6.81, and Figure 6.19. The result
corresponding to equation 6.107 will also be examined.

The integration of equation 6.56 leads to

1o P Pas _ 4_L(QN,,>= 4L N

Paw = P42 Vd \ d, S d, NgcNs.
where Ng, /Ny Ng. is obtained from the equations cited above for the
analogy under consideration. The friction factor will be calculated from
the Blasius equation, valid for flow in smooth tubes over the Reynolds-
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The average value of L is 2.59 ft. The average flux at the wall over the
first 2.59 ft along the tube is therefore

7d?VDp,  1:(30)(3600)(5.6 % 107%)
4nd,x 4(2.59)

=0.0486 1b naphthalene/ (ft*) (hr)

j Factors for a Flat Plate

The theoretical equations for laminar and turbulent boundary layers
developed as equations 5.24 and 6.10 may be rearranged into the following
forms, recalling equations 6.101 and 6.102:

C
Jp=Ju= —2d£ = 0.664N1{e},{2 (laminar) (6.120)

C
Jo=in=— =003TNg5}  (wrbulent) (6.121)

The coefficients k5 and h appearing respectively in j,, and ji are defined
as

(nAO)av
k*= —— 6.122
i P40 " Paco ( )
he 20 (6.123)
Ag(To—Ty) -

The accurate value 0.664 replaces the approximate 0.646 in equation
6.120, and equation 6.121 is found to provide an empirical extension of
equation 6.10 to systems in which the Schmidt number differs from unity.
The quantity C, is the drag coefficient for the flat plate, which is oriented
parallel to the direction of flow.

C.= Fdfg(‘ _ (TO)avgc
I wL(pi)2) | )2

(6.124)

Mass transfer begins at the leading edge of the plate, which has width w
and length L in the direction of the stream. The total drag force on one
side of the plate is Fj.

Equations 6.120 and 6.121 will apply for Reynolds numbers respectively
below and above the region of transition from a laminar to a turbulent
boundary layer. In considering the analogy Ju=Cy/2, McAdams (1954)
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indicates the transition region as lying in the range 8 x 10*< Vg, , <5%
10, although this is a little lower than the range customarily cited for the
boundary-layer transition [e.g., Knudsen and Katz (1958), pp. 268-271;
Schlichting (1961), p. 9-13].

Considerable experimental data have been accumulated, mostly on
evaporation from a free liquid surface or from a wet solid surface into a
controlled air stream. These data have been compared with equations
6.120 and 6.121 in graphical form by Sherwood and Pigford (1952) and
show good general agreement, despite considerable scatter in the mea-
surements, some deviation for a few liquid (water) systems, and a measure
of uncertainty with regard to the location of transition. This last is to be
expected, because the transition depends on the plate or surface roughness,
the degree of turbulence in the free stream, heat transfer across the surface,
and the amount of irregularity in the leading edge of the plate. Thus
Dhawan (1952) has shown that the boundary layer may be turbulent over
the entire plate when the leading edge is rough. Variations in each of these
factors from one set of workers to another may largely account for the
scatter observed in the data.

Illustration 6.4

Repeat Illustration 6.1(a), (b), (f), and (g), using appropriate Jp Te€-
lationships so as to ensure suitable allowance for the influence of the
non-unity Schmidt number. Compare the results with those in Ilustration
6.1.

SOLUTION (a). Physical properties at these conditions are again available
in Illustrations 5.1 and 5.2.
From equations 6.101 and 6.121,

0.2665
1

This is 37 percent greater than the value estimated in Illustration 6.1(a),
where the deviation of Ng, from unity was neglected.

038 1/3
ks, = 0.037( ) (6.28x 10°)*%(2.475)"/° =582 ft /hr

SOLUTION (b).
94w =582(1X1)(0.000224 —0) =0.1303 1b naphthalene /hr

SOLUTION (f). The total rate of transfer of component A from a plate of
width w over length L, where L > x_, may be written as

WL(nAO)av,x=L= WL[ (nAO)av,x=L]turb

- ch[ (nAO)av,x=xr]turb+ wxc[(”AO)av,x=xc]lam
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number range 3000 to 100,000, as

—-0.25

f=0.079Nz>**=0.079(13,650 =0.0073
R

€
From equation 6.55,
Ng B 0.0073/2

= =0.002505
RelVse  1+5V0.0073/2 (2475—1)

In Paw ~ Pan1 —2.30310g 0.000224—-0

Paw ~Pas2 0.000224—0.000056 0.2876

d, NgeNse | = Paw = Pasr _ 0.2876 B
T~ In = =2.39 ft.
4 N&  Paw ™ Pan 12(4) (0.002505)

From equatio‘n 6.69,

N& 0.0073/2 — 000217
NeeNse  145V00073/2 {2475—1+In[1+3(2475-1)]}
2o 0.002505 \ _
L_z.39(——0_00217 ) 2.76 ft.

From equation 6.70 with €5,/ €,,= 1.6,
N (0.0073/2) 1.6
NreNse  145V/0.0073/2 {1.6(2.475) — 1+In[1+3(1.6X2475—1)]}

=0.00258

0.002505

L= 2'39( 0.00258

) =232 1t

Figure 6.6 shows that, when Ng =2.475

F(p/pD)

SO

L P 1/3_
F( pD) 1.0059(2.475)' > =1.36
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and in equation 6.80,

> =5 (2475)

op =1+1/00073 [14.5 2/3(1.36)

1+5.64(2.475)

+5In —477| =165
6.64[1+0.041(2.475)]

From equation 6.79,

N&  0.0073/2
NN~ T Tgs  ~0o2!

o[ 0002505\
L—2.39(———0_00221 )_2.71 ft

Graphical interpolation between points read from the vertical at N,
=13,650 in Figure 6.19 gives N& =68 for Ny =2.475; then

Ng, _ 68
NgeNse  13,650(2.475)

=0.002015

e[ 0002505
L= 2.39( ot ) —2.98 ft

From equation 6.107,

k;'LM=0.023( 01;2/61‘;25)(13,650)"'83(2.475 )'/>=268.5 ft /hr

A naphthalene balance over length L is

7 (#)730(3600) (5.6 X 10~%)

5.6%x107°
—268.57(4)L
(i2) 2.30310g[22.4X 1075 /(22.4—5.6) X 10~ 7]

From which L=2.41 ft. Thus, from the six estimates considered here,

2.32 ft< L<2.98 ft.
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where it is assumed that the turbulent boundary layer beyond x, is
unaffected by whether conditions before x, are laminar or turbulent. In
this equation, [(740)ay, x= £}urb 304 [(740)ay, x - x lury @T€ the average fluxes of
A over plate lengths L and x,, respectively, for a wholly turbulent
boundary layer, whereas [(7,0),y, x~ x Jam 18 the average flux of 4 over plate
length x, for a laminar boundary layer.

Equations 6.101, 6.120, and 6.121 may be combined with the definition
of k¥ given in equation 6.122 and inserted in the above expression to
obtain

(nAO)av,x—L (L) _ k:mL

08 .8
N = l/3[0 664N L2, —0.037(Nge ) +0.037(Nge )" ]

P40~ Puco

Aside from the slight revision of the numerical constants, as explained
below equation 6.123, the principal difference between this expression and
that obtained in Illustration 6.1(f) is in the factor N3/3, which allows for
the deviation of Ny from unity. When Ng, , =3.2X 10°,

*

D

=0.037Ng/*[Ng&, —15,190]
SOLUTION (g). '

—0. 037( 0.2665 )

(2475)'°[ (628 10°)** - 15,190] =379 ft /hr

j Factors for Single Cylinders

The full analogy between momentum, heat, and mass transfer breaks down
for flow around bluff bodies such as cylinders and spheres. This is because
the total drag force, contained in the drag coefficient, consists of both form
drag and skin friction. The full analogy still prevails, however, for the
skin-friction component of the total drag, and in any event the more limited
analogy between heat and mass transfer still holds—namely, j,; =j,. This
is well illustrated in Figure 6.21, taken from Sherwood and Pigford (1952,
p. 70) for flow normal to the axis of single cylinders.

In Figure 6.21 the quantity f equals (7,),,8./(pu2,/2) and is the skin-
friction component of the total drag coefficient, isolated by a prescribed
method. Additional results on the dissolution of solid cylinders in a
turbulent water stream confirm Figure 6.21 and extend its approximate
validity to the range 0.6 < Ny, <3000. The coefficient in j, is defined by
equation 6.126.

J Factors for Single Spheres

Many extensive studies on heat and mass transfer from single spheres are
reported in the scientific literature. Frossling (1940) showed theoretically
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Figure 621. The j factors for heat and mass transfer between single cylinders and air
streams flowing normal to the cylinder axis (Sherwood and Pigford, 1952).

that for nonangular bodies of revolution with their axes parallel to the
direction of flow, the local values of the Sherwood number are propor-
tional to the square root of the Reynolds number (Ng, > 1); this result was
demonstrated theoretically for the region between the front stagnation
point and the separation point at which the boundary layer leaves the
surface. Theoretical predictions are lacking beyond the separation point. In
the Stokesian region of flow (Ng,<1) the exponents on Ny, and Ny, are
both { (see Aksel’rud, 1953; Friedlander, 1957; and Bowman, Ward,
Johnson, and Trass, 1961). The length dimension in Ng, and Ny, is, of
course, the diameter of the sphere, d..

A somewhat vexed question in transfer from immersed bodies is whether
or not the contributions from molecular diffusion (N&,), from natural
convection (N& ), and from forced convection are additive. Several
workers have correlated experimental values of Sherwood number by
direct addition of terms representing transfer by purely molecular diffusion
and by forced convection, in the form

N, =Ng,+CNg. Slc/3 (6.125)
where
D (nAO)av
k¥*=—=N&=—"""_ 6.126
" A S P40 P4 ( )
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and N, assumes a value of 2, as shown in Table 2.2. Equations 6.127 to
6.132 in Table 6.3 show examples of correlation in these terms. Other
investigators have omitted the molecular diffusion term Ng,,, to obtain
correlations such as equations 6.133 to 6.138 in Table 6.3. Additional
relationships are tabulated by Griffith (1960).

The two groups of correlations in Table 6.3, those with and those
without N2 ,, both describe the data from which they were obtained in a
satisfactory manner. The correlations of the first group, which include
N&.o generally cover smaller ranges of the Reynolds number with lower
maximum values than the second group.

At low values of the Reynolds number, natural or free convection
contributes to the rate of mass transfer, and the minimum rate attained
may be considerably higher than that due to molecular diffusion alone.
Ranz and Marshall (1952) measured rates of evaporation of spherical
water drops to dry air at zero Reynolds number and obtained the follow-
ing correlation:

N& =2+0.60NY*N/? (6.141)

Similar expressions have been presented by other investigators (e.g., Kyte,
Madden, and Piret, 1953; Mathers, Madden, and Piret, 1957; Merk and
Prins, 1953-1954). Garner and Keey (1958) measured dissolution rates of
benzoic acid spheres in water and found that the minimum rate of mass
transfer does not occur at Ny, =0. In their studies water flowed succes-
sively upwards, downwards, and horizontally, so that natural convection
should have in turn opposed, aided, and partially aided the forced convec-
tion flow patterns. They found that minimum kY occurred for 20 < Ng,
<50, and they reached the following conclusions:

1. Free or natural convection can aid or hinder mass-transfer rates in
forced convection.

2. The true convective velocity cannot be obtained by the vectorial
addition of the velocities associated with forced and free convection.

3. Free-convection effects are almost entirely absent when the Sherwood
number attained by forced convection alone equals that attained in free
convection.

Conclusion 1 above is consistent with quite different work by Oliver and
Jenson (1964) on heat transfer to non-Newtonian fluids in tubes. From
conclusion 3 (and also from equations 6.130 and 6.141), Garner and Keey
consider that the effects of free or natural convection are negligible for
Reynolds numbers satisfying the following expression:

N >04NY NG /6 (6.142)



Table 6.3. Some experimental correlations of forced-convection mass transfer from

single spheres.?

Equation Range of
Number Equation Variables Reference
With N&,,

6.127 N&=2+0.552N}/2N3/3 2 Ng. < 800 Frossling, (1938,

1940)
0.6 Ng. 2.7 Maxwell and Storrow

(1957)

6.128 N =2+0.60NY/2N3/3 2 Ng <200 Ranz and Marshall
(1952)

0.6 N <2.5

6.129 N =2+0544NYNY/? SO Ng <350 Hsu, Sato, and Sage

(1954)
Ng.=1

6.130 N =2+0.95N}/2N{/3 100 Ng. <700 Garner and Suckling

(1958)
1200 N < 1525
6.131 N&=2+0.575N}3NQ>* 1 < Ng. Griffith (1960)
1 < N, Sc

6.132 N&=2+0.79NY/2N{/? 20 Ny, <2000 Rowe, Claxton, and

Lewis (1965)
Without Ng,,
6.133  N&=043N256Ni/3 200< Mg <4%10*  Williams (1942)
Maisel and Sherwood

(1950)

“air” { Ng. < “water”

Linton and Sherwood
(1950)

276



Table 6.3. Continued

Equation Range of
Number Equation Variables Reference
6.134 N& =082N}/>Ni/3 100< Ng. <3500  Aksel'rud (1953)
Ng = 1560
6.135 N&=0.582N)2NI/3 300< Ng, <7600 Linton and
. Sutherland (1960)
Ng.=1210
6.136 N =0692N31*NL/3 500 Ng.<5000 Pasternak and
Gauvin (1960)
6.137 Ng&=033N3SNY/3 1500 Ng,< 12000 Evnochides and
Thodos (1961)
6.138 N2 =0.74N}/2N/3 120< Ng. <6000  Skelland and
Cornish (1963)
With N, o
6.139 N&=44+048NL N3 20< Ng,<850  Garner and
Grafton (1954)
Ng.=1210
6.140 NZ& =N& . +0347(Ng Ni/H%6? 1< Ng,<3X10*  Steinberger and
Treybal (1960)
0.6 < N <3200
N& . =2+0.569(Ng,Ns) "% Ng:Ng. < 108

N& .o =2+0.0254(Ng,Ng.)'/>°N3344 NG Ng. > 108

2For additional correlations see Griffith (1960). For graphical correlation up to
Ng.= 140,000 see Steele and Geankoplis (1959).

27
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This equation was substantiated by the findings of Garner and Hoffman
(1960, 1961). Other evidence that the effects of free and forced convection
are not additive is provided by Gaffney and Drew (1950); Dryden, Strang,
and Withrow (1953); Bar-Ilan and Resnick (1957); and Acrivos (1958).

These considerations suggest that correlations of the form of equation
6.125—with or without N&,— can be used to describe forced-convection
rates of mass transfer only when the effects of free or natural convection
are negligible, as indicated by equation 6.142. Empirical correlations of
data in the presence of natural convection are provided by equations 6.139
and 6.140 in Table 6.3.

The effects of free stream turbulence on heat and mass transfer from
various immersed bodies have been examined in a number of studies (see
Maisel and Sherwood, 1950; Sato and Sage, 1958; Brown, Sato, and Sage,
1958; Loyzantsky and Schwab, 1935; and Comings, Clapp, and Taylor,
1948). Briefly, the root-mean-square velocity fluctuation at a point in the
fluid is a measure of the intensity of turbulence. Expressed as a percentage
of the mainstream velocity, this gives a;, the percent intensity of turbu-
lence. The scale of turbulence is a measure of the magnitude of the
turbulent eddies. Both scale and intensity can be measured with hot-wire
anemometers.

Maisel and Sherwood (1950) found that the scale of turbulence had little
effect on the rate of mass transfer from spheres, but the effect of the
intensity of turbulence can be considerable. Thus at Ng, of 2440 a change
in the intensity of turbulence from 3.5 to 23 percent changed k} by 18
percent. Brown, Sato, and Sage (1958) measured rates of evaporation of
n-heptane from porous ceramic spheres to air streams with turbulence
intensities from 1.3 to 15.1 percent. Their results covered a range of
Reynolds numbers from 200 to 7000 and are summarized in Figure 6.22.
The relative Sherwood number appearing in this figure is defined as the
Sherwood number at a turbulence intensity a; divided by the Sherwood
number at the same Ny, and Ng. but at a turbulence intensity of zero.
Evidently the effect of the intensity of turbulence increases with increasing
Reynolds number.

The differences between the correlations found by various workers as
shown in Table 6.3 may be due to differences in the intensity of turbulence
in the fluid stream (Nienow et al., 1969), in the degree of surface roughness
of the sphere (Mullin and Cook, 1965), in the manner in which the sphere
was supported, in the way in which physical properties were determined
(Rowe et al., 1965), and in the concentrations and corresponding bulk flow
velocities normal to the solid surface (Nienow et al., 1969).

Equations 6.133 to 6.138 of Table 6.3 can be rearranged into customary
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Figure 6.22. Relative Sherwood number for a sphere as a function of the intensity of
turbulence (after Brown, Sato, and Sage, 1958).

Jj-factor form to obtain, in general,
. =CNZ (6.143)
D= N N3 )

Similar rearrangement of equations 6.127 to 6.132 yields a modified j
factor as follows:

. NSh NShO
Jp= _]V—l/—3 CN (6144)
Re' "' Sc

Figure 6.23 shows a plot of j, versus Ng, for the data of Skelland and
Cornish (1963) and the correlations of Aksel'rud (1953), Linton and
Sutherland (1960), and Evnochides and Thodos (1961). The modified j
factor jj, appears versus Ny, in Figure 6.24 for the data of Skelland and
Cornish (1963) and the correlations of Frossling (1938), Maxwell and
Storrow (1957), Ranz and Marshall (1952), and Garner and Suckling
(1958).

Recommendation of one correlation rather than another from Table 6.3
and Figures 6.23 and 6.24 is somewhat difficult. Pasternak and Gauvin
(1960) state that their correlation (equation 6.136) was obtained at an
intensity of turbulence between 9 and 10 percent. Turbulence measure-
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ments with a hot-wire anemometer showed that, according to Figure 6.22,
the rates of transfer in the data of Skelland and Cornish were not increased
by more than about 2 percent as a result of free-stream turbulence. In the
absence, however, of information on intensity of turbulence, surface
roughness, etc., it appears best to select the most conservative prediction
for the problem at hand.

It is instructive to consider a few representative correlations for the rate
of heat transfer between a sphere and a moving stream of fluid. A good
correlation of experimental data was obtained by Drake (1961) with the
following expression:
hd, 0.55771/3
= =2+0.459Ng.°Np! (6.145)
for 1 Ng,< 70,000, 0.6 Np, <400.

For droplets evaporating in an air stream under conditions usually
encountered in spray drying, Ranz and Marshall (1952) found

NNu=

Nyp,=2+0.60NE.Np/? (6.146)
for 2 Ng,<200.
Evnochides and Thodos (1961) measured heat transfer to celite spheres
from which nitrobenzene or water was evaporating to an air stream. They
concluded that

Ny =0.35N2EN3/3 (6.147)

Comparison between equations 6.145 to 6.147 and Table 6.3 is sufficient
to show the validity of the general analogy j; =/, for the case of single
spheres. An extension of the analogy to include half the total drag
coefficient could not be expected to hold, as explained for the case of
single cylinders. This is because of the presence of extensive form drag in
the total drag force, contained in the drag coefficient.

Illustration 6.5

A solid sphere of benzoic acid has a diameter of } in. and falls a distance
of 10 ft through a stationary column of pure water. How much benzoic
acid dissolves from the sphere during this fall?

How long would it take for the same amount of dissolution if the sphere
were suspended in water entirely free from forced convection?

The system is at a temperature of 77°F in both cases.

SOLUTION. Relevant physical properties at 77°F are available from Il-
lustration 5.6. The density of solid benzoic acid is 79.03 Ib/ft?, so that the
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terminal velocity of the sphere in water may be estimated by standard
procedures, as described, for example, by W. L. McCabe and J. C. Smith
(Unit Operations of Chemical Engineering, 2nd ed., McGraw-Hill, New
York, 1967, pp. 167-168). The resulting terminal velocity u, is 1.05 ft/sec,
assuming that wall effects are insignificant. Calculations using the proce-
dure of C. E. Lapple and C. B. Shepherd [Ind. Eng. Chem., 32, 605-617
(1940)], which are not shown here, indicate that the sphere attains veloci-
ties of 25, 50, 75, 90, and 99 percent of u, in about 0.039, 0.084, 0.145,
0.203, and 0.264 sec, respectively, after release from rest. These values can
be used in graphical integration of the expression d(distance)=udt, to
show that the sphere reaches 99 percent of its terminal velocity in a fall
distance of only 2.1 in. The initial acceleration effects are therefore
neglected, so that the sphere falls through 10 ft in 9.52 sec.

_dup  (0.5/12)1.05(3600)62.24
T oon 2.16 B

Ng. 4540

The difference between the densities of a saturated aqueous solution of
benzoic acid and pure water at 77°F is 0.025 lb-mass/ft> (Garner and
Keey, 1958, p. 221).

_ (0.5/12)’(4.17x 10°) (0.025) (62.24)°

=1.008 x 10*
or 62.265(2.16)*
Ng.=740 (Ilustration 5.6)
In equation 6.142,
0.4(1.008 x 10%)"/*
04NN /6= ( . )~ _ 134

(740)

This is much smaller than the Reynolds number, indicating—through
equation 6.142—that natural convection effects are negligible.

The selection of a correlation for N& from among those in Table 6.3 is
somewhat arbitrary; although the expression due to Pasternak and Gauvin
(1960) was developed for gas-phase systems (low Ng), comparison—in the
original paper—with results from the aqueous systems of Linton and
Sherwood demonstrated the effectiveness of equation 6.136 in this higher
Ny, range. Furthermore, in contrast to many of the other studies, the
intensity of turbulence in the work by Pasternak and Gauvin is accurately
known (9 to 10 percent), enabling allowance for this effect via Figure 6.22.
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Substituting in equation 6.136,
N, - 105=0.692(4540)"*"* (740) /> = 476

From Figure 6.22, when Ny, =4540 and a;,= 10 percent,

[NS*h]aT

. =1.145
[NSh]rxT=0

so that the Sherwood number corresponding to a turbulence intensity of
zero—as in the stationary column of water—is
476
= —— =4
N&= 1145 ~H0
Values of N, calculated from equations 6.127 to 6.138 range from 332
to 580, with an average of 425. The above value of 416 for zero turbulence
intensity differs by only about 2 percent from this average value and is
used to complete the calculation.

. D 4.695x107°
(n40)av= ZNs'i.(PAo“PAw) = W (416)(0.213-0)

=0.1Ib C{H,COOH/ (ft?) (hr)

The sphere falls 10 ft in 9.52 sec, so that the amount dissolved during the
fall is

2
2f 952\ _ 0_5_) ( 9.52 )= 6
(n10)wrd?( 355 ) 0.17(§2) (3555 ) =142 107 1b C;H,COOH
This represents a reduction in mass of the sphere of only 0.048 percent,
showing the assumed constancy of d, and u, to be adequate.
If the sphere is suspended in water free from forced convection, then
from equation 6.141,

1/4

N&=2+0.6(1.008x 10%)"/*(740)"/* = 56.3

It may be noted that alternative expressions to equation 6.141 have been
proposed; Garner and Keey (1958), for example, use

1/4 1/4
N =2+0.6(Ng,) / (Ns.) /
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(It was this expression, equated to 6.130, that led to equation 6.142.) This
alternative relationship gives

N& =2+0.6(1.008x10%)'/*(740)'/* =33.3

This provides a more conservative (longer) estimate of the time for
dissolution and is used to obtain the desired answer as
416

t=9.52(—333) — 119 sec

J Factors for Single Oblate Spheroids

The oblate spheroid may be regarded as an idealized shape in many
mass-transfer operations when one phase is dispersed in the other. In
liquid-liquid extraction, for example, droplets of the disperse phase may
approximate internally stagnant, non-oscillating oblate spheroids, owing to
a particular combination of physical properties and the presence of trace
quantities of surface-active impurities (see Garner and Hale, 1953; Garner
and Skelland, 1955, 1956). At a given Reynolds number, spheroids of
different major-to-minor-axis ratios (eccentricities) are subject to drag
forces of different magnitudes (see Hughes and Gilliland, 1952; Malaika,
1949; Perry, 1950, p. 1018). This indicates that mass-transfer rates are also
substantially dependent upon eccentricity.

Skelland and Cornish (1963) measured sublimation rates of oblate
naphthalene spheroids in an airstream for 120 N, <6000 and eccentrici-
ties between 1:1 (spheres) and 3:1. Attempts were made to characterize
the geometry of the spheroids in terms of seven alternative dimensions.
The correlation was clearly best using 45, which is the total surface area of
the body divided by the perimeter normal to flow. This represents the
characteristic dimension for all bodies proposed by Pasternak and Gauvin
(1960). The mass-transfer coefficient k3 was as defined by equation 6.126.
It was based on the true surface of the spheroid, which, for an oblate
spheroid of semimajor axis 4 and semiminor axis f, is given by

172
nf’d d+ (d*—f?)
S, =2md* + 72 n( PNT (6.148)
(d*—f%) d—(d*—f?)
The volume of an oblate spheroid is
dmfd?
v, = (6.149)

os 3
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and the characteristic linear dimension dj; is therefore

d3=

1 £ (d+(d2—f2)l/2) (6.150)

2 @) e @ -7

Measurements from 100 runs were correlated with an estimated standard
deviation of 2.1 percent by the equation

N* 0.5
;o — —-0.50
JD__—N T 0.74N Y (6.151)

where Ng,; denotes a Reynolds number using d,. Correlations in terms of
Jjp and ji;, (equations 6.143 and 6.144) were statistically indistinguishable, so
preference was given to the simpler j,. Equation 6.142 demonstrated that,
in this work, natural-convection effects could be neglected for Ng > 15,
which is far below the minimum Reynolds number studied.

j Factors Generalized for All Shapes

A new general shape parameter was introduced by Pasternak and Gauvin
(1960) to account for both body shape and orientation in equations for
forced-convection transfer of heat and mass. The dimension, used as d;
above for oblate spheroids, is defined as the total surface area of the body
divided by the perimeter of the maximum projected area perpendicular to
flow. The authors achieved good correlation of heat- and mass-transfer
data for 20 shapes in different orientations, including spheres, cylinders
with axes normal and parallel to flow, prisms, cubes in various orienta-
tions, and hemispheres situated with the flat section at the rear. Their
expression, which correlated all these results with a “deviation” of 15
percent, is

Jjp=ju=0692Ng% (6.152)

for 500 Ng.p <5000, and where Ng.p; denotes a Reynolds number
using the new general shape parameter of Pasternak and Gauvin. The
intensity of turbulence was between 9 and 10 percent in all their studies;
viscosity and density were evaluated at the average temperature of the
fluid film around the body.

Heat- and mass-transfer rates were studied during evaporation of water
from stationary bodies made from celite suspended in an air stream. Celite
changes color from orange to pale yellow on drying, thereby yielding a
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Figure 6.25. Qualitative local rates of heat and mass transfer by forced convection around
various submerged bodies (Pasternak and Gauvin, 1960).

qualitative picture of local rates of mass transfer around the surface of the
body. This information appears in Figure 6.25, where the distance between
the body outline and the corresponding envelope at a particular point gives
a measure of the relative rate of heat and mass transfer at that point.
Shaded regions show areas of minimum transfer.

j Factors for Packed and Fluidized Beds

Packed and fluidized beds occur frequently in industrial processing activi-
ties, including the conduct of gaseous reactions catalyzed by solid surfaces,
drying operations, heat transfer in granular beds and heat regenerators,
and the adsorption and desorption of gases or liquids by solid particles.
Many of the studies made before 1963 used unduly shallow beds, with
the result that end effects due to poor fluid distribution and undeveloped
flow contributed excessively to the results. These conditions were repro-
duced by Gupta and Thodos (1963), who contrasted the findings obtained
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Figure 6.26. Relationships between €jpand Ny, for mass transfer in shallow and deep beds
of spheres (Gupta and Thodos, 1963).

with shallow and deep beds of spheres undergoing transfer of water vapor
to an air stream, as shown in Figure 6.26.

Mass transfer between liguids and deep beds of packed spheres was
studied by Wilson and Geankoplis (1966), who propose

. 109 . _ 4G
jD—E’N%B, Nge= p (6.153)

for 0.0016 < Ng, < 55, 165 < N, < 70,600, 0.35<¢' <0.75, and

0.25
eNE

Jp= (6.154)

for 55< Ng,. < 1500; 165< Ng < 10,690.
For mass or heat transfer between gases and deep beds of spheres, the
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Figure 6.27. Relation between €j,and Ny, for air flowing through packed and distended
beds of spheres (Gupta and Thodos, 1964).

relationship recommended by Gupta and Thodos (1963) for low mass-
transfer rates is

Jo=in=—22 _ 95< Ny <2453 (6.155)
€ Ng:

For Ny, between 1900 and 10,300, Gupta and Thodos (1964) present the
correlation for high mass-transfer rates shown in Figure 6.27. In the
absence of radiation effects these authors found j, to exceed j, by 5
percent for this range of Ng,.

Mass transfer in both gas and liquid fluidized beds of spheres has been
correlated by Gupta and Thodos (1962b) with the equation

0.863

€jp,=0.010+ NIF_0483

(6.156)
for 1< Ng,<2140.

Approximate procedures for extending these relationships for spheres to
particles of other shapes have been presented by Gupta and Thodos
(1962a), although many of the data used in this development contain
substantial entrance or end effects, as noted above.

In these expressions for packed and fluidized beds, G is the superficial
mass velocity of the fluid in mass per unit time per unit cross section
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without packing. The coefficient in j, is based on the average mass
transfer per unit surface of the solid particles, which have known di-
mensions. The driving force for transfer is expressed as the logarithmic
mean of the concentration differences at the inlet and outlet of the bed.
Knowledge of the void fraction of the bed, €/, is usually available, and
Ng.=d,G/p.

Further information on fixed and fluidized beds is provided in the book
by Kunii and Levenspiel (1969), and earlier studies are well reviewed by
Leva (1959).

Mass Transfer in Noncircular Conduits

Heat transfer in turbulent flow through noncircular ducts has been suc-
cessfully correlated by insertion of the “equivalent diameter” D, in place of
D in the appropriate circular tube correlation.
4(Cross-sectional flow area)
e Wetted perimeter

The procedure has been effective for annular, triangular, and rectangular
conduits (Bennett and Myers, 1962, p. 340-341). This approach has not
been well established in the case of mass transfer, but the generality of the
relationship j, =j, suggests that the use of D, in such cases might
constitute a reasonable extension of the analogy between heat and mass
transfer. It appears, however, that some caution may be required in the use
of D, when the duct cross section has some sharp corners (Eckert and
Gross, 1963, p. 141-142).

INTERFACIAL TURBULENCE

A spontaneous agitation of the interface between two immiscible liquids or
between a gas and a liquid phase has sometimes been observed when a
solute is passing from one phase to the other prior to the attainment of
equilibrium. The effect appears to depend upon the direction of transfer of
solute and to be associated with local variations in interfacial concentra-
tion and therefore in interfacial tension. The Marangoni effect, which
refers to flow driven by surface tension variations, is apparently involved.

McBain and Woo (1937) observed this behavior when a layer of toluene
containing 10 percent of methanol was gently contacted with a plane water
layer. Water droplets were emulsified into the toluene phase while the
water stayed clear. The reverse effect was observed upon increasing the
methanol concentration in the toluene to 40 percent. No emulsification
occurred in either phase when the methanol was located in the water
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instead of in the toluene. Ward and Brooks (1952) found that transfer of
either valeric or butyric acid from water to toluene across a plane interface
leads to spontaneous agitation of the toluene near the interface. The
agitation is absent, however, when the solute is either acetic or propionic
acid. A study of such interfacial phenomena was made by Wei (1955), who
identified a variety of interfacial disturbances, ranging from rippling and
twitching of the interface to spontaneous emulsification in the vicinity of
the boundary between phases.

The effects are sometimes displayed in a dramatic manner when a
droplet is suspended from a nozzle in another immiscible liquid with solute
transferring from one phase to the other. Twitching and rippling of the
interface may occur, perhaps with periodic pulsations of the entire drop,
interspersed with periods of quiescence. Observations of this sort were
reported by Lewis and Pratt (1953) and were filmed at about the same time
by Garner, Kendrick, and Skelland (1953). Garner, Nutt, and Mohtadi
(1955) subsequently reported the same phenomena for pendent drops of
nitrobenzene, chlorobenzene, carbon tetrachloride, or chloroform, contain-
ing between 2 and 30 percent of either acetone, methanol, ethanol, or
isopropanol. Distilled water formed the continuous phase.

Droplets undergoing mass transfer during free rise or fall through
another immiscible liquid may exhibit comparable behavior, although this
is most noticeable when the drops are moving very slowly. Observations of
these effects have been made by Garner, Kendrick, and Skelland (1953);
Lewis (1953); Sigwart and Nassenstein (1956); and Sherwood and Wei
(1957).

A review of many reports of these phenomena is provided by Sternling
and Scriven (1959). These authors present a simplified but extensive
mathematical analysis of this type of interfacial instability in terms of the
equations of motion and diffusion. Their results are in agreement with
many of the observations, including the conversion of some systems from
stable to unstable by reversal of the direction of solute transfer. Their
analysis suggests that interfacial turbulence is usually promoted by the
following eight factors:

1. Solute transfer out of the phase of higher viscosity.

2. Solute transfer out of the phase in which solute diffusivity is lower.

3. Large differences in kinematic viscosity (1/p) and solute diffusivity
between the two phases.

4. Large concentration gradients near the interface.

. Large variation of interfacial tension with concentration.

6. Low viscosities and diffusivities in both phases.

W
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7. Absence of surface-active agents.
8. Large interfacial area.

The importance of interfacial turbulence lies in the substantial increase
it induces in the rates of mass transfer between two phases. Thus transfer
rates may be much higher than predicted from a proper combination of
single-phase rate coefficients on the assumption of a quiescent interface.

TRANSFER WITH A HIGH MASS FLUX

Mass transfer in a turbulent stream is modified by high-mass-flux condi-
tions in a manner qualitatively similar to that outlined under this heading
for laminar systems in Chapter 5.

Relationships are here developed which permit approximate allowance
for the influence of high mass flux on the mass-transfer coefficients.
Concentrations will be expressed in terms of mass fractions for consistency
with the corresponding treatment given in Chapter 5 and because much of
the published work in this area is in these terms.

Consider the transfer of the single component A from a rigid surface
(y=0) into a turbulent stream of nontransferring component B. The total
transfer of A is given by the molecular and eddy diffusive fluxes, assumed
to be additive and caused by the concentration gradient, plus the convec-
tive flux associated with the bulk flow. If the flow immediately adjacent to
the surface is assumed to be completely nonturbulent, it follows that the
diffusive flux at that location occurs by a purely molecular mechanism.
The total flux of component A at the surface is then described by
equations 5.197 and 5.198 from Chapter 5. In fact, equations 5.197 to 5.209
are equally applicable to the turbulent conditions considered here and
serve to define the driving force B, the coefficients k,, kg, and k¥, and the
relationships between them.

The film theory is often used to interpret mass transfer in a turbulent
stream near a phase boundary. In view of the hypothetical aspects of this
procedure, however, a relation between coefficients for high- and low-
mass-flux conditions will be estimated by a rather more rigorous analysis
which is a modification of that given by Vivian and Behrmann (1965). For
a given location x in the direction of flow, the local rate equation at a
point between the surface and the bulk of the fluid is written as

—p(D+ep) v,

e (6.157)

nAy =\P(nA0)x=
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where the proportionality factor ¢ is a function of y, so that

1-y ‘D)
—Dpl1+—2 4+ -2
B "( v VD) ow,
(nAO)x— l—WA _é;—
_ p(D+ep) dw, , _D(1-y)+e,
T 1—w, _EV’ 2~ 12

This equation may be integrated over the range 0< y <A, where A is the
distance from the surface to the point at which bulk conditions prevail. For
steady-state conditions at the surface and in the bulk, the result is

(nAO)x=

Wi0~ Waeo

A
T dy
(1—WA)me0 (D+e)

The average flux over the surface length 0 to x is given by

1 Wa0~ Wi
(nAO)av=;fI Ar @ dx
0 (I—WA)LMf VNN
0

p(D+ep)

If w,, and w,  are independent of x, then

(P40)av= f f (’:‘f;:)‘; (6.158)

P(D"'eo)
but
n
kw=w; k*= hm k,
WAO_ono w,—0
so that

k(1 wA)LM——ff =k* (6.159)

P(D'*“D)
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Thus
ol 1 (6.160)
ks (1—w, )LM ’
and with equations 5.200, 5.201, and 5.208,
k0 1- In(1+B
. Pao__ In(1+5) (6.161)

K (—wo)m B

Equations 6.160 and 6.161 for a turbulent system are seen to be the same
as equations 5.214 and 5.215 respectively. The latter results were derived
for nonturbulent conditions from film theory.

Equation 6.161 is used to correct for the effects of high mass flux in
turbulent systems partly because no other simple relationship is available,
but also because some experimental confirmation of the expression has
been obtained. Thus equation 6.161 was successful in correlating mea-
surements by Humphrey and Van Ness (1957) on the aqueous dissolution
of sodium thiosulfate pentahydrate crystals under turbulent conditions in
an agitated vessel, using propeller and turbine agitation. Physical proper-
ties were evaluated at the arithmetic average of the surface and bulk
compositions. Equations 6.160 and 6.161 were also verified by Vivian and
Behrmann (1965) for the gas-phase mass-transfer coefficient in the aqueous
absorption of ammonia in a short wetted-wall column. Physical properties
were regarded as constant, and the average Reynolds number of the
turbulent gas stream was 3,200.

Little attention has been given to the problem of composition-dependent
physical properties under turbulent conditions. Hanna (1962) presented the
following approximate correction for the case of isothermal binary diffu-
sion in a perfect-gas mixture when the density is the only concentration-
dependent property:

()ury _ In(My/ M) 16
(kv?))const o MO/ M°° -1 '

where M, and M are the molecular weights of the mixture at the wall
and in the bulk of the fluid. As noted under this heading in Chapter 5,
equation 6.162 is valid for both laminar and turbulent flow, regardless of
geometry or Schmidt number.

Knuth and Dershin (1963) outlined a method for predicting transport
rates in turbulent gaseous boundary layers with variable fluid properties.
For this purpose they first developed a semiempirical correlation describ-
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ing the dependence of the friction coefficient on the rate of mass injection
at the wall for fluids with constant physical properties. Modified Reynolds
analogies were next derived, relating mass and energy transfer coefficients
to the friction coefficient. Physical propertiesiin the mass-transfer expres-
sions were tentatively evaluated at the reference composition previously
established for laminar boundary layers (Knuth, 1963; see also Chapter 5).
The experimental data were inadequate to test this approach.

In addition to a need for further theoretical study, it is evident that more
experimental work is required to elucidate the phenomena of transfer with
a high mass flux under turbulent conditions for a variety of geometries.
For example, no attention has been given to turbulent liquid systems in
which the viscosity and diffusivity are strongly dependent upon composi-
tion.

Tllustration 6.6

Repeat Illustration 5.7 with the air velocity increased to 200 ft/sec.

(Note: Problems in which the temperature of the mass-transfer surface is
not controlled by a separate heat source but instead adopts an adiabati-
cally established steady-state value different from that of the gas stream
may be handled as in Illustration 5.8. For turbulent flow situations the
appropriate heat- and mass-transfer correlations would be substituted for
those used to obtain k* and A; in that problem, and k2/k* would be
evaluated from equation 6.161.)

SOLUTION. Bulk, average, and surface values of compositions and physi-
cal properties will be as in Illustration 5.7.

200

N =72,100( X

)=721,000

Assuming usual levels of bulk turbulence and of roughness of the plate
surface and leading edge, the boundary layer will be turbulent at the point
of interest.

N;.=0.602 (from Illustration 5.7)

By a procedure analogous to that leading to equation 6.121, the com-
bination of equations 6.9, 6.101, and 6.102 results in

ij =ij = 0'0292NR_e?x2
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where j;, is the local value of jj, at x, containing the local coefficient of
mass transfer, K} =n,0/(p40— P400)- Then

(0.32)(3.88)

573 (721,000)**(0.602) /> = 1980 ft/hr

k*=0.0292

Equation 5.206 gives

k= pk*=0.0621(1980) = 123 Ib-mass/ (ft*) (hr)

Illustration 5.7 shows that w,,=0.1734, so that according to equation
5.201,

B= Wao " Wi _ 0.1734—-0
1—wy, 1-0.1734

=0.21

and from equation 6.161

In(1+B) 2.303log (1+0.21)
(kg)constpu:kw* B =1 0.21

=111.6 Ib-mass/ (ft*) (hr)

The isothermal equation 6.162 is next applied:

111.6(2.303) log (26.23 /29
(k) var o= ( 262;/02(_1 / )=1181b-mass/(ft2)(hr)

The local value of the mass flux of water vapor is obtainable from
equation 5.200 as

n,o=118(0.21) =24.75 Ib-mass/ (ft*) (hr)

NOMENCLATURE
A, B Components 4 and B.
A, B Functions of Ng, and Ny in equation 6.94.

A, Area of surface, ft2.
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MRARADOY @
2

|

Fdf
FI(NRe)’ FZ(NRe)

F(u/pD)

f
f
G
4
8

Wall area, ft2.

A mass-transfer driving force defined by equa-
tion 5.201.

Coefficients in equations 6.19 and 6.20.

Drag coefficient for a flat plate, equation 6.124.
Local drag coefficient, 27,g, /pu’..

Total concentration, total Ib-mole /ft>.

Logarithmic-mean concentration of component
B in film of thickness z;;, 1b-mole /ft>.

Specific heat, Btu/(lb-mass)(°F).
(Volumetric) molecular diffusivity, ft? /hr.
Equivalent or hydraulic diameter, ft.
Semimajor axis of an oblate spheroid, ft.
Diameter of a cylinder, ft.

Diameter of a sphere, ft.

Tube diarheter, ft.

(Total body surface)/(perimeter normal to
flow): equation 6.150 for an oblate spheroid, ft.

Mechanical energy used to overcome friction in
flow between points 1 and 2, (ft)(Ib-force)/Ib-
mass.

Frictional drag force, Ib-force.

Functions of the Reynolds number in equations
6.87, 6.90, and 6.91.

Function of the Schmidt number, defined in
equation 6.81.

Fanning’s friction factor, 7,g./(oV2/2).
Semiminor axis of an oblate spheroid, ft.
Superficial mass velocity, 1b-mass /(ft?)(hr).
Acceleration due to gravity, ft/hr?.
Conversion factor, 32.174 (Ib-mass)(ft)/(Ib-
force)(sec’) or 4.17x10® (Ib-mass)(ft)/(Ib-
force)(hr?).

Individual heat-transfer coefficient, Btu/(hr)
E)°F).

Mass flux of component A relative to the mass-
average velocity and at the surface (y =0), Ib-

mass /(ft)(hr).
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The j factor for mass transfer, equation 6.101.
Modified j factor for mass transfer, equation

6.144.

Local value of jj,.

The j factor for heat transfer, equation 6.102.
Average kinetic energy per unit mass, (ft)(Ib-
force) /1b-mass.

Thermal conductivity, Btu/(ft*)(hr)(°F /ft).
Constants in equation 6.42.

Individual mass-transfer coefficients, defined in
equations 4.16 and 4.17.

Individual mass-transfer coefficients for equi-
molal counterdiffusion, defined in equations
4.14 and 4.15.

Individual mass-transfer coefficient for any
concentration range, n,/Aw,, Ib-mass/(ft*)(hr).

Individual mass-transfer coefficient for any
concentration range, i,/Aw,, b-mass/(ft*)(hr).
Individual} mass-transfer coefficients for low

concentrations and transfer rates: n,/Aw,, lb-
mass/(f®)(hr); (n, or n,,)/Ap,, ft/hr;
M40/ (BPiog mean> ft/hr. (The quantities n, and
Ap, are defined locally for each application.)

Integrated mean value of k}, defined by equa-
tion 6.24.

Length; plate length in direction x, ft.
Characteristic length dimension, ft.

Height of control volume, ft.

Average molecular weight.

Molecular weights of components A4 and B.
Molecular weight of mixture at the wall and in
bulk of free stream.

Mass of fluid aggregate, lb-mass.

Grashof numbers for mass transfer, in equa-

tions 6140"142’ dssg(po_poo)/( .U-/P)zpm NGrD
as in equation 5.44.
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NNu’ (NNu)f
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NS*h’ (NSh)iM’ (NSh);’
Nghnes Néhor (Nsu)3

a0s Naws Ny

P’ AP’ Ppim

p,p
Q
Qo Ow

q

Gaw

9w

r,r,

SOS

T, Ty, Ty, Ty, T

+
u, ut, ut, uy, u,

0

Nusselt number for heat transfer; f indicates
physical properties at arithmetic-mean film
temperature, hd,/ k.

Prandtl number for heat transfer; f indication
as for (Ny,)p .1/ k.

Reynolds number (d, or d,)Vp/u; f indication
as for (Ny,);; for a liquid film, 4Qp/wy;
Lu_p/p; based on Pasternak and Gauvin’s
shape parameter; xu_p/p; d,Vp/p.

Schmidt number, p/pD.

Sherwood numbers kL,/D in which the coef-
ficient k is, respectively, kX, k}m, Kxns
Sherwood number for natural convection from
a sphere; for molecular diffusion from a
sphere; local value at x.

Mass flux of component A relative to stationary
coordinates at the surface (y =0); at the wall;
in direction y, Ib-mass/(ft?)(hr).

Total pressure; pressure drop due to friction in
fully developed flow; logarithmic-mean partial
pressure of component B in film of thickness
Zs5, Ib-force/ft* or atm.

Constant in equation 6.19; in equation 6.94.
Volumetric flow rate, ft*/hr.

Rate of heat transfer at the surface (y =0); at
the wall, Btu/hr.

Constant in equation 6.20.

Rate of transfer of 4 at the wall, 1b-mass/hr.
Heat flux at the wall, Btu/(ft*)(hr).

Radius; radius of a tube, ft.

Surface of an oblate spheroid, ft.
Dimensionless temperature defined below
equation 6.49; bulk or “mixing cup” tempera-
ture; at the surface (y =0); at the wall; in the
bulk fluid or outside the thermal boundary
layer, °R.

Time-averaged mass-average velocity in the x
direction; friction velocity, V7,8./p ; u/u*; u
at levels y, and y,, ft/hr.
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Time-averaged velocity in the x direction at the
outer edge of the buffer zone; u,/u*; mean
eddy velocity; velocity at the outer edge of the
laminar sublayer; u, /u*; velocity outside the
momentum boundary layer, ft/hr.

Mean velocity in the x direction, ft/hr; V/u*.
Volume of an oblate spheroid, ft*.
Mass-average velocity in the y direction at the
surface (y =0), ft/hr.

Mechanical (shaft) work done by unit mass of
fluid, (ft)(1b-force)/Ib-mass.

Width normal to flow, ft.

Mass fraction of component A; at the surface
(y=0); in the bulk of the stream or outside the
concentration boundary layer.

Distance in the direction of flow, ft.

Mole fraction of component 4.

Direction and distance normal to surface, ft.
yu*p/p.

Mole fraction of component 4.

Value of y* at the outer edge of the turbulent
core.

Vertical height above datum, ft.

Angle between an inclined plane and the hori-
zontal.

Turbulence intensity, percent.

Volume expansion coefficient, equation 5.27.
Velocity gradient at the wall, hr ™.

Thickness of the momentum and concentration
boundary layers; film thickness; thickness of
the laminar sublayer, ft.

Eddy diffusivity; eddy mass, . heat, and
momentum diffusivities, ft* /hr.

Void fraction of a bed of particles,

Angle between tube axis and the vertical.
Factor in equation 6.14, ft/hr.

Viscosity, Ib-mass /(ft)(hr).

Total density; at the surface (y =0); at the bulk
concentration, Ib-mass/ft*.
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Py Mass concentration of component A4, Ib-
mass/ft’.
P> Paoo P4 ~P405 Pacs —Pao> Ib-mass /ft>.
Pap> Pavs Paos Pas .
Paws Passr Pat> Puz Bulk average or “mixing cup” value of p,; p, at

»*+=30; mass concentration of 4 at the surface
(»=0); at the centerline; at the wall; in the
bulk or outside the concentration boundary
layer; at levels y, and y,, Ib-mass /ft>.

s A dimensionless concentration, (p,, —p,)
u*/ngy.

(o/M),,, (pg/ Mg Mean value for the phase under consideration;
see ¢\ above, Ib-mole/ft>.

To=(T,x)y -0 Shear stress at the surface (y =0), Ib-force /ft?.

Ty Shear stress in direction x on surface normal to
r, 1b-force /ft2,

Tw=(Tp)r =, Shear stress at the wall, Ib-force /ft2.

9 Defined by equations 6.79 and 6.80.

PROBLEMS

6.1 Water flows With a free-stream velocity of 3 ft/sec over a smooth flat
plate of solid benzoic acid. The plate measures 1 ft X2 ft and is oriented at
zero incidence to the stream, with its longer sides parallel to the direction
of flow. The system is at 77°F and the leading edge is rough enough to
promote a turbulent boundary layer over the entire plate. Estimate the
total rate of mass transfer from a single surface of the plate and the
corresponding value of the average Sherwood number. Is the total transfer
rate increased by reorienting the plate so that its shorter sides are parallel
to the direction of flow? Explain your answer physically and support it
with appropriate calculation. (See Illustration 5.6 for physical properties.)

6.2 Repeat all parts of Problem 6.1 for the case in which the plate is
sufficiently smooth to sustain a laminar boundary layer along the leading
portion of the surface. Assume that transition to a turbulent boundary
layer begins at a critical Reynolds number xugp/pof 3.11x10 3,

6.3 For the conditions of Problem 5.5, estimate the local values of the
mass flux, boundary-layer thickness, and maximum velocity in the bound-
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ary layer on each side of the coated plate at a point 1 ft below the upper
edge.

6.4 Pure ethanol flows with an average velocity of 4 ft/sec through a
smooth, 1-in.-i.d. tube made from solid stearic acid. If the system is at
77°F, use all available expressions to obtain maximum and minimum
estimates of the average concentration of stearic acid in solution at a cross
section located 4 ft downstream from the tube inlet. Physical properties are
given in Illustration 5.3.

6.5 Calculate and plot the radial concentration distribution of stearic acid
at the cross section located 4 ft from the tube entrance in Problem 6.4. Use
equations 6.82 through 6.84 to prepare two plots, using abscissas y* and
v/ d,, respectively. Locate the boundaries of the wall layer and buffer zone
on each plot.

6.6 The analogy between momentum and mass transfer represented by
equation 6.54 may be adapted to the turbulent boundary layer on a flat
plate by inserting equation 6.4 for 7,g., with § replaced by equation 6.6
and u_, substituted for V. According to Eckert and Gross (1963, pp. 144,
299) the ratio u, /V is then given by 1.305Ng '/°Ng.'/'%. The resulting
expression gives the local Sherwood number; an average value is of course
derived by integration along the surface.

Use these relationships to recalculate parts a, b, and ¢ of Illustration 6.1,
allowing for the non-unity Ng.. Compare the results with those in Illustra-
tions 6.1 and 6.4 as appropriate.

6.7 The following solid bodies made from naphthalene are suspended in
turn in a pure air stream with an undisturbed velocity of 4 ft/sec. If the
system is at 113°F, estimate the total rate of mass transfer from each of the
bodies and arrange them in order of decreasing transfer rate:

(a) A cylinder 2 in. in diameter and 2 in. long, with axis parallel to the
flow.

(b) The cylinder in (a), with axis normal to the flow.

(c) An oblate spheroid with a major axis of 2 in. and a volume of 2.095
in.%, the major axis being normal to the flow.

(d) An oblate spheroid with a major axis of 2 in. and a volume of 1.397
in.?, the major axis being normal to the flow.

(¢) A hemisphere 2 in. in diameter, with the flat section at the rear.

() A cube with 2-in. sides, four sides being parallel to the direction of
flow.

6.8 Derive equations 6.148 and 6.149 for the surface and volume of an
oblate spheroid.
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6.9 Air flows through a packed bed of naphthalene spheres with uniform
diameters of 1/2 in. Entrance effects are eliminated by an inlet section
which is packed with inert spheres of the same size to a height of about 4
in. The superficial velocity of the air, based on the cross section of bed
without packing, is 7 ft/sec, and the average air pressure is 1 atm. If the
void fraction € is 043 and the system is at 113°F, what depth of active
packing would be required for the naphthalene to reach a concentration of
20 percent of saturation in the exit air? Physical properties are given in
Ilustration 5.1.

6.10 Prove that for a packed bed of uniformly sized spheres, the total
surface of spheres per unit packed volume of bed is 6(1—¢’)/d,. What is
the corresponding expression for cubes with side d, and for cylinders with
length and diameter equal to 4.?

6.11 A short, thin-walled tube has a smooth, thin coating of solid po-
tassium chloride on its outer surface. The tube has an external diameter of
22 in. and a length of 1 ft, and is towed longitudinally at 5 ft/sec through
water initially 5 percent saturated with KCI. The leading edge is
sufficiently rough to ensure a turbulent boundary layer over the entire
length of the tube. If the system is at 18.5°C, estimate the average
mass-transfer coefficient over the outer surface. What error would be
incurred by neglecting the effects of the high mass flux? Physical properties
appear in Illustration 3.5.

6.12 A porous, solid cylinder has a diameter of 1 in. and is continuously
supplied with liquid carbon tetrachloride to maintain a completely wet
surface. The cylinder and CCl, are kept at 100°F by a separate source of
heat. Pure air at 100°F and 1 atm flows over the cylinder at 5 ft/sec in a
direction perpendicular to its axis. Estimate the total rate of evaporation of
CCl, from a section of the cylinder that is 1 ft in length.
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7

Design of Continuous Columns

from Rate Equations

Many types of mass-transfer operations are carried out in either con-
tinuous or stagewise columns. This chapter deals with the design of
continuous columns, which are usually packed with Raschig rings, Pall
rings, Berl saddles, Lessing rings, or other types of packing, to promote
intimate contact between the two phases. Continuous contact is therefore
maintained between the two countercurrent streams throughout the
equipment, necessitating a differential type of treatment.

The preferred method of design involves determination of the number of
transfer units (NTU) necessary to achieve the desired separation. Evalua-
tion of the NTU requires preliminary construction of the equilibrium curve
and the operating lines appropriate to the process on the x,-y, diagram.
The chapter is accordingly divided into two main sections:

1. The first half of the chapter is concerned with the location of the
necessary operating lines under a variety of circumstances for subsequent
evaluation of the NTU.

2. The rest of the chapter is devoted to the formulation and evaluation
of the corresponding NTU relationships.

A brief treatment of flooding precedes these more extensive topics. This
is necessary because the prediction of the height of a transfer unit (HTU)
involves knowledge of flooding conditions.
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Capacity and Flooding

The capacity of a given packed column for two-phase contacting is limited
by the approach of the system towards flooding conditions. In a gas-liquid
system this refers to a state reached by increasing the gas rate at a fixed
liquid rate until the gas-phase pressure drop begins to increase drastically
with further increase in gas flow. This constitutes the flooding point in the
column. Flooding is usually preceded by a so-called loading region in
which the pressure gradient increases more gradually but at an increasing
rate with gas velocity. Operable conditions require gas rates below the
flooding state, and usually somewhat below the loading region or, alterna-

T T T T
Flooding Curve
- 0.20 Parameter of Curves
ON 2 is Pressure Dropin
oI U 0.10 Inches of Water/A
~— 0.060 ~0.50 Fool_t‘gif l_F"facke,-d.
N
S| | 00k
a |@ 00I0
“ e 0006
~ - f—
= |« 0004 005
-~
© 0.002 - A
0.001 1 I | I 1 1

.0l 02 04 Ol 0204 1020 60
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G \A

L= Liquid Rate, Ib Mass/hr.

G'= Gas Rate, Ib Mass /hr.

S =Cross -Sectional Area of Empty (:olumn.ft.2
p_® Liauid Density, Ib Mass 7§13

py= Gas Density, Ib Mass /13

p =Density of Water, ib Mass /1.3

HZO

Fp = Packing Factor, (Table 7.1).

/.LL= Viscosity of Liquid, Centipoise.

gc = Conversion Factor, 4.17 ><|08 Ib Mass ft/Ib
Force hr.2

Figure 7.1. Generalized correlation of pressure drop in flow through packed beds (Eckert,
1963).
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Table 7.1.  Packing factors F, (wet- and random-packed).”

Nominal packing size, in.

Type of packing Material 3 P+ 3 3 1 o 12 3
Intalox saddles Ceramic  600° 265 130 98 52 40
Raschig rings  Ceramic 1000%¢ 75074 640¢ 380° 255°160/ 1258 95" 65" 37
Berl saddles Ceramic  900° 380 170 110 65 45
Pall rings Plastic 97° 52 32 25
Pall rings Metal 71 48 28 20
Raschig rings

w-in. wall.  Metal 700° 300258 1854 115
Raschig rings

&-in. wall.  Metal 340 290 230 145 110 83 57 32°
Raschig rings

+-in. wall.  Metal 38
2Eckert (1963). 4L.in. wall. fl.in. wall. hiin, wall.
bExtrapolated ¢2_in. wall. 8L in. wall. 2_in. wall.
“z-in. wall.

tively, in the lower part of the loading region. According to Leva (1953),
loading usually occurs in aqueous systems at a gas pressure gradient in the
region of 0.5 to 1 in. of water per foot of packed height. This range is
roughly confirmed in other systems by Otake and Kimura (1953) and
Eduljee (1960). The column performance is often most efficient (HT Us are
lowest) in this region (see Hengstebeck, 1961).

Eckert (1963) has presented a generalized correlation of gas-phase pres-
sure drop and flooding conditions, as shown in Figure 7.1. Table 7.1 gives
values of the packing factor F, for a variety of common column packings.
The dimensions shown below Figure 7.1 must be used with each quantity.

Flooding correlations are less well established for liquid-liquid systems,
but those available are summarized by Treybal (1963).

THE OPERATING LINE

The relationship between the compositions of the two phases at a given
section of the column is obtained by material balance and is called the
operating line. Consider the packed column sketched in Figure 7.2.

The reader should note carefully the location of sections 1 and 2, which
is directionally the same as that used by some authors (Bird, Stewart, and
Lightfoot, 1960, p. 694; Levenspiel, 1962, p. 401; McCabe and Smith, 1956,
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L

Figure 7.2. Terminology for a continuous column. 4, total interfacial area, ft2; G,L, flow
rates of phases G and L, lb-mole/hr; Z, column height; S, cross-sectional area of empty
column; x,,y,, concentration of component 4 in phases L and G, mole fraction.

p. 641; Oliver, 1966, p. 266; Larian, 1958, p. 177) and the reverse of that

used by others (Bennett and Myers, 1962, p. 517; Foust et al., 1960, p. 271;

Sherwood and Pigford, 1952, p. 118; Calderbank, 1967; Treybal, 1968).
A balance on component A over the differential volume SdZ gives

d(Gy,)=d(Lx,) (7.1)
Integrating between section 1 and any section within the column leads to

L Gy~ Lixy
yA=ExA+—G— (7’2)
This is the equation of the operating line, relating y, to x, at any section
within the column. In the general case L and G may vary with location,
giving a curved operating line. Equation 7.2 is effectively linear, however,
in cases of very dilute streams for which composition changes due to mass
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transfer have a negligible effect on L and G. Graphical representation of
the operating line is also readily possible when phases G and L each
consist only of inert (nontransferring) material and component A. Thus if
G”,L" are the flow rates of nontransferring components in phases G and L
(in Ib-mole/hr), then

G”=G(1_)’A)=G|(1_)’A1)=G2(l—)€42) (7.3)
L"=L(1-x,)=L,(1-x4)=Ly(1-x,,) (7.4)

Substituting for L, L, G, and G, in equation 7.2 and rearranging,

Ya X4
T—y, —C1+C21_xA (7.5)
where
Ya1 X4q1
C, = -C 7.
: =y, 2 I=x, (7:6)
_L
C2— G// (7'7)

and x,, X49, ¥ 41> V42> G, and L, are normally stated in the conditions of a
given problem, so that L” and G” are also known. The operating line is
then readily plotted from equation 7.5 with the terminal points (x,,,,,)
and (x,;,) 42)-

Operable conditions require L/G or L” /G"” values such that no point of
contact occurs between the operating and equilibrium lines over the range
Y41 10y 4,. For example, when equations 7.3 to 7.7 are appropriate and the
equilibrium curve is below the operating line and concave upward, as in
Figure 7.26, the minimum L”/G” ratio is obtained from equation 7.5 by
substituting y, =y,, and x,=x,.;,. The latter is the abscissa of the point
on the equilibrium curve having the ordinate y,,; an L” greater than that
obtained by this calculation is necessary for a column of finite height.

It will often be found that the two simplified methods just described for
locating the operating line are not applicable. Procedures specific to a
variety of situations in binary distillation will now be considered, followed
by treatment of comparable cases in gas absorption, stripping, and liquid
extraction, in which substantial curvature of the operating lines may be
present. [llustration 7.4 involves a strongly curved operating line in a liquid
extraction process without reflux.

Binary Distillation with Reflux

In the case of distillation without reflux, Figure 7.2 applies with L asa
liquid feed. In this case, however, stream G, cannot be richer in the more
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Figure 7.3. Continuous distillation in a packed column with reflux, L,.

volatile component than the composition that would be in equilibrium with
L,—that is, the maximum value of y, is the equilibrium value correspond-
ing to x,,. This restriction on y,, is removed by operating with reflux, as
shown in Figure 7.3.

In many cases of distillation the heats of vaporization per mole are
almost equal for all components, and sensible heat exchanges throughout
the column, heats of mixing, and heat losses to the surroundings are all
negligible. Under these conditions there is an equimolal exchange of the
more and less volatile components between the phases. The condition is
said to be one of “constant molal overflow.” The operating line is then
linear between consecutive inlet and outlet points on the column, because
L and G are constants. In Figure 7.3 this means that:

Above the feed (the enriching section),
G,=G=constant
L,=L=constant
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Below the feed (the stripping section),

G,=G=constant

L,= L =constant

Equation 7.2 may be written in the following form for the column
section above the feed (since evidently y,, = x,,;=x,, and G, -L,=G-L
=D):

P

D

L

Ya= ExA + EPXAD (7.8)
_ R Xap

VAT R+154 T R+1 (7.9)

R =reflux ratio= — %

I4 P
provided that the reflux is at the boiling point. (For effects of cold reflux,
see Problem 7.5 at the end of the chapter.) When x, =x,,, equation 7.9
shows that y, = x,,,, which means that the upper operating line intersects
the 45° diagonal on a y ;-versus-x,, plot at y, = x, = x,,. Equation 7.9 also
shows that this operating line has a slope of R/(R+ 1) and intersects the
ordinate at x,,/(R+1). The line is therefore readily drawn on such a
diagram, as sketched in Figure 7.4.

Equation 7.1 may next be integrated between section 2 and any section
below the feed plane in Figure 7.3 to obtain

_ ZxAZ - 6)’,12

yamLx
A 5,4 G

An A balance over the reboiler shows that
S0
BP
xA—ngB (7.10)

When x, =x,,, equation 7.10 shows that y, = x,, ,, which means that the
lower operating line intersects the 45° diagonal at y 4 =X4=X,p.
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The locus of intersections of the operating lines above and below the
feed, which are defined by equations 7.9 and 7.10, is found by subtracting
7.10 from 7.8:

yi(G=G)=x,(L—L)+D,x,p+B, X, (7.11)

An overall balance on 4 gives

Fzype=D,x,p+ B,x,p (7.12)
and from an overall balance around the feed plane
G-G=F—(L-L) (7.13)

Combining equations 7.11 to 7.13,

(4 _%urF
yA_(q_l)xA q_l (714)

where

_L-L
= =5 (7.15)

An enthalpy balance on a narrow section of the packed column which
includes the feed plane is

Fhp+ Lh;+ GHy= GH;+ Lhy
Since composition and temperature changes in the saturated liquid and
saturated vapor streams are small in this narrow section,
hf =h 73 H 7 =H, £
and

(L—L)hy=Fh+(G—G)H, (7.16)

Combining equations 7.13 and 7.16,
L-L  Hi—he

F 1T H -k

(7.17)

The quantity ¢ is therefore obtained by dividing the latent heat of
vaporization (H;— k) into the enthalpy change involved in converting the
feed into saturated vapor (H;— hj).
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Figure 7.4. The x,-y, diagram for distillation with reflux, corresponding to Figure 7.3. The
quantities x,-x,_ and y, -y, are used later in NTU evaluation.

It is now apparent that the graph of equation 7.14, which is the locus of
intersections of the upper and lower operating lines, has a slope of
q/(g—1) and intersects the 45° diagonal at y,=x,=z,,. It is therefore
easily drawn on the x,-y, diagram, and is known as the g line, as shown in
Figure 7.4.

In summary, the upper operating line intersects the 45° diagonal at
Y4=Xx,=x,p, has a slope of R/(R+1), and intersects the ordinate at
x4p/(R+1). The lower operating line intersects the 45° diagonal at
Y4=x,=x,p It is inserted on the x,-y, diagram by joining the point
(¥4 =x4p:X4p) to the intersection of the upper operating line with the g
line.

Minimum Reflux Ratio

When the operating lines on the x,-y, diagram either intersect with or
become tangent to the equilibrium curve, the point at which this occurs
corresponds to a state of equilibrium between the two adjacent phases in
the column. The driving force causing mass transfer (y,—y,,) is zero at
such a point, necessitating an infinitely tall column. Borrowing from
equation 7.43, developed later in this chapter, it is evident that the
(NTU),; needed to reach this condition is infinite.
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Suppose the reflux ratio is progressively decreased, resulting in a con-
tinual decrease in the slope of the upper operating line. When contact
between this operating line and the equilibrium curve first occurs, the
operating line will have a slope of R,,/(R,,+ 1), where R, is the minimum
reflux ratio.

The more common equilibrium curves are concave downward for all x,,
and in such cases the point of contact referred to above occurs at the
intersection of the g line and the equilibrium curve. The corresponding R,,
is then obtained from the slope of the operating line through this point. In
other cases the equilibrium curve may be concave upward in some region
between x,,,, and z,.. The value of R, may then be found from the slope
of that operating line which is tangential to the equilibrium curve in the
concave-upward region. :

Total Reflux

A distillation column may be run under the limiting condition of total
reflux during evaluation of a new type of packing. In such a case the flow
rates of F, Dp, and BIJ are all zero, and g, = g, if heat losses are negligible.
The reflux ratio (R=L,/ D,) is infinite, so that the slope of the upper and
lower operating lines is unity. The operating lines therefore coincide with
the 45° diagonal on the x,-y, diagram for the binary system.

Side Streams and Multiple Feeds

Side streams are occasionally withdrawn from columns distilling binary
mixtures, as shown in Figure 7.5. A material balance on the entire column
above a horizontal plane between F and L, leads to

LSxAS-*-DPxAD
+
G

(7.18)

V4= X4

QI |t

This is the operating line between the feed and the side stream; it intersects
the 45° diagonal at

LsxAS+DprD

TTD, (7.19)

The operating line for the column section above the side stream was
given earlier as equation 7.8. Evidently L=L— L and G =G, and equating
the relationships in equations 7.8 and 7.18 shows that the two operating
lines intersect on the vertical at x,=x,,. The resulting construction of
operating lines is shown on the x,-y, diagram of Figure 7.5.
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Figure 7.5. Continuous distillation in a packed column with reflux, L,, and a side-stream
product, L,. Modifications to describe multiple feeds (— L,) are detailed with equations 7.20
and 7.21. The x,-y, diagram is used to evaluate the NTU.

Instead of withdrawing a side-stream product, a second feed, of different
composition from the first, may be added to the column by reversing the
direction of L, in Figure 7.5. The equation to the operating line between
the two feeds is then obtained from a material balance as

DprD - LsxAs

L
Ya= gx,q + z (7.20)
and this line intersects the 45° diagonal at
D, x,,—Lx,,
Zp7AD A (7.21)

yA=xA= Dp—Ls

It is clear that, for a boiling feed L, L=L+L, and G=G. Equating the
relationships 7.8 and 7.20 shows that the upper and middle operating lines
intersect on the vertical at x, =x,,. The incorporation of these modifica-
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tions will enable ready revision of the x,-y, diagram in Figure 7.5 to
represent distillation with two feeds.

Open Steam

When distilling an aqueous solution in which water is the less volatile
component, the heat required may be provided by direct injection of open
steam into the bottom of the column. The reboiler is thereby eliminated,
and the unit is as sketched in Figure 7.6. Design procedures are illustrated
in the following worked example.

Tlustration 7.1

Thirty 1b-moles per hour of a mixture of isopropanol and water are to be
concentrated in a packed distillation column to give a distillate containing -
0.65 mole fraction isopropanol and a residue product containing 0.03 mole
fraction isopropanol. The feed contains 0.25 mole fraction isopropanol and
is at its bubble point.

The column is to be equipped with a total condenser and operated at
atmospheric pressure. Heat will be supplied to the column by introducing

i‘c
Condenser
o T % "
I ‘ *a,
]G l
F —®
Zp e
G C
@
Ss Bp
Yaq *ag

Figure 7.6. Distillation of an aqueous solution with open steam, S, (IMustration 7.1).
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Figure 7.7. Distillation with open steam (Illustration 7.1). The diagram is used for NTU
evaluation.

open, saturated steam at l-atm pressure directly into the base of the
column. A reboiler will therefore not be needed. The reflux ratio will be
0.75.

Determine the amount of open steam required and the amounts of
distillate and residue products. Construct the x -y 4 diagram, showing the
equilibrium curve and operating lines. This diagram is for use—with
equation 7.43, developed later in the chapter—in determining the NTU,¢
necessary to achieve the specified separation.

Principles.

The vapor-liquid equilibrium data for the system isopropanol-water at
atmospheric pressure are shown in Figure 7.7 (Perry, 1950, p. 574). Evi-
dently an azeotrope occurs at a concentration of 0.7 mole fraction
isopropanol. It would therefore not be possible to obtain distillate and
residue products on opposite sides of the azeotrope from a given feed.
The molal heats of vaporisation of isopropanol and water are within 2
percent of each other at atmospheric pressure. Consequently all assump-
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tions required for the use of straight operating lines are approximately
satisfied, if the operation is adiabatic.

A material balance on the more volatile component in Figure 7.6 gives
Fz, -+ SsyAs=Bp‘xAB+Dp‘xAD
Equations 7.13 and 7.15 show that
S,=G=G+(q—1)F=(L,+D,)+(q—1)F=D,(R+1)+(¢—1)F

B,=L=L+qF=RD,+qF
Substituting for S, and B, in the above material balance leads to
Flzyet(g=1)y—gx,p]= Dp(RxAB +X4p—Vas— Ryys)
This enables evaluation of D, and hence B, and S,.

A material balance for the more volatile component over the lower
section of the column below the feed gives

zxA + SsyAs = GyA + BprB
and since G=S, and B,=L,

yA —yAs

_B_
Sy X4~ X4p

Q1|

which shows that the lower operating line extends to the point (x,p,74,)-

SOLUTION Substituting in the equation developed above,
30[0.25+ (1—1)(0) — (1)(0.03) ] = D,[0.75(0.03) +0.65—0—(0.75) 0)]
whence
D,=9.81 lb-mole/hr
B,=(0.75)(9.81) + (1)(30) =37.35 Ib-mole /hr

S,=9.81(0.75+ 1) + (1—1)(30) = 17.16 Ib-mole /hr
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The intersection of the operating line for the column section above the
feed with the y, axis is

Xap _ 065 _
R+1-075+1 ~ 0372

The upper operating line is drawn in Figure 7.7 by joining this intersec-
tion to the point (0.65,0.65). Since the feed enters as a saturated liquid, ¢ is
unity, and the slope of the ¢ line is infinite. The operating line for the
section below the feed is obtained by joining the intersection of the upper
operating line and the g line to the point (x 18V 45) = (0.03,0.00).

The use of this diagram in evaluating the required NTU,; is detailed
later in the chapter.

The Leaking Condenser

As an aid towards the development of facility in the construction of
operating lines it is often instructive to consider somewhat unorthodox but
realistic situations. A case in point is provided by the following illustration,
in which the interpretation of data from an aqueous distillation is compli-
cated by leakage of condenser cooling water into the distillate product.

Ilustration 7.2

A mixture of water and cellosolve is fed at 30 Ib-mole/hr to an old,
continuous distillation column, operating at atmospheric pressure. The
feed is liquid at its bubble point and contains 0.3 mole fraction water and
0.7 mole fraction cellosolve (glycol monoethyl ether, CH,O0HCH,0C,Hj).

A distillate containing 0.85 mole fraction water and a residue product
containing 0.05 mole fraction water are being obtained with a reflux ratio
of 0.75. Tests have indicated that the condenser cooling water is leaking
into the distillate product, to the extent of 0.1 mole of cooling water per
mole of feed.

Establish the equilibrium curve and the operating lines on the X4V 4
diagram under these conditions of faulty operation.

Principles

An overall material balance on the column shown in Figure 7.8 gives

F+L,=D,+B,
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Figure 7.8. Distillation of an aqueous solution with a leaking condenser (Illustration 7.2).

and on the more volatile component (in this case water),

FzAF+chAL=DprD+BprB

A material balance on the upper section of the column above the feed
gives

G=L+D,—L.=D,(R+1)-L,
and on the more volatile component,
Gy,=Lx, +DprD—L£xA,_

Dividing throughout by G—expressed in the above form—and substituting
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RD, for L,

RD, D,x,p—L.x4y

= X4+
D,(R+1)~L, D,(R+1)—-L,

Ya

This is the equation of the operating line for the column section above
the feed. It intersects the 45° diagonal at (x4,x,), so that

y,=x _DprD_chAL
A A DP_LC

The intersection of this operating line with the 4 axis has the value

DprD —L.x,
D,(R+1)—-L,

For systems in which the more volatile component is not water, x,, =0.
(The condenser leak L_ is pure water.) For this system, however, x 4.=1.0.
The upper terminal of the operating line is on the vertical at x AD

SOLUTION. Substituting in the overall material balance,
30+30(0.1)=D,+B, B,=33-D,
and on the more volatile component (water),
30(03)+3(1)= D,(0.85) + (33— D,)(0.05)
D,=12.95 1b-mole /hr
B, =20.05 Ib-mole /hr

The vapor-liquid equilibrium relationship for the system cellosolve-water
at atmospheric pressure is given in Figure 7.9 (Chu et al., 1950). The
intersection of the operating line for the column section above the feed
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Xp = Mole Fraction H20 in Liquid

Figure 7.9. Aqueous distillation with a leaking condenser, corresponding to Figure 7.8. The
diagram may be used to evaluate the NTU (Illustration 7.2).

with the 45° diagonal is at

DprD _chAL _ 12.95(0.85) -3(1)

YATXTTTDp oL 1295-3 = 0805
This line has an intercept on the y, axis of
Dyxp—Lexq 12.95(0.85) —3(1) 0407

D(R+1)—L, 1295(0.75+1)=3

This enables the upper operating line to be drawn on Figure 7.9. Since
the feed is a saturated liquid, the ¢ line is vertical. The intersection of the
upper operating line with the g line is joined to the point (0.05,0.05) to
obtain the operating line for the column section below the feed. The
diagram is now ready for use in NTU evaluation, as described later.
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Gas Absorption, Stripping or Desorption, and Liquid Extraction with
Reflux

Reflux can also be employed in continuous countercurrent columns used
for gas absorption, stripping or desorption, and liquid-liquid extraction.
This will allow the solute-rich stream leaving the unit to attain a higher
concentration of solute than would be in equilibrium with the feed. In
considering the separation of a binary mixture it must be realized, how-
ever, that reflux will not enhance the degree of separation between com-
ponents of the feed unless they both transfer significantly into the phase
which absorbs, strips, or extracts the solute. (The proportions in which the
two components transfer must of course be different from their propor-
tions in the feed in order for the separation to be feasible.)

The individual operations performed with reflux are sketched in Figures
7.10, 7.11, and 7.12, and a generalized diagram representative of all three
operations appears in Figure 7.13, which defines the terminology for
algebraic purposes. In the most general case all three components may be
present to some extent in each exit stream, but one will normally pre-
dominate, as shown.

Figure 7.13 shows that the preservation of a generalized terminology (the
customary L and G) has necessitated the use of L for the gas phase and G
for the liquid phase in'the case of stripping. These symbols then automati-
cally adopt their more conventional connotation for gas absorption. The
direction of solute transfer is from G to L throughout, and the solute
concentrations in these two phases are denoted by y 4 and x, respectively.
It may be noted that when treating gas absorption, some authors associate
Y4 with the phase losing the solute, whereas when dealing with liquid
extraction, they associate y, with the phase gaining the solute. One
consequence of this on the usual x,-y, diagram is that the operating line
lies above the equilibrium curve for gas absorption, but below the equi-
librium curve for liquid extraction. In addition, the rate equations and
corresponding NTU expressions for gas absorption require reversal of
driving forces before they are valid for liquid extraction, when this incon-
sistent procedure is followed. Such anomalies are excluded by the present
generalized nomenclature, in which y, is consistently associated with G,
the phase losing the solute. Reversal of the phases to which x, and y, refer
would cause the operating line to lie below the equilibrium curve, as in
distillation. The present system will be retained, however, since it may
emphasize the differences between equimolal counterdiffusion and uni-
mbolal unidirectional diffusion and because it conforms to the conventional
nomenclature for the major operation of gas absorption.
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Liquid Lean
Absorbent Gas
(C) (B +residual A)

t |

Feed —o—

Gas
(A+B)

Liquid 4 Gas Reflux (A+ some B)
(C+A+ someB)

‘—- Rich Gas

i (A+ some B)
Boiler +
Cooler
Liquid C
A = Solute Gas in Feed
B = Diluent Gas in Feed

C = Liquid Absorbent

Figure 7.10. Gas absorption with reflux. In some cases, part of the A-rich liquid leaving the
base of the column is removed as product and all of the gas leaving the boiler is refluxed to
the column.

The usual appearance of phase equilibria on triangular coordinates may
be sketched for each of the three operations under consideration. The use
of these diagrams was outlined in Illustration 4.2; either mole or mass
fractions are applicable, provided stream quantities are in corresponding
units.

In gas absorption the triangular diagram is somewhat as shown in
Figure 7.14 for the prevailing conditions of temperature and pressure.

When B is almost insoluble and C has negligible volatility, side AB
becomes the locus of all possible gas-phase compositions and side AC the
locus of all possible liquid-phase compositions. Side BC is the locus of
nonexistent solutions of B in C, since only immiscible phases of pure B
and pure C can occur in the absence of 4. Even for this limiting system,
however, the 4 apex still resembles that in the above diagram when
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Gas C

t

Condenser
+ Settler or
Distillation

Column
——e Rich Liquid
Gas ) 1 (A+someB)
(C+A+someB) Liquid Reflux

(A+someB)

Feed —e—
Liquid
(A+8B)

bt

Stripping Lean
Gas Liquid
(C) (B +residual A)

A = Solute Liquid in Feed
B = Diluent Liquid in Feed
C = Stripping Gas
Figure 7.11. Stripping or desorption with reflux.

magnified sufficiently so that pure 4 is still correctly represented as a gas.

For stripping or desorption at a given temperature and pressure, the
diagram is as sketched in Figure 7.15.

When B has negligible volatility and C is almost insoluble, side 4B
becomes the locus of all possible liquid-phase compositions, and side AC
the locus of all possible gas-phase compositions.

Liquid extraction exhibits at least two common forms on the triangular
diagram. Figure 7.16 shows both type-I and type-II systems, the former
characterized by a plait point, as encountered in Illustration 4.2.

In type-I systems the tie lines linking equilibrium phases shrink to a
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;'ql‘“d Raffinate Liquid
©) vent (B +residual A)

t

Feed -—®—

Liquid
(A+B)
Liquid ) Liquid Reflux(A+someB)
(C+A+some B) ! ——e Extract Liquid
(A+someB)
Distillation
Column
Liquid C
A = Solute

B = Diluent Solvent
C = Extracting Solvent

Figure 7.12. Liquid extraction with reflux.

point at the plait point, so that the two conjugate phases become identical.

When reflux is used in a type-II system the feed is theoretically separ-
able into pure A and B, respectively, after solvent removal. This contrasts
with type-I systems, for which, even with the use of reflux, a feed mixture
is theoretically separable only into pure B at one end of the unit and a
mixture of A and B at the other—after removal of solvent. Thus the most
concentrated extract obtainable is E*.

Any point in the two-phase region of Figures 7.14, 7.15, and 7.16
represents an overall mixture which separates into two phases linked, at
equilibrium, by a tie line.

The Line-Ratio Principle on Triangular Diagrams

Consider the steady flow of two ternary streams into the mixer shown in
Figure 7.17. The streams enter at rates of M and N mole /hr, respectively,
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Los *ay
C Remover
——— G .
A | A P Yap
®
L G
F —e—
z
N I 1
T G
Lo 62
xAz yA2
Gas Absorption: L = Absorbing Liquid, G = Gas
Stripping: L = Stripping Gas, G=Liquid
Liquid Extraction: L = Extracting Liquid, G=Raffinate

Liquid
Solute Transfer is from G to L Throughout

Figure 7.13. Generalized diagram for gas absorption, stripping, and liquid extraction with
reflux.

and a third stream leaves at P mole/hr. In representing this process on the
triangular diagram it is shown below that, when streams M and N are
added, the point denoting the resultant stream P lies on the line MN such
that

Moles (or mass) o r N length of line M
Mol fN|/hr _ length of li P

[Moles (or mass) of M]/hr M  length of line PN

Let
XpasXpys Xgp=mole (or mass) fractions of B in streams M, N, and P.

Xcems Xens Xcp =mole (or mass) fractions of C in streams M, N, and P.

M, N, P=moles (or masses) in streams M, N, and P per hour.
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Figure 7.14. Phase equilibria for gas absorption.

Single Gas Phase

2 -Phase Region

Single Liquid
Phase

B A
Figure 7.15. Phase equilibria for stripping or desorption.
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C

Single Phase

Single Phase

2 -Phase

2-Phase Region

Region

Plait .
Point Single

Phase

Typel . Type Il
Figure 7.16. Phase equilibria for liquid-liquid extraction.
An overall material balance is

P=M+N
and for component B,

Pxpp=Mxg, + Nxgy
and for C,

Pxcp=Mxcp + Nxcy
Substituting M + N for P in the B balance and rearranging,

N _ Xpm—Xpp
M xgp—xgy

' XAM’ XBM' XCM

Mixer P, x

X 3
Ay By Yoy

Figure 7.17. Mixing of streams and the line-ratio principle on the triangular diagram.
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Similarly, from the C balance,

N _ *cp™ *cm

M xcy—Xcp
so that

XM~ Xpp _ XcP™ Xem
Xpp Xy XcN T Xcp
This relationship can be satisfied only if the triangles MJP and PKN are

similar (Figure 7.17), which in turn can be true only if P lies on the line
MN. Furthermore, in the similar triangles MJP and PKN,

Xgm ~Xpp _ Xcp— Xcm _ lineMP _ N
Xgp—Xgy  Xcy—Xcp linePN M

Since the triangle used in Figure 7.17 is neither equilateral nor isosceles,
it follows that the graphical addition of streams and the line-ratio principle
are independent of the shape of the triangle.

Material Balances on a Continuous Column Using Reflux

Consider the column shown in the generalized diagram of Figure 7.13. The
C remover withdraws sufficient C from phase L, to convert it to a G
phase. A material balance around the C remover leads to

L—Gy=Ly+G,=A, (7.22)

A similar balance over the C remover plus any portion of the column
above the feed plane gives
L, —Gy,=L—-G=A, (7.23)
Converting equation 7.23 into component B and C balances,
Ll(xB)L, - Go()’y)co= L(x3)—G(ys) =Al(xB)A| (7.24)
Ll(xC)L, - Go(yc)co= L(xc) - G(J’c) =A|(xc)A, (7.25)

Equations 7.23, 7.24, and 7.25 demonstrate that the difference between
adjacent streams in the column section above the feed plane is constant in
amount and composition. This difference may therefore be represented by
the single point A, on the triangular diagram. The “difference point” A, is
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located in Figure 7.18 from the following development in terms of the
reflux ratio G,/ G,.

Streams Gg, G,, and G, of Figure 7.13 are identical in composition and
are represented by a common point in Figure 7.18. The compositions of L,
and G, will be specified and equation 7.22 shows that the points represent-
ing streams L, G,, Gy, L}, and A, all lie on the same straight line because
of the graphical addition of streams and line-ratio principle. Then from
equation 7.22,

& _ line LyA,
A, lineLG,
Gy, lineL A,
A, lineL,G,

The reflux ratio is known, and since

Gy, Gy A, lineL,A, lineL,G,

G, A, G, lineL,G, lineLyA,

P P

(7.26)

this enables location of A, because the line lengths L,G,, L,G,, and LyL,
are all readily measurable.

A material balance over the lower portion of the column below the feed
plane in Figure 7.13 shows that

G-L=G,- L,=A, (7.27)

This equation may be converted into component-B and -C balances
analogous to equations 7.24 and 7.25, to demonstrate that the difference
between adjacent streams in the column section beneath the feed is
constant in amount and composition. This quantity can therefore be
represented by a second single difference point A, on the triangular
diagram. Location of A, requires the following material balance about the
feed plane:

F+L+G=L+G
F=L-G+G-L
=A,+A, (7.28)

The problem specifications will enable points F, G,, and L, to be
located on Figure 7.18. Equations 7.27 and 7.28 show that A, lies at the
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intersection of the extended lines L,G, and A F, in accordance with the
principle of the graphical addition of streams. It is clear that whether 4,
lies above or below the triangle merely depends upon the relative positions
of points L,, G,, F, and A,. Thus when A, lies above the diagram, equation
7.28 (together with equation 7.27) shows that A, — F=—A,. If L, or L,
contains no 4 or B, the corresponding point coincides with apex C.

The operating line on the distribution diagram (y, versus x,) may now
be obtained from the triangular diagram of Figure 7.18 in the following
manner. Corresponding x, and y, values for the two phases at a given
column cross section are obtained from the intersection of random lines
from the appropriate difference point (A, or A,) with the upper and lower
boundaries, respectively, of the two-phase region. The procedure is shown
in detail in Ilustration 7.4 for a column operating without reflux, in which
case only one difference point is needed. Where reflux is used, as in
Figures 7.13, 7.18, and 7.19, two difference points are required, and a
discontinuity will occur between the two operating curves representing the
two sections of the column. The discontinuity appears at the point on the
distribution diagram corresponding to the intersection of the line FAA,
with the upper and lower boundaries of the two-phase region on the
triangular diagram. The procedure is sketched in Figure 7.19, which is not
to scale.

o A
GB'GD'GO

¥

Figure 7.18. Representation of a continuous countercurrent column using reflux as in Figure
7.13, showing location of difference points A, and 4, on the triangular diagram. This
construction is used in locating operating lines on x,-y, coordinates for NTU evaluation.
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C L
2
(56" —
Y,
A (xA,,yAp)
Operating Curve L,,Go
Above Feed Lg:Gg
Operating L..G
Curve b*"b
A Below
An'Equilllbrlum ("AZ, Feed
Tie Line yaz)] (.6 E quilibrium
LZ'GO, € Curve
B A X
G, Distribution Diagram A

Figure 7.19. Construction of the operating lines on the distribution (x,-y,) diagram for
NTU evaluation, using random lines from difference points A, and A, on the triangular
diagram. The operation represented is shown in Figure 7.13.

The equilibrium curve on the distribution diagram may be obtained
from the values of y, and x, read from the terminals of tie lines on the
triangular diagram. One such point, (L*, G*), is shown on the equilibrium
curve in Figure 7.19. The distribution diagram is now ready for the
evaluation of NTU, as described later.

As noted earlier, reflux will be of value in increasing the degree of
separation between the feed components only when the transfer of 4 into
the C-rich phase is accompanied by significant transfer of B. Consequently
the single-phase region near the C apex of Figure 7.18 will always be
present to a significant extent in such cases. (In other words, the upper
boundary of the two-phase region does not coincide with line AC when
reflux will enhance separation.) The construction is unchanged if the lower
boundary of the two-phase region is indistinguishable from the 4B axis of
the triangle, as in absorption with a nonvolatile solvent.

Evaluation of Terminal Stream Flow Rates
In the general case, depicted in Figure 7.13, streams F, L,, L, G,, and G,
each contain all three components (4, B, and C), and the compositions of
these five streams are specified. Also given are the flow rate of F and the
reflux ratio, G,/ G,, to be used. It is then necessary to estimate the flow
rates of streams G,, G,, L,, and L, the latter determining the size of the C
remover needed for the operation. The estimation of these flow rates is
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conveniently performed on the triangular diagram. An overall material
balance on Figure 7.13 gives

F+L,=G,+G,+Ly=G,+4,=X (7.29)
This enables the location of = and other relevant points in Figure 7.20.

Application of the line-ratio principle then allows the evaluation of both
L, and Z, since

L2=F( line=ZF )

line=L,
Next let
GZ
5 M
O
A(1+N))=2
where
N line ZA,
" line G,=

is known from Figure 7.20. Hence A, and G, may be evaluated. From
equation 7.22,

Ly+G,=A, (known)

L, lineAG, ‘
G, lineA,L, =N, (known)

Ly=N,G,, .".G,(1+N,)=4,
Hence evaluate G, and L.

Minimum Reflux Ratio

Suppose that, on the distribution diagram of Figure 7.19, the operating
curve intersects or becomes tangent to the equilibrium curve at some point
between the terminals of the column. At such a point the two adjacent
phases have attained a state of equilibrium, and the driving force causing
mass transfer (y,—y,,) has become zero. This, however, requires an
infinitely tall column—borrowing from equation 7.54, developed later in
this chapter, it follows that the NTU,; needed to reach this condition is
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Az

G5.6p,6,

F

B
Figure 7.20. Evaluation of terminal stream flow rates.

infinite. Referring to the triangular diagram of Figure 7.19, the condition
Just described evidently corresponds to coincidence between a tie line and
a random line from A, or A,. This amounts to a location of A, or A, such
that some tie line above or below the feed will extrapolate through the
difference point appropriate to that section of the column. This situation
must be avoided as follows to ensure a column of finite dimensions.

Equation 7.26 shows that A, approaches L, on the diagram as the reflux
ratio increases. Thus the minimum reflux ratio corresponds to A, located at
the closest intersection to L, of all extended tie lines in the column section
above the feed with line L,G,. (“Above the feed” is intended in the sense
of Figure 7.13; this could be the lower part of the column in the case of
Figure 7.10 or in a liquid-extraction operation in which the extract phase
was more dense than the raffinate phase.)

The point A,,, located in this manner is then used to find A,,, at the
intersection of lines FA,,, and G,L, extended, as shown in Figure 7.21.

If, however, any extended tie lines in the column section below the feed
(Figure 7.13) intersect the extended line G,L, between A,, and L,, then
the intersection closest to L, finally determines A,,.. In this case, the
intersection of the line A,, F with the line LG, finally determines A,,, at a
point farther from L, than found earlier by the extension of tie lines
between G, and F.
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Figure 7.21. Evaluation of the minimum reflux ratio and of the minimum ratio of absorbent,
stripping gas, or solvent to feed.

The minimum reflux ratio is then obtainable from equation 7.26 and
Figure 7.21 as

( Gy ) _lineL,A,, line LG, (7.30)

G, ,n_ lineL,G, line LyA,,,

The corresponding minimum ratio of absorbent, stripping gas, or solvent
to feed is found from the relationship

L, line 3, F T3
F ), lineZ, L, (7.31)

This follows from equation 7.29.

Total Reflux

Another limiting condition in column operation is that of total reflux. 1n
which the flow rates of feed and product streams G, and G, are allz >,
and L,=Ly=A in amount and composition. The result is showr in
triangular coordinates in Figure 7.22. The intersection of random lines
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from A with the upper and lower bounds of the two-phase region would
provide points on the single operating curve on an x4-y, diagram. No
discontinuity would appear in the curve, since F equals zero.

In the special case of L, and L, consisting of pure C, these points of
course coincide with apex C. This condition corresponds to the conven-
tional definition of total reflux. Evidently, however, there is an infinite
number of operating lines corresponding to total reflux, depending on the
particular identical compositions of L, and L, and the consequent location
of A.

Side Streams and Multiple Feeds

Occasionally a product is required with a composition intermediate be-
tween G, and G, and that cannot conveniently be obtained by blending
with the feed. A side-stream product G, may be considered in such cases,
as shown in Figure 7.23. Alternatively, it may be necessary to process two
feeds of differing composition, in which case G, becomes the second feed
into the column. The flow rate and composition of G, is specified in either
case.

The column is now divided into three sections by the injection and
withdrawal of streams. Since the flow rates are different in these sections,
three difference points will be required on the triangular diagram: A, for
the column section between the top and G,, A, between G, and F, and A,
between F and the base of the column at 2. These difference points will be
identified by the following balances. On the C-remover:

Li—Gy=Ly+G,=4, (7.32)
On the entire column above a horizontal plane between F and G,:
L-G=G,+Ly+G,=G,+A,=A, (7.33)
On the column section below F:
G,—L,=G —~ L =A, (7.34)
Around the feed plane at F:

-7

aQl

F=L-G+
=A,+4, (7.35)
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Figure 7.22. Total reflux.
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Figure 7.23. Generalized diagram for gas absorption, stripping, and liquid extraction with
reflux and a side-stream product (positive G,) or two feeds (negative G,).
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Equations 7.32 to 7.35 may all be converted to component-B and -C
balances to show that the differences between streams in the three column
sections have separate but respectively constant values with regard to
amounts and compositions. These difference quantities are therefore repre-
sented by the single points A,, A,, and A,, located on the triangular
diagram from the appropriate balances, the graphical addition of streams,
and the line-ratio principle, as shown in Figure 7.24.

The point A, is located from the known reflux ratio and equation 7.26.
From equations 7.33, 7.34, and 7.35,

The point F—G, is found from the line-ratio principle and the known
flow rates of F and G,, since

G
line F(F— G,) = (line FG,) —

F—G,
c
L
Lz/‘ Y
4,
A2 L'
Ga
B Gs /L A
F /
F-Gg G5:6p:6g
A3

Figure 7.24. Representation of a continuous countercurrent column using reflux and with a
side-stream product G, as in Figure 7.23, showing location of difference points Ay, A, and A,
on the triangular diagram. This construction is used in locating operating lines on x -y,
coordinates for NTU evaluation.
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This permits location of A, at the intersection of the extended lines L,G,
and A,(F— G,). The point A, is then found, in accordance with equations
7.33 and 7.35, at the intersection of the extended line A;F with the line
AG,.

Suppose that, instead of a side-stream product, G, is a second feed into
the column, having a composition different from F. Equations 7.33 and
7.36 are then revised to

A=A, —G, (7.37)
A,=(F+G,)—A,=G,— L, (7.38)

The construction appears in Figure 7.25, where point F+ G, is located
from the following, since rates of F and G, are known:

line G,(F + G,) = (line FG,) FfG

The position of A; is found at the intersection of extended lines L,G,
and A(F+G,), and A, lies at the intersection of lines A;F and GA,, as
prescribed by equations 7.35 and 7.37.

The operating lines for either side-stream or two-feed operation are then
constructed on the distribution diagram in a manner analogous to that
shown in Figure 7.19. Random lines are drawn from the difference points
A,, A,, and A;, and the coordinates of their intersection with the upper and

A
\ F+6s /Ga.Gp,Go 4+G Gs \‘Géer-Go

Figure 7.25. Representation of a continuous countercurrent column using reflux and two
feeds (F and G,) as in Figure 7.23, showing location of difference points A, A,, and A; on the
triangular diagram. This construction is used in locating operating lines on x -y, coordinates
for NTU evaluation.
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lower bounds of the two-phase region provide x, and y, values, respec-
tively, for the operating curve. Two discontinuities occur in the operating
curve, corresponding to the intersections of the lines A,G, and A,F with the
upper and lower boundaries of the two-phase region on the triangular
diagram. The NTU may then be evaluated as described later.

The Futility of Raffinate-Type Reflux

Most of the earlier treatments of this subject showed a portion of the
stream G, being returned to the column after preliminary mixing with the
incoming stream L, in Figures 7.13 and 7.23. Comparison with Figure 7.12
suggests that this might be called raffinate-type reflux, as distinct from the
extract-type reflux commonly employed at the other end of the column. It
was shown by Skelland (1961), however, that raffinate-type reflux is of no
value either when accompanied by extract-type reflux or when used alone.
It involves the needless use of a mixer, reflux dividing equipment, and
possibly an auxiliary pumping unit for the refluxed raffinate-type material.

TRANSFER UNITS IN EQUIMOLAL COUNTERDIFFUSION

Equimolal counterdiffusion is the prevailing mechanism in distillation,
provided that the heats of vaporization per mole are equal for all com-
ponents and that sensible heat exchanges throughout the column, heats of
mixing, and heat losses to the surroundings are all negligible. Under these
conditions there is an equimolal exchange of the more and less volatile
components between the phases. The operating line is then linear between
consecutive inlet and outlet points on the column, because L and G are
constants, as detailed in the earlier section on binary distillation.

The rate equations 4.10 in differential form are written in terms of x,
and y, as follows:

d(NAA)=k)',a(yA —y3)SdZ=k,a(x*~x,)SdZ
=Ka(y,—y4)SdZ=Ka(x,;—x,)SdZ (7.39)

where dV,=SdZ, and primes denote the mechanism of equimolal coun-
terdiffusion. Now

d(N,A)=d(Gy,)=d(Lx,) (7.40)
and because of the constancy of L and G for this mechanism

d(N,A)=Gdy,=Ldx, (7.41)
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Combining equation 7.39 with 7.41 and integrating,

z VA2 X42 d
0 » kyaS(yA -yi) %1 kaS(x%—x,)

Y 42 XA2
dx
—c _,_dy,,__zl‘f A (142)
Yal Ig,aS(yA _yAL) X1 KXaS(xAG—'xA)

If the process is interpreted in terms of the two-film theory, equations
4.18 and 4.20 show that the individual and overall mass-transfer
coefficients are independent of the concentration of component 4 when
D, and D, do not vary. (This also requires constant m in the case of the
overall K’s.) Although the coefficients are dependent on the flow rates of
the two phases, L and G have been shown to be constants for this
mechanism. The capacity coefficients are accordingly treated as constants
(if necessary, as averaged values over the column length of interest) and
removed from the integral signs to give

_ G VA2 dy,q _ L XA2 dxA
k,aS 5 ya—yi ka$S x3—x,

V4

XAl

V42 X42 dx
_ 'Gsf d_yA =_KL_Sf e (7.43)
Kya » Ya—Var x4 X416~ X4

XA1

If 4 denotes the more volatile component in distillation, then the
operating line lies below the equilibrium curve on a plot of y, vs x,. The
negative nature of y, —y,, is of course countered by the fact that, in this
case, y,, <74, Each integral represents the total change in composition of
a given phase between sections 1 and 2 of Figure 7.2 divided by the
available driving force causing the transfer. Each integral is therefore a
measure of the difficulty of separation, and has been defined by Chilton
and Colburn (1935) as the number of transfer units (NTU). Clearly the ratio
Z/NTU may then be called the height of a transfer unit (HTU) and is
given by the quantity outside each integral in equation 7.43. The latter
relationship shows that there is an individual and an overall NTU expres-
sion for each of the G and L phases, combined with corresponding HTU
expressions as follows:

Z=(HTU),(NTU) ;= (HTU),(NTU),
= (HTU) 6(NTU) 6= (HTU) 5, (NTU) o, (7.44)
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By setting the NTU equal to unity, it is evident from equation 7.43 that the
HTU is the column height necessary to effect a change in phase composi-
tion equal to the average driving force in the region under consideration.
The evaluation of the NTU and HTU to determine the column height
needed to obtain a specified separation will be considered shortly.

TRANSFER UNITS IN UNIMOLAL UNIDIRECTIONAL DIFFUSION

This mechanism is approximated in such operations as gas absorption,
stripping or desorption, and liquid-liquid extraction. The transfer of com-
ponent 4 from one phase to the other is not accompanied by any transfer
in the reverse direction, so that L and G are no longer constant between
sections 1 and 2 of Figure 7.2. The rate equations for this case are as
follows:

d(NA)=ka(y,—y2)SdZ=k.a(x}—x,)SdZ
=Ka(y,—y,)SdZ=K.a(x,—x,)SdZ (7.45)

The absence of primes on the coefficients compared with equation 7.39
signifies the difference in mechanism. Equation 7.40 remains valid, but
equation 7.41 no longer holds. If it is assumed either that the solute (4) is
the only component being transferred or that the solute transfer is ac-
companied by an equimolal countertransfer of the respective solvents
(non-A) between phases, then

dG=d(Gy,)=Gdy,+y,dG

G
dG=d(Gy,) = lfj;;’ (7.46)
and
Ldx
dL=d(Lx,)= ﬁ (7.47)

Combining equations 7.40, 7.45, 7.46, and 7.47, and integrating,

fzd2=fy“ G b, =fx“ L dx,
Y k,aS (I=y)(ya—y}) x40 k.aS (T—x,)(xf—x,)

Yai

=f)’.42 G dyA =fx"2 L dXA
5 KaS (1=y,)(y4—ya) a K.aS (1-x,)(x46—%,4)
(7.48)
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If the process is interpreted in terms of the two-film theory, equations
4.24 and 4.26 show that the coefficients are dependent on the concentra-
tion of component 4 because of the term (1—y, )y or (1—x ' Jim in the
denominator. Accordingly, from equations 4.24 and 4.26, if D, and D, do
not vary, the quantities k,(1—y)iim Aell = X0im K,(1—y4),Lm> and
K,(1—x,),.m should be independent of concentration (assuming constant
m in the case of the overall K’s), where

ky()’A_y,:)
k(=2 = L=/ (1=r)] (7:49)
k(1= %4 )i = holxi = %4) (7.50)
AT TAM I [(1-x,) /(1= x3) ] '
Ky(yA_yAL)
K =3 om= 11050 /(-] (7:31)
K Kx(xAG—xA) (7.52)

(=X )om= In[(1-x,)/(1-x45)]

Equation 7.48 may now be multiplied and divided throughout by either
A=y dim or (1—x ) tO obtain

7= e G (1-y0)im 4
b kyas(l_yA)iLM A=y )(y—»3)

_ e L (1=x4) Mm%
i keaS(1=xg)am (1-x,)(xF=x,)

_ Va2 G (1=y)omPa
- KyaS(l—yA)oLM 1=y ) (Ya=rar)

_ fx“ L (1=x4) omdx,

K.aS(1—x,),m (1=x,) (x46—%4) (7.53)

Various experimental correlations for mass-transfer coefficients show
that k, or k, is proportional to (G/S or L /8)°%, and this relationship—at
least in terms of mass velocities—has been extended to include the capac-
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ity coefficients k,a and k. a (Brown et al.,, 1950, pp. 529-530; Badger and
Banchero, 1955, pp. 446-449). It is therefore customary to consider the
capacity coefficients as varying roughly with the first power of the flow
rate of the corresponding phase between sections 1 and 2. The considera-
tions following equation 7.48 to this point have provided some justification
for regarding quantities such as G/k,aS(1—y,),y as constant for a
particular situation—generally at an average of the values at sections 1 and
2 of Figure 7.2. These quantities are therefore removed from the integral
signs in equation 7.53 to give

[ G | v (I=y)amd
Z=f —————— .
] k,aS(1—-y,)m lavJ, (I=y)(ya—»%)

=- L ] e (1=x,) i mdx,
_kan(l_xA)iLM_av a1 (T=x) (xf—x,4)

_ [ G ] fy” (1 =y4) oM 4
i KyaS(l—yA),,LM Jav 1=y ) (y4 ~Yar)

Ya1

_ [ L ] e (1—x,4) ,m4% (7.54)
_Kxas(l_xA)oLM_av . (I=x,) (x46—x4)

Each integral again defines an NTU expression, while the quantities in
brackets outside each integral constitute the corresponding HTU. Individ-
ual and overall expressions for each of the L and G phases are identified
by associating equation 7.44, term by term, with equation 7.54. For
example, the individual G-phase transfer-unit relationships are

G
HTU);= ——M | ,
( ¢ [ kyaS(l_yA)iLM Lv

_ V4 (1-y)amd.
(NTO)e= j 00 GurD)
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It may be noted that, although the rate equations 7.45 could be in-
tegrated to obtain Z using mass-transfer coefficients, the procedure in
terms of transfer units is preferable. This is because the coefficients are
strongly dependent on flow rate and would therefore vary with position. In
contrast, the HTU has been shown to be less dependent on both flow rate
and composition changes in a given application, and this greater stability
renders it more suitable for design.

Approximate Expressions for NTU in Unimolal Unidirectional Diffusion

In many cases the evaluation of the integrals in equation 7.54 is facilitated
by use of the arithmetic mean in place of the logarithmic mean (1—y ) m
or (1—x,); > incurring only a small error (Wiegand, 1940). Thus in the
case of (NTU)g,

1y am= L2022 (755)

Insertion in the first integral of equation 7.54 leads to

Y42 d l_
(NTU)G=f 5 Ya_ 4 ygp 24! (7.56)

v ar 4 VA 1=y42

The acceptability of equation 7.55 must be considered in any given case.
The application of this approximation to the remaining three integrals in
equation 7.54 results in

*42  dx, 1—Xx4,
NTU), = +1In (7.57)
( )i ,[Al Xi—Xy 2T 1-xy
Y42 dy, 1=y4
(NTU) 6= — +4iln = (7.58)
a1 Ya—VaL Ya2
4 dx, 1—x
_ 1 42
(NTU), f Py +1in —x,, (7.59)

X41

The reader should perhaps be cautioned regarding the incorrect forms of
equations 7.57 and 7.59 which are often seen in the literature, where the
logarithmic terms are erroneously inverted.



350 Design of Continuous Columns from Rate Equations

EVALUATION OF THE NUMBER OF TRANSFER UNITS

The integrals in equations 7.43, 7.54, and 7.56 to 7.59 are often evaluated
numerically by graphical integration. Information for this procedure is
obtained from the equilibrium-curve-operating-line plot on (x,,y,)
coordinates, as sketched in Figure 7.4 for equimolal counterdiffusion
(binary distillation) and Figure 7.26 for unimolal unidirectional diffusion
(gas absorption, etc.), the latter without reflux.

It is often inconvenient to determine interfacial compositions (x;, y})
corresponding to each point on the operating line, so overall NTU values
are frequently determined in preference to the individual ones. In evaluat-
ing the number of G-phase transfer units, values of 1— yqandy,—y,, are
readily obtained to enable evaluation of the integrand for a series of y y
values between y,, and y,,. (The quantity y, —y 42 1s evidently the vertical
distance between the operating line and the equilibrium curve at a given
Y4.) The quantity (1—y,),  for use in NTU, is defined by equation
7.51. A plot such as that sketched in Figure 7.27 is then prepared, and the
NTUy; is given by the area under the curve between the limits of
integration.

The evaluation could alternatively be performed with a digital computer.
This would require equations for the equilibrium and operating curves
similar to those in the computer program shown in Table 8.5 of Chapter 8.
Numerical integration would then be effected using Simpson’s rule, for
which a standard subroutine is usually to be found in Fortran subroutine
libraries—alternatively, see Conte (1965).

It should be noted that when reflux is used, the change in L and G
below the feed plate necessitates the determination of separate NTU
values for the column segments above and below the feed—namely,
between points 1 and 2 and between points 2 and 3 for the distillation
operation in Figure 7.4. Similarly, three NTU values are determined when
operating with side streams or multiple feeds—for example, between points
aand b, b and ¢, and ¢ and d in Figure 7.5.

The evaluation of (NTU),,, may be performed in an analogous manner,
noting that x,;—x, is the horizontal distance between the operating line
and the equilibrium curve at a given x 4

The selection of NTU expression for computation is arbitrary, but it is
normally considered appropriate to use that relationship corresponding to
the phase offering the greater resistance to mass transfer. This is the liquid
phase in the case of absorption of rather insoluble gases, and the gas phase
when highly soluble gases are being absorbed.

With regard to distillation, an empirical correlation has been presented
by Yu and Coull (1950) which enables fairly quick estimation of the
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(NTU),¢ from a knowledge of the minimum reflux, the operating reflux,
and the minimum (NTU),,;. A relationship was provided for evaluation of
the latter quantity in terms of the relative volatility, which must be
constant over the column. The correlation also assumed a boiling-liquid
feed. It showed a maximum deviation of 6 percent from a large number of
data.

THE RELATIONSHIP BETWEEN OVERALL AND INDIVIDUAL HEIGHTS
OF TRANSFER UNITS

Equation 4.11 may be rewritten as follows:

G __ G  mG L_
KjaS kjaS L k.aS

(7.60)
so that from equations 7.43 and 7.44 for equimolal counterdiffusion,
(HTU) o= (HTU) o+ < (HTU), (7.61)
Similarly, from equation 4.12,
(HTU),, = (HTU), + mL,G(HTU)G (7.62)

In the case of unimolal unidirectional diffusion, the HTU expressions in
equation 7.54 may be rearranged to give

i asS(l-y,),
+ = (HTU) 5 G" M (7.63)
b d

1 aS(1=y,)m

P (HTU), - (7.64)
1 _ aS(1=x4)im
E;—(HTU)LT (7.65)

Inserting these expressions in equation 4.7 and multiplying throughout
by G/aS(1=y ),

(1=x4)im

1=y )orm (766)

1=y )iam
(HTU) oo = (HTU)G((—I% + 29 (H1U),
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A parallel development using equation 4.8 yields

(l_xA)iLM

(1-x4)oLm

(1 _yA)iLM
(1—x4) 1M

L
(HTU),,=(HTU), + e (HTU)g (7.67)

When the controlling resistance to transfer lies in the G phase,
(1=y)im= (1 =Y4)orm

If the solutions are also dilute,
(I=x)am= 1 =Vi)om

In this special case equation 7.66 reduces to equation 7.61, so that the form
of expression for the two transfer mechanisms becomes identical. Similarly,
when the L phase is controlling,

(l—xA)iLMé (1=x4)m
If the solutions are also dilute,
(1=-y)am= (1=x4) LM

and equation 7.67 reduces to 7.62. The individual HTU’s are not obtain-
able, however, as the slope and intercept of a plot of (HTU),, against
L/m'G [or of (HTU),; against mG/L]. This is because (HTU); and
(HTU), are not independent of the flow rates (Colburn, 1943; Garner,
Ellis, and Fosbury, 1953).

For the operations of gas absorption, stripping, and distillation the
following empirical correlations of experimental data have been presented
by Cornell, Knapp, Close, and Fair (1960, 1960).

For Raschig rings, Berl saddles, and spiral tile,

s 7 \015
0. -
(HTU), =,(Ns,0)"*(¢)( 75 ) (7.68)
For Raschig rings,
1P(Nc )0.5 dc 1.24 Zr 1/3
(HTU)G=—_,—SLW(T2-) (‘15) (7.69)

(51055)
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For Berl saddles,

(HTU),= ]

(7.70)

$(Ng. )™ ( d, )"“( Z,)'“
1

(L) K

where ¢, is obtained from Figure 7.28 or 7.29, C’ from Figure 7.30, and ¢
from Figure 7.31 or 7.32. The necessary flooding velocities are obtainable
from Figure 7.1 and Table 7.1, as described earlier in this chapter. Ng_ ,
and N, ; are the liquid- and gas-phase Schmidt numbers, d_ is the column
diameter in inches, and Z, is the packed height between redistributors in
feet.

16

_{ 1 in centipoises o
hi= 1.005

1.25

1
= (rmerm)

)

¢ indyn/cm

0.8

In the application of equations 7.61, 7.68, 7.69, and 7.70 to distillation,
the following relationship was used to obtain m:

43

m=—————"—->

[T+ (a—-1)x,]
where a is relative volatility and X, is the average liquid mole fraction in
the range of application. The correlation for Raschig rings is considered to
be good for other types of ring except Pall rings, for which it would be
conservative (Eckert, 1963). The Berl-saddle correlation was also found to
fit data for McMahon packing and Intalox saddles. Goodloe and Stedman
packings are not included in the correlations.

No such relationships have been established for liquid-liquid extraction.
The design is effected in such cases by the use of HTU measurements
made in a pilot plant in which the system, packing, and flow rates are the
same as those to be used on the full scale.

Illustration 7.3

A mixture of chloroform and benzene is to be fed at 30 Ib-mole /hr to a
packed distillation column operating at atmospheric pressure. This feed
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Figure 7.28. (HTU), correlation for various-size Raschig rings: 10-ft packed height; less
than 50 percent of flooding (Cornell et al., 1960).

contains 0.45 mole fraction chloroform; a distillate containing 0.95 mole
fraction chloroform and a residue or bottom product containing 0.15 mole
fraction chloroform are required.

The feed will be a subcooled liquid at 155°F, a total condenser will be
used, and reflux returned to the column as a saturated (boiling) liquid at a
reflux ratio of 4 to 1.0. The column will be randomly packed with 1.5-in.
ceramic Raschig rings.
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Figure 7.29. (HTU),, correlation for various-size Berl saddles: 10-ft packed height; less than
50 percent of flooding (Cornell et al., 1960).
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Figure 7.30. Liquid-film correction factor for operation at high percentage of flooding
(Cornell et al., 1960).
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Figure 731. (HTU); correlation for various-size Raschig rings: 10-ft packed height; 1-ft
column diameter (Cornell et al., 1960).
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Figure 7.32. (HTU); correlation for various-size Berl saddles: 10-ft packed height; 1-ft
column diameter (Cornell et al., 1960).

Determine the following:

(a) The amounts of products obtained per hour.

(b) The number of overall gas-phase transfer units, (NTU),,;, required
for the separation.

(c) The flow rates of the liquid and vapor streams within the column,
above and below the feed.

(d) A suitable column diameter.

(¢) The approximate (HTU), in the enriching and stripping sections of
the column, located respectively above and below the feed.

(f) The necessary column height.

(2) The location of the feed point.

(h) The condenser and reboiler heat loads.

SOLUTION (a). An overall material balance gives
F=Bp+Dp, or Dp=30— B,
and a balance on chloroform,
30(0.45) = B,(0.15) + (30— B,) (0.95)
B,=18.75 Ib-mole/hr, D,=11.25 Ib-mole /hr
SOLUTION (b). The molal latent heats of vaporization at atmospheric

pressure are 12,700 Btu/Ib-mole for chloroform and 13,250 Btu/Ib-mole
for benzene (Perry, 1950, p. 218)—i.e., within 4.5 percent of each other.
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The atmospheric boiling points of these pure compounds are within
35°F of each other, so that sensible heat exchanges throughout the column
will be negligible in comparison with the heats of vaporization.

It will be seen also that the heat of mixing of these two liquids is
negligible compared to the heats of vaporization. Accordingly, if heat
losses between the column and its surroundings are small enough to be
ignored, all conditions required for the assumption of constant molal
overflow between consecutive feed and withdrawal points are satisfied, and
straight operating lines are therefore valid for this binary system.

The x,-y, equilibrium curve is shown in Figure 7.33 for atmospheric
pressure (data from Perry, 1950, p. 574). Figure 7.34 shows the boiling-
point diagram, constructed with data from the same source.

Verticals are erected to the 45° diagonal from x aps X4r (= 2,45), and x .
The operating lines for the column sections above and below the feed
intersect on the ¢ line, which passes through the point (x,.,x,,) and has a
slope of ¢/(g—1), where, from equation 7.17,

CALCULATION OF ¢q. Many tabulated data are in mass units instead of
molal units; accordingly,

Molecular weight of chloroform =119.39

Molecular weight of benzene=78.11

Calculation of hy. From Figure 7.34 (Perry, 1950, p. 574) the bubble point
of the feed is 167.5°F, and its dew point is 170.5°F. Taking 65°F as an
enthalpy datum, the enthalpy of the entering feed is

where ¢, is the average specific heat of the liquid feed between 65 and
155°F, and AHj, is the measured heat of solution of chloroform in
benzene at the feed composition and 65°F (AHg, is negative when heat is
evolved on mixing). The value of ¢,r 1s interpolated from International
Critical Tables (abbreviated here to LC.T.) V, 126, (1929) as 36.1 Btu/(Ib-
mole of feed)(°F). The value of AHy, is interpolated from I.C.T. V, 155, to
be —139.8 Btu/lb-mole of feed. Substituting,

hp=36.1(155—65) — 139.8 =3105.2 Btu/Ib-mole of feed
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Calculation of hy.
h=c,; (167.5—65) + AH,,

Here ¢, is the average specific heat of the liquid feed between 65° and
167.5°F. From I.C.T. V, 126, ¢, =36.4 Btu/(Ib-mole of feed)(°F). Substi-
tuting,

h;=36.4(167.5—65) —139.8

=3590.2 Btu/Ib-mole of saturated-liquid feed.

Calculation of H,. From Perry (1950), p. 218,
A, for chloroform at 170.5°F = 12,570 Btu/Ib-mole

Ag for benzene at 170.5°F = 13,490 Btu /1b-mole
Thus substituting in
Hi=y [c,(tc= 1) +N ]+ (1-y,) [es(t6—15) +A5]

where ¢, and c,, are the average specific heats of liquid benzene and
chloroform between 65° and 170.5°F (Perry, 1950, p. 228),

H,=0.45[28.7(170.5—65) +12,570] +0.55[33.6(170.5 — 65) + 13,490]

= 16,380 Btu/Ib-mole of saturated-vapor feed.
Thus

_ 16,380—3105.2

7= 16.380=35902 _ 1039

4 _%s
qg—1

The g line is inserted in Figure 7.33 with a slope of 26.6 and passing
through the point (x, x;).

The operating line for the section of column above the feed plate
intersects the 45° diagonal at x,,=0.95 and intersects the y, ordinate at
X4p/(R+1), where

X4p/(R+1)=095/(4+1)=0.19

First the upper and then the lower operating line is drawn, starting at the
points (x4, x,,) and (x,z, X, z), respectively, and intersecting on the g line.
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From equation 7.43 the NTU,; below and above the feed are obtained
as

" _dy,

NTU elow [€ =
( )OG,bl feed 2 Vir—Va

Ya

VAl dyA

NTU =
( )OG, above feed f Var—Va

Yaf

where y,, is the vapor composition at the level at which the feed is
introduced.

Values of y, and y,, are read from Figure 7.33 for various values of x,
between 0.185 and 0.95, where 0.185 is the composition of the liquid
leaving the base of the column and entering the reboiler. This is evident
from Figure 7.33, where the “step” represents the reboiler in the manner of
McCabe and Thiele (see e.g. McCabe and Smith, 1967, pp. 558-559). The
composition of the condensed liquid distillate is 0.95. When a total
condenser is used, this is also the composition of the vapor leaving the top
of the column. Table 7.2 shows some of the required values.

The quantity 1/(y,, —».) is plotted against y, in Figure 7.35. From
Figure 7.33, y,; is 0.55, assuming that the feed is introduced at the level
corresponding to the intersection of the g line and operating lines. The
area under the curve between y,,=0.2 and y,,=0.55 gives

(NTU ) OG, below feed 5.5

Table 7.2. Quantities used in evaluating (NTU)og in Ilustra-

tion 7.3.
1
X4 Ya Yar YarL—Va VaL—Ya
0.185 0.200 0.254 0.054 18.52
0.3 0.350 0.415 0.065 15.4
04 0.480 0.550 0.070 14.3
0.455 0.550 0.611 0.061 16.4
0.6 0.670 0.755 0.085 11.78
0.8 0.830 0.904 0.074 13.5

0.95 0.950 0.981 0.031 323
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Figure 735. Evaluation of (NTU)y, Illustration 7.3.

Similarly the area under the curve between y,,=0.55 and y,, =0.95 gives

(NTU) OG, above feed — 5.83

The total number of overall gas-phase transfer units needed is 5.5+ 5.83
=11.33.

SOLUTION (¢). From the definition of the reflux ratio R and equations
7.13 and 7.17,

L= RD,=4(11.25) =45 Ib-mole/hr
G=D,(R+1)=1125(4+1)=56.25 Ib-mole /hr
L=RD,+qF=4(1125) +1.039(30) =76.17 Ib-mole /hr

G=D,(R+1)~F(1—q)=11.25(4+1) —30(1— 1.039)

=57.42 1b-mole /hr



Tllustration of Packed Column Design 363

SOLUTION (d). The molal flow rates of L and G are greater below the feed
than above, as are the mass flow rates of L. The mass flow rate of G,
however, is greater at the top of the column than at the bottom. The
approach to flooding will therefore be checked at both the top and bottom
of the column for a selected diameter. Figure 7.33 shows that x,,=0.185
and y ,=0.2. Thus the vapor G, entering the column consists of

57.42(0.2)119.39=1370 1b /hr CHCl,

57.42(0.8)78.11= 3585 Ib/hr C¢Hy

Total=4955Ib/hr = G,

The boiling-point diagram in Figure 7.34 shows that the temperature in the
reboiler is 174.2°F. The volume of G, entering the column per hour is then

57.42(359) ( ﬂ%) —26,550 £t /hr.
so that
_ 4955 _ 3
Por= 3¢ 355 = 0187 b/

L,=76.17 Ib-mole /hr

consisting of

76.17(0.185)119.39 = 1685 1b /hr CHCI,

76.17(0.815)78.11 = 4855 Ib/hr C4H,
Total =6540 Ib /hr =L}

The boiling-point diagram shows the temperature of L, to be 173.5°F.
The density is estimated as
p, =629 Ib/ft>.
Then
/ 0.5 0.5
L (g@) _ 6540 ( 0.187

G, 95 62.9) =0.0719

w

Pra
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Figure 7.1 shows that flooding occurs for this abscissa when the ordinate
reaches a value of 0.16; i.e.,

— 2
(G’ﬂooding/ S ) Fug? ( Pu,0 ) —0.16
PGPLE: Pr

At 173.5°F, p,, is estimated to be 0.33 cP (Perry, 1963, p. 3-199-200). For
1.5-in. Raschig rings, Table 7.1 shows that F,=95. Therefore

1/2

] =32701b/(hr) (t?)

G f100ding _| 0.16(0.187) (62.9)*(4.17x 10%)
S 95(0.33)"%(62.4%0.972)

where 0.972 is the specific gravity of water at 173.5°F. For operation at 60
percent of the flooding rate, .

7

Gsz =0.6(3270) = 1962 Ib/ (hr) (ft?)

The cross section of the column would then be 4955/1962=2.525 ft2, and
the column diameter

4 [42525)\"
L (22220 954
12 T

If a 2-ft-diameter column is chosen, then the column cross section is 7
ft2, and

G2 _ 4955

S T

1579 1b/ (hr) (t2)

This is (1579 /3270)(100) = 48.3 percent of flooding.

Entirely analogous calculations for the top of the column show that a
diameter of 2 ft will lead to 36 percent of flooding in that region.

A 2-ft-diameter column will be selected. Figure 7.1 shows that the
resulting gas-phase pressure gradient will correspond to operation
somewhat below the lower limit of the loading region, at least in the
section below the feed. This is a common operating condition and allows
for some future increase in capacity of the column, while being in the
vicinity of most efficient operation, namely, near loading conditions. The
ratio of packing diameter to column diameter will be 1.5 /24 or {, which is
in the range recommended by Eckert (1961, 1963), who proposes that
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dacxing/ 4, should not be greater than 5 for good liquid distribution. Most
packed distillation columns are small in diameter, because of difficulties in
maintaining effective liquid distribution and in avoiding channeling. Thus
Teller, Miller, and Scheibel (Perry, 1963, p. 18-49) indicate that diameters
usually do not exceed 2 ft, whereas McCabe and Smith (1967, p. 601) state

that they are usually 3 ft or less.

SOLUTION (e¢). HTU values may vary along the column with variations in
physical properties, mass flow rates, and percentage of flooding. Con-
servative estimates of column height should utilize maximum estimates for
the HTU. Since the present example is largely vapor-phase controlling,
attention will be focused on column regions where the HTU,; is highest.
From equation 7.69,

,10:6
(HTUG)boltom of section - [pilLZS/L ]bottom
(HTUG)lop of section [pkzs/L’ ]?o6p

since, for more than 35 percent of flooding, ¥ is approximately constant
for 1.5-in. Raschig rings (Figure 7.31), and variations in p, and ¢ are
minor.

Calculations analogous to those given in part (d) show that, at the top of
the stripping section, p, =74.1 Ib/ft> and L’/ S =2360 1b/(hr)(ft?). Substi-
tution in the above expression shows that the ratio of the HTUj; at the top
to that at the bottom of the stripping section is approximately unity. A
similar result is found for the enriching section of the column. HTU
calculations may accordingly be made using conditions at the foot of each
section.

For the stripping section:

(1 -
h= ( 1008 ) 0.986
0.8
_ (728 _
f3 - ( 22 ) 26
Ng>6=10

¢ =160.5 (Figure 7.31 at 48.3 percent flooding).
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Provision for the redistribution of liquid is made at intervals of 5 column
diameters along the column, so that Z,=10 ft. Substituting in equation
7.69,

160.5(1.0) (2_4)124
[(6540/7)(0.837)(0.986)2.6]>°

(HTU) ;= I
=2.44 ft.

To obtain (HTU),, we need
$,=0.0625 (Figure 7.28 at L,/ S=6540 /1)

C’=0.95 (Figure 7.30 at 48.3 percent flooding)

Z,=10;
M
Sc, L pLD’

p; =0.0033 Poises;
p, =1.008 gm/cm3

D will be estimated by the Lusis and Ratcliff correlation (equation 3.20)
as follows:
From Perry (1963, p. 14-20), molal volumes are obtained as

CHCl;=4:
Carbon 14.8
Hydrogen 3.7

Chlorine 3X24.6=73.8

92.3 cm?/gm-mole
C,H = B:
Carbon 6x14.8=88.8
Hydrogen 6X3.7=222

Benzene ring —15

96 cm®/gm-mole
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Also, p, at 173.5°F (=78.6°C) is 0.32 cP; T=273+78.6=351.6°K. Substi-
tuting in equation 3.20,

2.3

8.52x 1078(351.6 1/3
0, = (1/3 ) 1,4( 96 ) + 26 =5.04x107° cm? /sec
0.32(96)

92.3

This diffusivity applies to very dilute solutions. Although a correction
for variation with concentration could be made by the methods of Chapter
3, this will not be done here because D,, appears to the fractional
exponent 0.5 in equation 7.68, and particularly because this process is
largely vapor-phase controlled. Therefore

0.0033x10° _

Neo , = =
SeL " 1.008(5.04)

From equation 7.68,

(HTU), =0.0625(65)"°(0.95) =0.477 ft

o
m=_—""—""7
[1+(a—1)%,]
where, for the stripping section,
%,=0.5(0.185+0.455) =0.32
The relative volatility is defined as

Yal X4 =yA(l_xA)
ye/xg  x,(1—y,4)

a=0ayp=

where x, and y, are equilibrium values. From the equilibrium curve in
Figure 7.33, when X,=0.32,

0.445(1-032)

- 1704
0.32(1—0.445)

o

1.704

m= 5= 1.136
[1+0.704(0.32)]

It may be noted here that the use of m in this context has been
questioned by Hengstebeck (1961, pp. 235, 246, 249).
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Substitution in equation 7.61 yields the (HTU)y for the stripping
section as

1.136(57.42)

(HTU) =244+ 7617

(0.477) =2.85 ft

Calculations analogous to those in parts (d) and (e) above give the
following results for the enriching section of the column. Values are those
at the foot of this section, denoted by subscript e.

X4,=0455 y, =055
G./S=18101b/ (hr) (ft?), L;/S=13901b/ (hr)(ft?),
(percent flooding), = 41.6 percent
4, =167°F, p, =74.11b/ft?,

f,=0.845, f,=0.804, f,=2.56,
(Nse o) =10, ¢=160.0,

$,=0055, C'=1.0, %,=0.7025,
a=2.145, m=0.66
(HTU) ;=350 ft; (HTU), =044 ft; (HTU),,=3.86 ft.

SOLUTION (f).

Height of the enriching section =5.83(3.86) =22.5 ft
Height of the stripping section=5.5(2.85) = 15.7 ft
Total column height=238.2 ft

Although possible errors of up to 75 percent were noted in the prediction
of (HTU)g, the correlation was rather good in the case of Raschig rings
(see Cornell, Knapp, Close, and Fair, 1960, 1960).

SOLUTION (g). The feed is introduced at a distance of 22.5 ft from the top
of the column—that is, (22.5/38.2) X 100 =58.9 percent of the way down.
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SOLUTION (h). An enthalpy balance on the condenser in Figure 7.3 gives

G,H,=Lh,+D,hy+q,
but

G,=L,+D,=D,(R+1)
qc=Dp(R+1)(Hl_hD)

If heat losses to the surroundings are negligible, an overall enthalpy
balance on Figure 7.3 yields

q,=B,hy+ D,hp, — Fhp+ 4,
All terms for substitution in these expressions will now be calculated.

Calculation of hy,. From Figure 7.34, the bubble point of the distillate D,
is 146.5°F.

The average specific heat of a liquid mixture of chloroform and benzene
between 65 and 146.5°F and at composition D,, is interpolated from I.C.T.
V, 126, as 28.8 Btu/(Ib-mole)(°F).

The heat of solution AHg,, at 65°F and the composition of D,, is
interpolated (I1.C.T. V, 155) as —34.4 Btu/lb-mole of D,. Therefore,

h, =28.8(146.5—65) — 34.4=2312.6 Btu/Ib-mole of D,.

Calculation of H,. From Figure 7.34, the dew point of G, is 152°F.
From Perry (1950), p. 218,

A, for chloroform at 152°F = 12,900 Btu/1b-mole
A, for benzene at 152°F = 13,800 Btu/Ib-mole

The average specific heats of liquid chloroform and benzene between
65° and 152°F are (Perry, 1950, p. 228)

¢,4=28.4 Btu/(Ib-mole) (°F)
¢, =33.4 Btu/ (Ib-mole) (°F)

Substituting in the expression given earlier above for H,,

H,=095[28.4(152—65) + 12,900] +0.05[33.4(152—65) +13,800]

= 15,435 Btu/1b-mole of G,.
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Substituting in the equation for q., the condenser heat load,

q.=11.25(4+1)(15,435—-2312.6)

=739,000 Btu/hr.

Calculation of hg. From Figure 7.34, the bubble point of the residue
product B, is 174.2°F.

The average specific heat of a liquid mixture of chloroform and benzene
between 65 and 174.2°F and at composition B, is interpolated from I.C.T.
V, 126, as 38.65 Btu/(Ib-mole)(°F). -

The heat of solution AHg,, at 65°F and the composition of B, is
interpolated (I.C.T. V, 155) to be —58.1 Btu/lb-mole of B,. Thus

hy=38.65(174.2—65) —58.1=4166.9 Btu/Ib-mole of B,.

Substituting in the equation for q,, the reboiler heat load,

q,=18.75(4166.9) + 11.25(2312.6) — 30(3105.2) + 739,000 = 750,000 Btu /hr

Lllustration 7.4. An aqueous solution of acetone is to be extracted coun-
tercurrently at a rate of 300 1b/hr with 100 Ib/hr of ethyl propionate at
86°F. The solution initially contains 0.40 mass fraction acetone, which is to
be reduced to a finished (solvent-free) concentration of 0.15 (mass frac-
tion).

Determine the number of overall G phase (raffinate) transfer units,
(NTU),, required in a packed extraction column to achieve this degree of
extraction.

If the extraction is obtained in a packed pilot-plant column that is 7 ft
high, what is the height of an overall G-phase transfer unit, (HTU),,, and
also the height equivalent to a theoretical stage (H.E.T.S.) under these
operating conditions?

Transfer is from the G to the L phase.

SOLUTION. Equation 7.54 shows that

_ v (1 =y )omd 4
(NTU)"G‘f TER T

Ya1

but from equation 7.51,

Ya—Var

ln[(l_yAL)/(l_yA)]

(1 _yA)oLM=
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Combination with the above expression for (NTU),; gives

Va2
(NTU)0G=f iz 1—
Vi (1—y,,)x2.30310g(_1_LyAL.)

A

This expression is now used to evaluate the number of overall transfer
units in the G (aqueous) phase, which is where the principal resistance to
transfer lies for this system.

The operating (distribution) diagram of Figure 7.36 must first be con-
structed. The tie-line data and plait point of Figure 4.5, Illustration 4.2,
have been converted to mole fractions of acetone in each phase and
plotted as the equilibrium curve.

The operating line cannot be plotted from equation 7.5, because the two
solvents are partially miscible under these extraction conditions, which are
far from dilute. To obtain the operating curve, the terminal streams G, L,
and G, are located on the triangular diagram, which was first obtained in
Illustration 4.2, and is now reproduced in Figure 7.37. A material balance
on Figure 7.2 gives

G,+L,=G,+L,=3
so that

Rate (G,) 3001b/hr  Length of line L,=

Rate (G,+L,) 4001b/hr ~ Length of line L,G,

This enables the location of Z; the point L, then lies at the intersection
of the binodal curve and the extended line G,Z. In accordance with an
overall balance in Figure 7.2, showing G,—L,=G—L=G,— L,=A, the
lines L,G, and L,G, are extended to intersect at the difference point A.
The fixed location of A for the entire column is readily demonstrated by
successive balances on any two of the three components involved. Random
lines from A intersect the binodal curve at w,, on the water-rich side and
at w,. on the ethyl propionate-rich side. These intersections, when con-
verted to mole fractions, give points (x,,y,) on the operating curve of
Figure 7.36.

Values of y,, and y, are read from the equilibrium and operating
curves, respectively, at various values of x, in Figure 7.36, and Table 7.3 is
constructed. The final column of this table is plotted against y, in Figure
7.38, and the area under the curve between y,,=0.0513 and y,,=0.171 is
measured to be 3.63 units, so that

(NTU) ,;=3.63
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Figure 7.36. The operating (distribution) diagram for the liquid extraction process without
reflux in Illustration 7.4.
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Figure 7.37. The location of A, from which random lines intersect the binodal curve to give
points on the operating curve in Figure 7.36 (Illustration 7.4).
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Figure 7.38. Evaluation of (NTU)yg, Illustration 7.4.

For a column height of Z ft,

z _ _ 1 _
(HTU) 06~ 509y = 363 =193 ft

under these particular conditions of operation.

In contrast with continuous contactors, stagewise contactors utilize
intermittent contact between the phases. The stages often take the form of
horizontal plates or trays of varied design, arranged vertically above each
other in a column. The two phases enter a stage from opposite directions in
countercurrent flow, mix together to facilitate transfer, and then separate
and leave the stage. When the two phases leave in a state of equilibrium
the stage is said to be an “ideal” or “theoretical” one. This concept has
been extended to packed columns by defining the height (of packing)
equivalent to a theoretical stage (HETS) such that the streams leaving this
section are in equilibrium.

The number of theoretical stages to which this packed column is
equivalent is given by the broken-line stepwise construction between the
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Table 7.3. Quantities used in evaluating (NTU),,; in Illustration 7.4.%

_ 1 _yAL) I
X 1 1- 1o _
A Ya YaL Ya Yar g.( T, (1=y,)2.303 log( 1—yar )
-y,

0.0 0.0513 0.00 09487 1.000 0.0220 20

0.075 0.06 0.01 0.940 0.990 0.0222 20.85
0.150 0.07 0.025 0930 0.975 0.0207 22.54
0.225 0.0825 0.041 0.9175 0.959 0.0191 24.73
0.300 0.099 0.062 0.901 0.938 0.0170 28.40
0.375 0.1225 0.090 0.8775 0910 0.0155 31.95
0458 0.171 0.148 0.829 0.852 0.0123 42.65

2All concentrations are mole fractions.

operating and equilibrium curves shown in Figure 7.36 (see, e.g., McCabe
and Smith, 1967, pp. 526-527). This shows that about 3.6 ideal stages are
present, so that

L
3.6

Although in this particular case the HETS and (HTU),; have almost
the same values, this is not generally true. It has resulted on this occasion
because the equilibrium and operating curves of Figure 7.36 are nearly
parallel (Perry, 1950, p. 550).

The HETS varies much more widely than the HTU with flow rates, type
of system, solute concentration, and packing. This is because it represents
the imposition of a fictitious stagewise mechanism upon what is actually a
continuous, differential process. Design in terms of HTU rather than
HETS is desirable for this reason.

HETS= =1.95 ft.

NOMENCLATURE

A, B, C Components 4, B, and C.

A Area; total interfacial area, ft2.

a Interfacial area per unit volume, ft?/ft’.

B, Bottom product, Ib-mole/hr.

C’ Flooding correction factor for (HTU) . at high

gas rates, equation 7.68.
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Constants in equations 7.5 to 7.7.

Average specific heats of components 4 and B,
Btu/(Ib-mole)(°F).

Specific heat of feed, Btu/(lb-mole)(°F).
Average specific heat of a liquid phase, Btu/
(Ib-mole)(°F).

(Volumetric) molecular diffusivity; of A4 in B;
at “infinite” dilution, ft? /hr or cm®/sec.
Molecular diffusivities in the gas and liquid
phases, ft*/hr.

Distillate product, lb-mole /hr.

Column diameter, inches.

Feed, Ib-mole/hr.

Packing factor.

Ratio of liquid viscosity under column condi-
tions to viscosity of water at 20°C.

Ratio of density of water at 20°C to that of
liquid under column conditions.

Ratio of surface tension of water at 20°C to
that of liquid under column conditions.

Flow rate of phase G; between L, and F planes
or below F plane; below F plane, 1b-mole/hr.
Mass flow rate of phase G, lb-mass/hr.
Defined by equation 7.3.

A phase in equilibrium with L*.

A-rich product, 1b-mole /hr.

Reflux; stream that splits to give G, and G,,
Ib-mole/hr.

Side-stream product or second feed, Ib-mole/hr.

Flow rate of phase G at sections 1 and 2,
Ib-mole/hr.

Conversion factor, 4.17 X 108 (Ib-mass)(ft)/(Ib-
force)(hr?).

Enthalpy of gas phase at points just above and
just below the feed plane, Btu/Ib-mole.

Heats of solution at 65°F and the compositions
of B, D, and F, respectively, Btu/Ib-mole of
solution.
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hg, hp, by
hy, hy

HETS
(HTU);, (HTU),
(HTU)og, (HTU),,,

ny &, kX’ ky

KL, K, K, K,

Enthalpies of B, D,, and F, Btu/Ib-mole.
Enthalpy of liquid phase at points just above
and just below the feed plane, Btu/lb-mole.
Height (of packing) equivalent to a theoretical
stage, ft.

Heights of individual G-phase and L -phase
transfer units, ft.

Heights of overall G-phase and L - phase
transfer units, ft.

Overall and individual mass - transfer co-

efficients based on Ax and Ay. as defined in
equation 7.45, 1b-mole /(ft?)(hr).

Overall and individual mass -transfer co-
efficients based on Ax and Ay for equimolal
counterdiffusion, defined in equation 7.39,
Ib-mole /(ft*)(hr). '

Flow rate of phase L; between L, and F planes
or below F plane; below F plane, Ib-mole /hr.

Mass flow rate of phase L, Ib-mass/hr.
Defined by equation 7.4.

A phase in equilibrium with G*.

Leakage rate of cooling water in faulty conden-
ser, lb-mole /hr.

Flow rate of stream leaving C remover (not
Gyg), Ib-mole /hr.

Side-stream product or second feed, Ib-mole /hr.
Flow rate of phase L at sections 1 and 2,
Ib-mole /hr.

Flow rate of stream M, lb-mole /hr or lb-
mass /hr.

Slope of equilibrium curve; see below equation
4.3 in Chapter 4.

Flow rate of stream N, Ib-mole/hr or lb-
mass/hr.

Molal flux of component A4 relative to
stationary coordinates, Ib-mole /(ft?)(hr).
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Schmidt number (u/pD) for a gas; for a liquid.
G,/Ay; Lo/ G,

Number of individual G-phase and L -phase
transfer units.

Number of overall G-phase and L -phase
transfer units.

Flow rate of stream P, lb-mole/hr or Ib-
mass/hr.

(L—L)/F=(H;—hg)/(H;—hy); defined below
equation 7.17.

Condenser and reboiler heat loads, Btu/hr.
Reflux ratio, L,/D,; Go/ G,

Cross-sectional area of empty column, ft*.
Flow rate of open steam, lb-mole /hr.

Absolute temperature, °K.

Temperature of the feed; gas temperature;
datum temperature, °F.

Contacting volume, ft’.

Mole fraction of component A in the L phase;
average over a composition range; in Bp; in Dp;
in L,; in Ly; in L; in L, and L,.

Local equilibrium concentration in the L phase
at the interface, mole fraction.

L-phase concentration which would be in equi-
librium with existing G-phase concentration,
mole fraction.

Mole fraction of component B; in streams M,
N, and P.

Mole fraction of component C; in streams M,
N, and P.

Mole fractions of B and C in L.

Mole fractions of B and C in A,.

Defined by equations 7.50 and 7.52.

Mole fraction of component 4 in the G phase;
at feed plane; in G,; in G,; in G, and G,.
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yi

YaL

Ve Ve

(V8o (Vc)eo
(I=ydam (1 ~Va)om
Z

Z4F
a

A, Ay Ay, A,

I

PG> Pu,00 P

Local equilibrium concentration in the G phase
at the interface, mole fraction.

G-phase concentration that would be in equi-
librium with existing L-phase concentration,
mole fraction.

Mole fraction of components B and C in the G
phase.

Mole fractions of B and C in G,

Defined by equations 7.49 and 7.51.

Column height, ft.

Packed height between redistributors, ft.

Mole fraction of 4 in feed.

Relative volatility, defined in Illustration 4.1.

Difference between flow rates of adjacent
streams at any horizontal plane in a column;
for the column portion between section 1 and
either the F or G, plane; between the G, and F
planes or between the F plane and section 2;
between the F plane and section 2, Ib-mole /hr.

A, and A, for minimum reflux ratio, Ib-
mole /hr.

Latent heats of vaporization for 4 and B,
Btu/lb-mole.

Viscosity of solvent B (as in equation 3.20),
centipoises.

Liquid viscosity, centipoises.

Densities of gas, water, and liquid, 1b-mass /ft*
when used in Figure 7.1; when used in fos py 18
in gm/cm?.

Sum, as defined in equation 7.29; correspond-
ing to conditions of minimum reflux ratio, Ib-
mole/hr.

Liquid surface tension, dyn/cm.

Factor in equation 7.68.

Factor in equations 7.69 and 7.70.
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PROBLEMS

Binary Distillation

7.1 A chloroform-benzene mixture is to be fed at 30 Ib-mole/hr to the
top of a continuous, packed distillation column operating at atmospheric
pressure and with a total condenser. For the column exclusive of the
reboiler it is known that (NTU),; =5 under the proposed conditions. The
feed is a boiling liquid and contains 0.55 mole fraction chloroform. If a
residue product containing 0.15 mole fraction chloroform is obtained, what
will be the composition of the distillate if no reflux is used?
Physical properties are given in Illustration 7.3.

7.2 A boiling liquid mixture of chloroform and benzene is fed at 30
Ib-mole/hr to the reboiler of a packed distillation column operating at
atmospheric pressure. The residue product, feed, and distillate contain
0.25, 0.3, and 0.6 mole fraction chloroform, respectively, with a reflux ratio
of 6. Determine the (HTU),, if the packed height is 12 ft.

73 A mixture containing 0.45 mole fraction chloroform and 0.55 mole
fraction benzene is to be fed to a continuous, packed distillation column
operating at atmospheric pressure. Find the minimum reflux ratio for the
following three feed conditions for a distillate containing 0.95 mole frac-
tion chloroform.

(a) Feed as a boiling liquid.
(b) Feed as 50 mole percent vapor, 50 mole percent liquid.
(c) Feed as a saturated vapor.

If the column operation is converted to total reflux, what is the (NTU) g
in the column if the reflux and reboiler liquids contain 0.95 and 0.15 mole
fraction chloroform, respectively?

7.4 Suppose that in Illustration 7.3 the total condenser is replaced by a
partial condenser, of capacity sufficient to provide the same amount of
liquid reflux while delivering a saturated-vapor product containing 0.95
mole fraction chloroform. This vapor product is subsequently condensed
in a total condenser. The feed will again enter at 155°F, and it will be
assumed that the vapor product and liquid reflux leaving the partial
condenser are in equilibrium. Determine the (NTU),; needed within the
column.

7.5 Suppose that the conditions of Illustration 7.3 are repeated, except
that the condenser is so large that the reflux returns to the column as a
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subcooled liquid at 100°F instead of at its bubble point (146.5°F). The
reflux ratio is again 4. Show that the equation for the operating line above
the feed in this case is

_ RB .+ Xap | B=H_h1_|
Ya= RB+1 T Rg+ 1’ H—h,

where £, is the enthalpy of the cold liquid reflux, and H and h, are the
enthalpies of the saturated vapor and liquid streams close to the top of the
column—approximated for present purposes as H, and A, from Illustra-
tion 7.3. Plot the equilibrium curve and operating lines for these condi-
tions, and estimate whether the (NTU),; is greater or less than was
needed in Illustration 7.3 for the same separation with boiling reflux.

7.6 A mixture of chloroform and benzene is to be fed at 30 Ib-mole /hr to
a continuous, packed distillation column operating at atmospheric pres-
sure. The mixture contains 0.45 mole fraction chloroform, and the feed
will be a boiling liquid. A total condenser will be used, with a reflux ratio
of 5. Three products are required, comprising a distillate, side stream, and
residue containing 0.95, 0.68, and 0.15 mole fraction chloroform respec-
tively. The mole ratio of distillate to side-stream product will be 1 to 1. If
the column is randomly packed with 1.5-in. ceramic Berl saddles, deter-
mine the following:

(a) The amounts of products obtained per hour.

(b) The (NTU),,; required for the separation.

(c) The flow rates of the liquid and vapor streams in all three sections of
the column.

(d) A column diameter such that the maximum approach to flooding is
45 percent.

(¢) The (HTU),; in each section of the column.

(f) The required column height.

(8) The location of the feed and side-stream take-off points.

Physical properties are given in Illustration 7.3.

Gas Absorption and Stripping
7.7 For the SO, absorption conditions described in Prohlem 4.1, estimate

(a) The percentage approach to flooding conditions.
(b) The average individual and overall G- and L-phase HTU values
using the expressions given for k, a and kga with equation 7.54.
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7.8 Pure water will be used to absorb SO, from dry air by countercurrent
contact in a column packed with I-in. ceramic Berl saddles. The gas
mixture will enter the column at a rate of 900 1b/hr, and the partial
pressure of SO, in the inlet and outlet gas streams will be 0.080 and 0.0015
atm, respectively. The water flow rate is to be 35,000 Ib/hr, and the
column will operate at 45 percent of the gas flooding velocity. If the system
s at 68°F and 1 atm, estimate the diameter and height of the column
necessary to achieve the specified absorption.
Equilibrium data for this system are given in Perry (1963, p. 14-6).

7.9 The desorption or stripping of oxygen from water into air in a
countercurrent column packed with 1-in. Raschig rings has been studied
by R. P. Whitney and J. E. Vivian [Chem. Eng. Prog., 45, 323-337 (1949)].
The column diameter and packed height were 8 and 24.5 in., respectively,
and the system was at 62°F and 1 atm. The following measurements are
taken from the authors’ run 4:

% = 4200 Ib/ (hr) (fe?)

?' =355 1b/(hr) (ft2)

O, concn in entering water
=6.97 X 10~ Ib-mole /ft* of soln
O, concn in leaving water

=2.80% 10~ ° Ib-mole /ft* of soln

If the air entering the column was saturated with water vapor, estimate the
(HTU),, under these conditions. Consider dry air to contain 0.21 mole
fraction O,, and obtain equilibrium data for the system from Perry (1963,
p. 14-6).

Liquid Extraction

7.10 A solution of cyclohexane in n-heptane is being extracted counter-
currently at 300 lb/hr in a packed column with aniline at 77°F, using
extract reflux which is effectively solvent free. The feed solution contains
0.6 mass fraction cyclohexane, and the finished (solvent-free) extract and
raffinate products contain 0.80 and 0.30 mass fraction cyclohexane, re-
spectively, when the extract reflux ratio is 3.5. Determine
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(a) The (NTU),,; corresponding to this operation.
(b) The amounts of finished raffinate and extract products.
(¢) The aniline feed rate.

Equilibrium and saturation data for this system are given by T. G.
Hunter and T. Brown, Ind. Eng. Chem., 39, 1343-1345, (1947).

7.11 Estimate the minimum reflux ratio for the extraction conditions of
Problem 7.10.

7.12 Two separate aqueous solutions, F, and F,, are to be extracted
countercurrently in a packed column at 86°F, using ethyl propionate as
extracting solvent. The stream F, is fed to one end of the column at 300
Ib/hr and contains 0.60 mass fraction acetone, while F, is introduced part
way along the column at 400 Ib/hr and contains 0.25 mass fraction
acetone. Both F| and F, are solvent free. Ethyl propionate will be fed at
233 Ib/hr to obtain a final solvent-free raffinate containing 0.15 mass
fraction acetone. Determine the (NTU),,; required in the packed column.
Physical data for this system are provided in Illustration 4.2.
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8

Design of Stagewise Columns
from Rate Equations

Stagewise columns achieve contact between two phases in a discontinuous
manner in stages which may, for example, take the form of bubble-cap
plates or perforated plates. Both types of plate are widely used in gas-
liquid contacting, such as distillation and gas absorption. In liquid-liquid
extraction, the lower density difference between phases and the lower
interfacial tensions cause bubble-cap plates to be ineffective, but
perforated plates are effective and have been widely used.

Skelland and Cornish (1965) have presented a procedure for the design
of perforated-plate extraction columns which is intended to eliminate the
need for experimental determination of stage efficiencies, because these are
normally obtained at substantial cost in time, effort, and money.
Furthermore, the applicability of such efficiencies measured on small-pilot-
plant to large-scale equipment is always an uncertain matter. Skelland and
Cornish’s procedure consists essentially in using rate equations for mass
transfer during droplet formation, free rise (or fall), and coalescence on
each plate, to locate a pseudo-equilibrium curve. This curve is used in
place of the true equilibrium relationship when stepping off the desired

384
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number of actual stages between the pseudo-equilibrium and operating
curves on the x,-y, diagram. Although the treatment is in principle valid
for both gas-liquid and liquid-liquid systems, it is evident that greater
success is to be anticipated in its application to liquid-liquid systems. This
is because the much smaller density difference between phases and the
substantially higher viscosity of the disperse phase cause the flow pattern
to be less turbulent and more nearly predictable for liquid-liquid than for
gas-liquid systems.

An outline and extension of the approach of Skelland and Cornish will
now be given, although it should be recognized that expressions currently
available for some stages of the procedure must be regarded as provisional
only. On the other hand, the method may go a considerable way towards
unifying the various aspects of hydrodynamic and mass-transfer study on
drops into a coherent approach to design from a phenomenological point
of view.

Correlations for plate efficiency in vapor-liquid systems will not be
considered here. For such treatments, including in particular the A.I.Ch.E.
correlation, the reader is referred to the Bubble-Tray Design Manual,
A.LCh.E., New York, (1958), and to the surveys by Smith (1963, Chapter
16) and Oliver (1966, pp. 333-346). ‘

Whereas the two phases in contact have previously been denoted by G
and L regardless of which is dispersed, it is convenient in this chapter to
refer instead to the continuous and the dispersed phases, identified as €
and D, respectively, where € and Di are the flow rates of the continuous
and dispersed phases through the entire cross section of column, total
Ib-mole /hr.

THE PSEUDO-EQUILIBRIUM CURVE

Consider the nth stage of a perforated-plate column, as shown in Figure
8.1.

For transfer into the disperse phase and with y,. constant for a given
stage because of the mixing provided by the moving droplets, the rate of
mass transfer in the nth stage is

q= deAf( Yaeyn _yAf) imt KA, ( Yaein “Yadimt KA (Vie.n —Yac)im

(8.1)

which is the sum of the transfer rates during droplet formation on plate »,
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Coalesced Y Phase
(predictable thickness)

Plate n + 1
%
-———r——y
A n+|
Plate n
——=—-y
An
Downcomer ——»
Figure 8.1. Plates n+1and nin a perforated-plate column.
free rise, and coalescence beneath plate 7+ 1. Now
(yae;n _yAf)LMi (Yae.n=Yan) (8.2)
(yA@,n_yAc)LMé()’h[@,n_yAn+l) (8.3)

and if D does not vary significantly over stage n, then

(Vien=Yan) = (Vaein—Yins1)

(y e n_y r) = (8'4)
e AT ln[()34e5n—YAn)/(YAe-,n“J’AnH)]
These approximations may be inserted in equation 8.1, giving
(yAGvn _yAn) - (yA@ n —yAn+1)
q=KdA (y G,n_y n)+KdrAr - -
S AG 4 I [(Vae,n=Yan)/ (Vaeon=Yans1)]
+chAc()j4€,n_yAn+l) (85)

If it is assumed that only solute (4) is transferred or that solute transfer
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is accompanied by equimolal countertransfer of solvents between phases,
then

4=, 1 Van+1 OnVan (8-6)

and from material balances, if D enters the column at section 2,

1—y4
=9 —== 8.7
:Dn 2 l_yAn ( )
1-y4
D,41=D; l—yAA 1 (88)
n+

Suppose that A, 4,, A, Ku Ky and K, can all be predicted. A
trial-and-error procedure can then be used for estimating y,,,, corre-
sponding to a given pair of y,, and y e , values in the following manner:

1. Assume a value of y,,,, corresponding to a selected pair of y,, and
Ve, Values in Figure 8.2.

2. Calculate®, and D, corresponding to y,, and the assumed y 4,4

3. Calculate ¢ from equations 8.5 and 8.6.

This process is repeated, if necessary, until the two estimates of g are in
agreement, signifying that the assumed value of y,,., is correct. The

E quilibrium
Curve
Pseudo -
. Equilibrium
Curve
y, ——— s
Agn /
4 Operating Curve
yAm»l—_—_ -
=1
n y Actual Stages
/

XA

Figure 8.2. Location of the pseudo-equilibrium curve and determination of actual stages.
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pseudo-equilibrium curve may be constructed in this way and used with
the operating curve to step off the number of actual perforated plates
necessary to achieve the desired composition change from y 42 0y 4. (The
operating curve is located in the manner described in Chapter 7.)

Relationships available for estimating the various interfacial areas and
coefficients in equation 8.5 will now be reviewed for the case of liquid-
liquid systems.

ESTIMATION OF INTERFACIAL AREA DURING DROPLET FORMATION

If a drop is assumed to grow as a sphere, the total integrated time-average
surface during formation, with n, perforations per plate, is

ng, 17
A== [adr (8.9)
s Jo

If d, and d, are the diameters of the perforation and of the drop at time
1, and u, is the average velocity through the perforation, then a at ¢ is 7nd?,
and the drop volume at ¢ is 7d?u,t /4= nd? /6. Therefore,

2d?

t 2
dt=Tdd,, tf=§

o "o

3
4

2
do u,

in which d,=d, when = t;. Combining these expressions with equation 8.9,
Aav= %”077de: %Ad (810)

where 4, is the total surface of n, drops at detachment. The term A, in
equation 8.5 is then equal either to 4, or to 2 A4 4 depending upon whether
the selected coefficients are based upon the final drop surface at detach-
ment or upon the integrated mean surface during growth.

Estimates of the drop diameter at detachment, d,, may be made from
several alternative relationships, most of which have appeared since 1950,
although disagreement between the various expressions is often substantial.
Harkins and Brown (1919) neglected kinetic and drag forces in their
analysis and developed an expression for predicting the static drop volume
(ie., for drops formed very slowly). However, in many practical applica-
tions, the flow rates have significant magnitudes, with the result that
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kinetic and drag forces may become appreciable. Correlations under such
conditions have been presented by Hayworth and Treybal (1950); Siemes
(1956); Ueyama (1957); Null and Johnson (1958); Poutanen and Johnson
(1960) (for gas bubbles in liquids); Rao, Kumar, and Kuloor (1966);
Scheele and Meister (1968); Miss Anjali Basu (1970); Heertjes, de Nie, and
de Vries (1971); de Chazal and Ryan (1971); Izard (1972); and Skelland
and Raval (1972) (for power-law non-Newtonian systems). An excellent
review of the available literature on droplet and bubble formation has been
published by Kumar and Kuloor (1970).

Unfortunately, in spite of these extensive investigations, the correlations
show areas of disagreement, and the expression presented by one inves-
tigator often fails to fit the experimental data of another. Thus the
equation of Hayworth and Treybal fitted their 639 measurements with an
average deviation of 7.5 percent, but predicted drop sizes larger than those
found by Ruby and Elgin (1955) in multinozzle systems undergoing mass
transfer and with countercurrent flow. Furthermore, when compared with
24 sets of measurements by Null and Johnson (1958), Hayworth and
Treybal’s equation revealed deviations exceeding 100 percent for one-third
of the sets, with a maximum deviation of 377 percent. A maximum error of
94 percent was also found by Null and Johnson (1958) between their
measured values and their own model. Neither the equation of Hayworth
and Treybal (1950) nor the procedure of Null and Johnson (1958) fitted
the measurements of Rao, Kumar, and Kuloor (1966), who accordingly
provided their own trial-and-error procedure. Miss Basu (1970) compared
her extensive measurements of drop size in a variety of systems with the
correlations of Hayworth and Treybal (1950); Null and Johnson (1958);
Rao, Kumar, and Kuloor (1966); and Scheele and Meister (1968). She
concluded that none of these relationships adequately fitted her experi-
mental data. de Chazal and Ryan (1971) found their measurements to be
overestimated by more than 50 percent in some regions by Scheele and
Meister’s correlation. '

It may be noted that Hayworth and Treybal (1950) varied the interfacial
tension by use of the hydrophobic surfactant Alkaterge C, while Rao,
Kumar, and Kuloor (1966) used the hydrophilic agent Lissapol. Skelland
and Caenepeel (1972), however, have shown in related mass-transfer stud-
ies that the influence of surfactants during drop formation is highly
specific and more complex than previously realized. Apparently the use of
surface-active agents in drop formation measurements could lead to corre-
lations suited only to the systems studied.

The correlation of drop size by Scheele and Meister (1968) is as follows
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Figure 83, The Harkins and Brown correction factor F for use in equation 8.11 (Scheele
and Meister, 1968).

for short nozzles in the nonjetting region (u, <u,):

Wogc do 51”’"’0 d03 uo P4 d02 ug
v, = -
? ghe  dXkhp 4glp
2 1/3

du

45 %o 8.11
+4. w P408, (8.11)

The drag term (containing p_) may be neglected when . is less than 10
cP, and the Harkins and Brown correction factor F is read from Figure
8.3. Equation 8.11 showed an average error of 11 percent in correlating
measurements from 15 liquid-liquid systems. The data covered a range of
interfacial tension from 1.8 to 45.4 dyn/cm and included two systems in
which mass transfer was occurring.

At nozzle velocities somewhat greater than those for which equation 8.11
was developed a “jetting velocity” is reached, above which drops form
from the break-up of a jet issuing from the nozzle. Scheele and Meister
(1968) present the following equation for prediction of the “jetting veloc-
ity” in a given system:

1/2
d") (8.12)
7 .
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The authors propose a brief iterative procedure in which a preliminary
estimate of d, is given by d,=(6Fog.d, / glAp)'/3; this is used for a first
estimate of u, from equation 8.12; d, is then recomputed from equation
8.11 using u,=u,; finally u, is recalculated using this second estimate of

d,.
I4
The number of perforations per plate is given by
40,2
ng= 8.13
0 7T dozua ( )

where Q,, is the volumetric flow rate of disperse phase entering the
column (ft? /hr); u,/3600 is normally selected to be between 4 and 1.0
ft/sec; and 12d,, the perforation diameter, is usually chosen as } to § in,,
with the smaller diameters used for higher-interfacial-tension systems. The
perforations are commonly located on either a square or a triangular pitch
of 4 to 3 in.

ESTIMATION OF INTERFACIAL AREA DURING DROPLET RISE

The interfacial area A, associated with the rising drops between two
consecutive plates, may be estimated from the expression

_ (AO"'AD) (H - hc)q)d
" volume per drop

(surface area per drop) (8.14)

where ¢, is the disperse phase hold-up, A, and A, are the cross-sectional
areas of the downcomer and of the entire column, respectively, H is the
vertical distance between plates, and A, is the thickness of the coalesced
layer. Procedures are now described for the evaluation of each of the terms
in equation 8.14.

Disperse-Phase Holdup ¢,

The disperse-phase holdup ¢, is the fraction of column active volume
occupied by the disperse phase, exclusive of the coalesced layer, and with
the active volume defined to exclude the downcomer. The value of ¢; is
obtainable from a finding by Beyaert, Lapidus, and Elgin (1961) and by
Weaver, Lapidus, and Elgin (1959) that, for all fluid-particle systems in
vertical motion, whether gas-solid, liquid-solid, or liquid-liquid,

',:—j=fs(¢d) (8.15)
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This indicates that the ratio of the slip velocity u, to the terminal velocity
of a single particle in a quiescent fluid, u,, is a single or unique function of
disperse-phase holdup. The slip velocity is the net linear velocity between
the two phases; it is the relative velocity which would prevail if each phase
were constrained to flow through that fraction of column cross section
equal to the volume fraction of the phase under consideration. In a
countercurrent spray column the slip velocity is
u=dy Y (8.16)
¥ 1- ¥
where the superficial velocities u, and u, for the continuous and disperse
phases are based on the empty-column cross section. In the case of a
perforated-plate column, u, is taken to be zero because the continuous
phase flows horizontally across the plate and does not affect the holdup.
The value of u, is then based on the column cross-section excluding the
downcomer.
It was found that the function in equation 8.15 can be established from
the correlation given by Zenz (1957) for the fluidization of solids, as shown

in Figure 8.4.
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Figure 84. Correlation for fluidized solids by Zenz (1957).
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The procedure for estimating ¢, may be itemized as follows:

1. Estimate the equivalent drop diameter d, from equation 8.11 and
evaluate the abscissa in Figure 8.4.

2. Obtain the ordinate in Figure 8.4 corresponding to an assumed ¢,
and hence calculate u, appropriate to a solid particle of the same density
and diameter as the disperse liquid droplets.

3. Determine u, (=u, at ¢,=0) for the same hypothetical solid particle
from Figure 8.4.

4, Calculate u,/u, corresponding to the assumed ¢,.

5. Evaluate u, for a droplet of disperse phase with the diameter esti-
mated in step 1 above. This is done with the Johnson and Braida or the
Klee and Treybal correlation, to be described.

6. Compute u, for the two liquid phases corresponding to the assumed
¢, by combining the results of steps 4 and 5 above.

7. Calculate u¢, from step 6.

8. Repeat steps 2, 4, 6, and 7 above for other assumed values of ¢,, and
plot u,¢, against ¢,.

9. From equation 8.16 with u,=0, obtain u,¢,=u,, which is known. This
permits the evaluation of ¢, from the plot in step 8; u, may then be
computed.

A simpler, but supposedly more approximate, procedure utilizes a re-
lationship proposed by Thornton (1956):

u,=u, (1~ ¢,) (8.17)

Combination with equation 8.16 (u.=0 for a perforated-plate column)
gives

Uy
u,(1—¢d)=j¢—d (8.18)

Whether to use the simpler procedure for the estimation of ¢, depends
on the accuracy desired. In any event, Garner and Skelland (1955) showed
that minute amounts of certain surface-active impurities can halve the
terminal velocity of a given droplet in another immiscible liquid. Such
impurities may often be present in recycled solvent, and since both
methods of calculation of ¢, require an estimation of u,, it is by no means
clear which procedure conforms more closely to a real situation.

Droplet Terminal Velocity u,

The droplet terminal velocity u, is needed for evaluating ¢, and may be
obtained from the correlation due to Hu and Kintner (1955) as modified
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by Johnson and Braida (1957) for continuous phase viscosities up to about
30 cP. Their empirical relationship appears in Figure 8.5 as a plot of

CDNWeN}(’“S

Re
073 Versus — =
( p/ IJ«H,O) Np
where
dup.
Ng = pu’ (8.19)
4Nz, _ plo’g:
= R (8.20)
3CpNw. sgplp
4Apd,g
Cp =drag coefficient= ”2 (8.21)
DUy
d,u?
Nyo= % (8.22)

An alternative set of equations for evaluating u, is obtainable from the
expressions of Klee and Treybal (1956), which may be written in Ib-mass-
ft-hr units as

53,000Ap0.58dp0.70

% pf'“p,f‘“ > d,<d, (8.23)

_ ST180° %1% (0g,) ™"

u
4 0.55 >
P

a 725\/ % (8.25)
PV gheNg '

The onset of oscillations with larger droplets causes a maximum to
appear in the plot of u, versus d, in a given liquid-liquid system. This
occurs at the transition value of the drop diameter given by equation 8.25
and also at the abscissa value indicated in Figure 8.5. These relationships
enable the estimation of u, with an accuracy within about 10 percent for
d,<d,, and about 15 percent for d,>d,, provided that the system is free
from surface-active agents, which normally reduce the terminal velocity.

d,>d

¢ 43

(8.24)
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Figure 8.5. Correlation of terminal velocities of single droplets in liquid-liquid systems. This
modified Hu and Kintner plot was presented by Johnson and Braida (1957) and shows data
on organic-solvent and mercury drops falling in water and in aqueous glycerol solutions.

Downcomer and Column Cross Sections, A, and 4,

The average velocity in the downcomer, u,, is customarily set equal to the
terminal velocity of some arbitrary-size, small droplet of the disperse
phase, say 12d,= 1 in., so that u, may be calculated from equation 8.23.
The cross- sectlonal area of the downcomer, 4, is then found from the
equation

(8.26)

where Q_, is the volumetric flow rate of the continuous phase entering the
column, in ft* /hr.
The area of the entire column cross section, 4, is the sum of the areas
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of the perforated zone, the two downcomers (because the plate section
opposite the inflowing downcomer is left blank, or free from perforations),
a narrow blank strip along the edge of the outflowing downcomer, and a
narrow peripheral ring for fitting the plate to the column. The area of the
perforated zone, A, 1s obtainable from equations cited by Fair (1963) as
follows:

When perforations are on an equilateral triangular pitch,

N2
ngm(pitch)
Ap= 3o (8.27)

and when perforations are on a square pitch,

_ now(pitch)2

Ape 3.14

(8.28)

Height of Rise, H-h,

The height H between the upper surfaces of consecutive plates is specified.
Usually H is between 4 and 2 ft, and for large columns about 11 ftis
common. The thickness of the coalesced layer, k., may be calculated from

an expression given by Major and Hertzog (1955) which takes the follow-
ing form in the present system of units:

-2

= 0521 X100, ud 42 uZpd( 071 )
¢ Apd 2g8p log N,

, 0592 10~ %2 p,
Ap

(8.29)

where h_ is measured from the top surface of the plate when the lighter
liquid is dispersed—in other words, h, includes the plate thickness. The
first term in equation 8.29 makes empirical allowance for the influence of
interfacial tension, and the second and third terms represent the orifice
effect and frictional effects in the downcomer, respectively. An alternative
procedure for the estimation of 4, has been provided by Bussolari, Schiff,
and Treybal (1953).

Droplet Surface Area

The volume per drop is needed in equation 8.14, and it may be estimated
from equation 8.11. During free fall, non-oscillating droplets assume a
shape which may be approximated by an oblate spheroid with the major
axis oriented horizontally. [Sustained oscillations are apparently initiated
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when the Weber number d,u;p,/og, reaches a value of 3.58 (Hu and
Kintner, 1955; Basu, 1970, p. 86).] The surface area of an oblate spheroid
may be conveniently expressed in terms of eccentricity and droplet vol-
ume. The relationship is provided by Heertjes, Holve, and Talsma (1954)

as
30, E
_ P
Sos 2'rr( o )

The eccentricity of the non-oscillating droplets is obtainable from the
correlation given by Wellek, Agrawal, and Skelland (1966):

d.12p 098 0.07
E=1.0+0.093(—”Lﬁ) ("—) (8.31)

2/3

I+ — —In(E+VE -1 )] (8.30)

EVE*—1

c By

This relationship fitted 198 experimental measurements on 45 systems
free from surface-active agents with an average absolute deviation of 6
percent over a droplet Reynolds-number range of 6 to 1354, The ratio of
the area of an oblate spheroid to that of a sphere of equal volume is
(Garner and Tayeban, 1960, p. 479)

S
Dos _1p234 1

S 2EVAVE -1

At eccentricities of 1.5, 2, 2.5, and 3, the above ratio is approximately
1.031, 1.095, 1.17, and 1.26, respectively. It is evident, therefore, that
realistic distortion of the drops leads to significant increases in the surface
between phases during free rise.

The term A, is calculated from equation 8.14 using either S or Soe
depending upon whether the selected coefficients are based on the surface
of a sphere having the same volume as the drop or on the surface of an
oblate spheroid.

In(E+VE—1) (8.32)

ESTIMATION OF INTERFACIAL AREA DURING DROPLET COALES-
CENCE

The interfacial area available for mass transfer during droplet coalescence,
A,, will be defined as the plane interface between the continuous phase
and the coalesced disperse phase; A4, is accordingly expressed as

A=Ay~ Ay (8.33)
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ESTIMATION OF THE OVERALL TRANSFER COEFFICIENT DURING
DROPLET FORMATION

In an early approach, Licht and Pansing (1953) simplified the drop surface
to a plane, and considered the process to be continuous-phase controlled.
Their resulting relationship has been written by Treybal (1963) as

0.805( p D,
* - -—
K=K ( M)d\/ . (8.34)

where K is based on the integrated average surface during drop forma-
tion, given by equation 8.10. The overall mass-transfer coefficient during
formation is, of course, compounded from the individual coefficients for
the disperse and continuous phases by means of equation 4.7. This equa-
tion assumes local equilibrium at the interface; m is the slope of the
equilibrium curve, dy,/dx,, and may vary with composition. Measure-
ments by Garner and Skelland (1954) exceeded equation 8.34 by an
average of 50 percent, but the data included the effects of drop detach-
ment. In this regard, Popovich et al. (1964) contend from experiment that
negligible mass transfer occurs during drop detachment. This conflicts with
Licht and Conway (1950), who concluded from their measurements that
the effects of formation and detachment on mass transfer are about equal.
The question is currently unresolved.

Relationships for the Individual Disperse-Phase Coefficient

In one approach the droplet surface is considered to grow by the addition
of fresh elements to the surface. Analyses along these lines have been made
by Groothuis and Kramers (1955), Beek and Kramers (1962), Heertjes and
de Nie (1966), Calderbank and Patra (1966), and Skelland and Hemler
(1969). In another approach, the droplet surface is thought to increase by
the stretching of existing elements already at the surface. Developments on
this basis are given by Beek and Kramers (1962); Angelo, Lightfoot, and
Howard (1966); Heertjes and de Nie (1966); and Angelo and Lightfoot
(1968).

Heertjes and de Nie (1966) compared theoretical relationships corre -
sponding to each mechanism with their experimental results and concluded
that the expressions based on growth of the surface by the addition of
fresh elements fitted their data best. In contrast, Angelo and Lightfoot
(1968) considered their results to be well represented by expressions
resulting from the surface-stretch model. Other relationships have
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appeared, and these have been reviewed by Skelland and Cornish (1965).

Heertjes, Holve, and Talsma (1954) applied Higbie’s (1935) penetration
theory to molecular diffusion into a droplet growing uniformly and spheri-
cally about a point and at a rate much greater than the rate of diffusion.
Their expression has been given as (Perry, 1963)

24 (P D,
«_24(FP Zd 8.35
kdf 7 ( M )av ’/'Tff ( )

Equation 8.35 fitted measurements by Johnson and Hamielec (1960), but
not those by Heertjes et al. (1954) or by Popovich, Jervis, and Trass (1964),
who found Tlkovic’s (1934) expression to agree best with their results, as

follows:
* _ _p_) —a
kdf—1.31( M avthf (8.36)

Additional expressions are found in the references cited above, and also
in the papers of Sawistowski and Goltz (1963), Zheleznyak (1967), and
Coulson and Skinner (1952). As an example of an analysis based on the
assumption that the surface of a growing droplet is extended by the
addition of fresh surface elements, one may consider the following treat-
ment by Skelland and Hemler (1969). It will be assumed that:

1. The drop grows spherically about a point source.

2. The concentration driving force remains constant throughout drop
formation at Ay 4.

3. The fresh surface elements continually added to the growing surface
are subject to mass transfer in accordance with the penetration theory.

The solute transferred during the formation of a single drop may be
expressed as

7
gy = kmd2Dy 1, =Dy 4 fo k¥ads

50 that the average mass-transfer coefficient during drop formation, based
on the drop surface at detachment, is

5=
2
nd%,

i
kiadt (8.37)

S
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k”"':z(%)avvw(;)“i:) (8.38)

where each fresh element arriving at the surface at time ¢ is exposed for a
time £, —t. Relationships stated below equation 8.9 show that

From assumption 3,

2/3

1/3
-4l —ad?l L
é d"(tf) e ”d”(tf) (839

Combining equations 8.37, 8.38, and 8.39 leads to

~1/2
ARy (o= T\
T M)W N )\ ¥ g

Defining z=1/1,

* _ .ﬂ) & 1o N2 273
k3 2(M Nar -7 ere (8.40)

The definite integral in equation 8.40 is a standard form of the beta
function, which is in turn composed of gamma functions in the following
general manner (Jenson and Jeffreys, 1963, pp. 154, 157):

ﬂ(p’q)=2&;;)‘41(;)=£1.o(1_2)q_12p_]d2 (8.41)

where p and ¢ are positive. Comparison between equations 8.40 and 8.41
shows that p=3, g=1, and therefore,

r'3)ra)

(5 (8.42)

1.0
=273,y

The right-hand side of equation 8.42 was evaluated from tabulated
values of the gamma function in the manner described by Jenson and
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Jeffreys (1963, p. 152). The result may be stated in the following forms:

. i) Dy, _24 (L) D,
k% 2.957( )\ =7 (0.8624) | 47 N (8.43)

The second form of equation 8.43 facilitates comparison with the re-
lationship of Heertjes, Holve, and Talsma in equation 8.35. It would
appear that the above development is applicable to either the disperse or
the continuous phase when appropriate physical properties are used.

The coefficients k}; in equations 8.35 to 8.43 are based on A4, rather than
A,,, and do not include effects of drop detachment from the nozzle.

Correlation of Experimental Data

Mass-transfer rates during drop formation were measured by Skelland and
Minhas (1971) in one binary and two ternary systems which were disperse-
phase controlled. The systems were ethyl acetate-water, acetic acid-
chlorobenzene-water, and acetic acid—carbon tetrachloride + Nujol-water,
with water as the continuous phase in the ternary systems and the disperse
phase in the binary system. Solute diffused into the drops in the first
system and out in the other two. Drops formed simultaneously on three
thin-walled glass nozzles set on 3-in. triangular pitch. The measured
mass-transfer rates—which included the effects of droplet detachment—
were higher than predicted by the theoretical models of Heertjes et al.,
Skelland and Hemler, Coulson and Skinner, Groothuis and Kramers, and
Ilkovic, and were empirically correlated using least-squares statistical
techniques by the equation

d 5 0.089 d2 —-0.334 —0.601
p uo 4 M’d
k;;,=0.0432—”(—) (——) ( ) (————) (8.44)

This expression correlated 23 measurements with an average absolute
deviation of about 26 percent. The coefficient is based on A,.

Relationships for the Individual Continuous-Phase Coefficient

For the continuous-phase coefficient during droplet formation, an expres-
sion has been obtained by assuming the droplet to grow away from a fixed
orifice, instead of around a fixed point. The result, due to Michels and
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Pigford, is in the form of a coefficient based on A, and has been stated as
(Perry, 1963)

in=a6( L) /2 (8.45)
of . M av W{{ B

This relationship, however, gives a rate roughly 3 times greater than that
found both experimentally and theoretically for gas bubbles by Calder-
bank and Patra (1966). Their analysis was in terms of growth of the bubble
surface by the addition of fresh surface elements.

Correlation of Experimental Data

A study similar to that resulting in equation 8.44 was performed by
Skelland and Hemler (1969), but using three ternary systems in which mass
transfer was continuous-phase controlled. The systems were as follows, in
the order solute—disperse phase—continuous phase: acetic acid—-water—toluene,
benzoic acid—chlorobenzene-water, and acetic acid-water—benzyl isopentyl
ether. Transfer was from the disperse to the continuous phase throughout.
Three nozzles were used, as in the work of Skelland and Minhas (1971,
and their 20 data points were correlated with an average absolute deviation
of 11 percent using statistical techniques by the equation

0.5 0.407 2 0.148
P\ (D P98. 8y
"‘=0.386(—) — (—) — 8.46
o M ( 4 ) Dpgti, d, (8.46)
The coefficient in this expression is based on 4, and includes the effects
of drop detachment from the nozzle.

ESTIMATION OF THE OVERALL TRANSFER COEFFICIENT DURING
DROPLET RISE

Relationships are here presented for the disperse- and continuous-phase
coefficients in turn, corresponding to a variety of hydrodynamic conditions
and with various distributions of mass-transfer resistance.

Relationships for the Individual Disperse Phase Coefficient

The coefficients here are for use with driving forces expressed as mole
fractions, to be consistent with equations 8.5 and 8.6. Consider a balance on
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component A4 diffusing into a spherical droplet that is rising vertically
during time df:

2 Wd; P
knd2 (v —ya)di=—g-( 7). (847)

Integration is facilitated by considering y3 constant at its average value
between sections a and b, giving

d(p YE=Vaa Vb Vaa
kdr= — =\ T ln ¥ - ¥
6t\ M /ay Vi Yaa Y4 Vaa

or

d
__>(r _
k, = 6t(M)avln(l E) (8.48)

where E; is the fractional extraction in time ¢. Analytical expressions have
been developed for E; for a variety of situations, namely, when the droplets
are internally stagnant, internally circulating because of the frictional drag
of the continuous phase, and oscillating with partial internal circulation.
The expressions have been developed with and without finite resistance in
the continuous phase in each case, and the analytical results have some-
times been approximated by simpler empirical equations. The results
appear in Table 8.1, where equation 8.49, for example, arises from com-
bination of equation 8.48 with E; obtained from equation 2.86.

The penetration theory has been applied by Rose and Kintner (1966)
and Angelo et al. (1966) to the stretching and contracting surfaces of
oscillating drops. Patel and Wellek (1967), however, contend that the
results of these analyses are not significantly different from equations 8.56
and 8.57 for oscillating conditions in Table 8.1.

Correlation of Experimental Data

Skelland and Wellek (1964) made extensive measurements of kJ for
nonoscillating and oscillating droplets in four binary liquid-liquid systems
where the continuous-phase resistance was virtually zero. The values were
correlated by statistical analysis after equations 8.49, 8.53, and 8.56 were
shown to be inadequate for fitting the data. The discrepancy between these
equations and the experimental results may relate to the simplifying
assumption of spherical drops and to the unknown degree of internal
circulation or oscillation in the droplets (Garner and Skelland, 1951, 1954,
1955; Garner, Skelland, and Haycock, 1954).
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For nonoscillating drops with internal circulation, Skelland and Wellek
(1964) correlated their 115 measurements on four binary systems with an
average deviation of =+ 34 percent as follows:

—-034 0.37

D 4D P —0.125 d usz X
k;,=31.4_d(£) a Pa pYs P, (8.58)
d M av dpz pdDd Ogc

P

For oscillating drops their results were statistically correlated with the
equation

D 4Dt —0.14 du 0.68 33 9 0.10
Spc crc
k=ont(2) (=4 ( ? ) ong) (8.59)
? av\ & B gulp

Equation 8.59 was subsequently shown by Brunson and Wellek (1970)
to be the best of 12 alternative relationships for oscillating droplets,
because it fitted 110 data points from three systems with an average
absolute deviation of 15.6 percent. The measurements corresponded to an
interfacial tension range of 3.5 to 21 dyn/cm.

Table 8.1 and equations 8.58 and 8.59 provide coefficients k¥ which
are based on the surface area of a sphere having the same volume as the
drop.

Relationships for the Individual Continuous-Phase Coefficient

The coefficients will be written in forms suitable for use with driving forces
expressed as mole fractions to ensure consistency with equations 8.5 and
8.6. Expressions are again available for stagnant, circulating, and oscillat-
ing drops. Theoretical developments are well reviewed by Calderbank
(1967), but k* equations will be presented here in empirical terms to
conform more closely with experiment.

Correlation of Experimental Data

It seems likely that k* will be modified more than kj. by interaction with
adjacent droplets, but information on such effects is fragmentary. Empiri-
cal correlations of expperimental k2 values are given in Table 8.2 for
various droplet conditions and degrees of interaction. Equation 8.60 is a
special case of 8.61, which showed an average deviation of less than +2
percent from 100 measured values. The maximum deviation between
equation 8.64 and 24 data points from three systems was * 12 percent. No
error estimates are available for equations 8.62 and 8.63.
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With the exception of the oblate spheroidal drop, the coefficients kX in
Table 8.2 are based on the surface area of a sphere with the same volume
as the drop.

ESTIMATION OF THE OVERALL TRANSFER COEFFICIENT DURING
DROPLET COALESCENCE

Although mass transfer during droplet coalescence has received only
preliminary theoretical attention, two recent correlations of experimental
data are available for k¥ and k* respectively.

Relationships for the Individual Disperse Phase Coefficient

In a preliminary analysis, Johnson and Hamielec (1960) regarded each
drop as spreading over the entire coalescence surface in a uniform layer, to
which Higbie’s (1935) penetration theory may be applied, giving

. _ _P_) Da
ki 2(M avvmf (8.65)

The term ¢ in equation 8.65 assumes transient transfer between the
arrival of consecutive drops.

Correlation of Experimental Data

Mass-transfer rates during drop coalescence were measured by Skelland
and Minhas (1971) and were in general lower than predicted by equation
8.65. The results, which were obtained with the same three systems and
triple nozzle equipment used to develop equation 8.44, were statistically
correlated by the expression

—1.115 2 1.302 2 0.146
k2 =0.173i(i) ( Ha ) Aped; l (8.66)
¢ tf M av pdDd 08, Dd

The average absolute deviation between equation 8.66 and 23 data
points was 25 percent.

Relationships for the Individual Continuous-Phase Coefficient

Correlation of Experimental Data

Skelland and Hemler (1969) performed an experimental study similar to
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that leading to equation 8.66. The triple-nozzle equipment and the three
ternary systems investigated were the same as those used to develop
equation 8.46. Statistical correlation of their 20 measurements was
achieved with an average absolute deviation of 22 percent by the equation

0.525

0.5 0.332
D u d’p.ps¥;
* 5959 10-4(%) ) (B (2 (8.67)
av f gl P08,

EFFECTS OF SURFACE-ACTIVE CONTAMINATION

Trace amounts of surface-active impurities, unknown in structure and
concentration, are frequently present in commercial equipment. This leads
to difficulties in interpreting the performance of such plant in terms of
experimental and theoretical studies on drops. Garner and Skelland (1956),
Garner and Hale (1953), and others have shown the rate of mass transfer
to be very substantially reduced by the presence of such impurities,
because they accumulate at the interface between the disperse and con-
tinuous phases. This inhibits circulation within the drops, changes the
pattern of droplet oscillation, sets up mechanical barriers to transfer across
the interface, and modifies the shape of the drops.

The formulation of generalized expressions to account for these effects is
prevented by their specific dependence upon the structure and concentra-
tion of the surface-active contaminant. In a preliminary and tentative
attempt to find some guidance on this matter, however, one may note that
in several experimental studies (Garner and Skelland, 1956; Garner and
Hale, 1953; and Lindland and Terjesen, 1956), k) was not reduced by
various specific surface-active agents below half the value predicted for
stagnant spheres (equations 8.49 to 8.52). Skelland and Caenepeel (1972)
found, from measurements over a range of concentration of cationic or
anionic surfactants, that their values of kj} and k}; showed average
absolute deviations of 34 percent (%) and 44 percent (—), respectively,
from equation 8.35; k* deviated by an average of 38 percent (—) from
equation 8.61; and k* and kX values revealed average absolute devia-
tions of 59 percent (+) and 28 percent (+), respectively, from equation
8.65. [Physical properties corresponding to either the disperse or the
continuous phase were substituted in these equations as appropriate. The
+ and — signs in parentheses after each percent error show that the model
in question respectively overestimated (+), underestimated (—), or ran
roughly through the middle () of most of the points in a given set of
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experimental data.] It must be emphasized that these equations did not
correlate the various aspects of mass transfer in the presence of surface-
active agents. The purpose of this comparison is simply to indicate the
extent of the average deviation between the measurements and those
equations which came closest to the data in each instance.

A notable feature of these experimental studies is the frequent occur-
rence of a minimum in the coefficient at surfactant concentrations which
are much less than the bulk values corresponding to interfacial saturation
in static systems. This phenomenon is tentatively linked (Davies, 1969;
Skelland and Caenepeel, 1972) to the optimum concentration of soluble
surface-active agent often found to give the maximum damping of waves
on a free liquid surface (Davies and Vose, 1965). In contrast, Skelland and
Caenepeel found that the continuous-phase coefficient during coalescence
was substantially increased by surfactants in their systems, with maxima at
intermediate concentrations in the case of the cationic agent. Their ex-
planation was in terms of extended surface due to an observed retardation
of droplet coalescence in these cases.

The selection of the appropriate correlations for the disperse and con-
tinuous phase coefficients during free rise or fall requires a knowledge of
whether drops of the relevant size are internally stagnant, circulating, or
oscillating. In a detailed review of the influence of surface-active con-
taminants on the hydrodynamic and mass-transfer behavior of drops,
Davies and Rideal (1963) note that internal circulation is inhibited in
commercial systems by a reduction in drop size and by the use of nonpolar
solvents, because of traces of strongly adsorbed impurities. These impuri-
ties are less strongly adsorbed at the interface with polar solvents, which
therefore tend to give circulating drops. It was remarked that even large
drops of commercial benzene are always stagnant, and that circulation is
reduced in drops 0.5 cm in diameter by protein concentrations of only
0.0005 percent when the interfacial tension exceeds 30 dyn/cm. The
authors noted that the addition of a few percent of a short-chain alcohol or
acetic acid to the dispersed solvent will often displace the adsorbed
impurity from the interface, thereby restoring the transfer rate to that
corresponding to circulating droplets. This remedy seems most likely to
prove effective in the case of interfacial films that are only weakly
adsorbed. It has been noted earlier that sustained oscillations of the drops
apparently begin when the Weber number d,ulp./og, reaches a value of
3.58 (Hu and Kintner, 1955; Basu, 1970, p. 86). The influence of surface-
active contamination upon this criterion requires investigation. A qualita-
tive determination of the droplet condition in a given system may be
achieved in a preliminary glassware experiment in which small amounts of
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aluminum particles are inserted in the disperse phase and the system is
then observed with reflected light (Garner and Skelland, 1956).

The disperse phase in liquid extraction is normally selected as that
having the larger volume, so as to maximize the interface. It may be better,
however, to select the disperse phase as that offering the least resistance to
transfer, as revealed by the distribution coefficient. The stopping of circu-
lation currents within the drop by surface-active contaminants may then
be less serious in terms of the overall resistance to transfer, since the
process is continuous-phase controlling.

A COMPUTER PROGRAM FOR THE PROVISIONAL DESIGN PROCE-
DURE

The provisional design procedure described throughout much of this
chapter has been written in Fortran IV language for digital computer
application by W. L. Conger.

Table 8.3. Expressions used to calculate quantities in the computer program for
the provisional design of a perforated-plate extraction column.?

Af A;(AF)= A, (AD, 8.10); no(PN, 8.13); uo(UO) < uy;(8.12); d,(DP)
=(6v,/m)'/%; v,(VOLP, 8.11+Figure 8.3).

A, A,(AR, 8.14); Ap{A0=4,,+24) + (peripheral band of width w,); when
[(4/7)(A4,, +24 /3<0.75 ft, w,=j(pitch), otherwise w;,= pitch; 4,
(APZ) from 8.27 or 8.28}; A,(ADOWN, 8.26); up,[UDOWN, 8.23+(d,=
5208 % 10~ 3ft)]; h.(HC, 8.29); ¢,[PHID=0.5—0.5(1—4u, /u)">, 8.18];
ug{UD=Qyp/(Ao—Ap)l; #,(UT, 8.23 or 8.24); d,,(DPT, 8.25); N,(ANP,
8.20).

A, A (AC, 8.33).

K K}(XDF, 4.7); kj(CDF, 8.44); k%(CCF, 8.46); 1(TF =nov, /Qu2)-

K} K* (KDR, 4.7); k3,(CDR, 8.50, 8.58, or 8.59); kX(CCR, 8.60, 8.63, or 8.64);
u,(US, 8.17).

K K2(XDC, 4.7); k3.(cDC, 8.66); kX (ccc, 8.67).

q(QA, 8.5; QB, 8.6); D, (DN, 8.7); D, (DN, 8.8).

2The term denoting the quantity in the computer program is given in parentheses,
followed by the number of the equation used for its estimation.
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Table 8.4 . Data required to use the computer program in the provisional design of
a perforated plate extraction column for a specific separation.?

MOLSC, MOLSD (molecular weights of continuous and disperse phases), DENC (p,),
VISC (#), DC (D), DEND (p), VISD (), DD (D,), TEN (o), QCI (Q.,), QD2 (Q,),
D2 (D), OD (d,), UO (u,), PITCH (distance between perforations), HTH(H), HD
(number denoting type of drop; 1=oscillating, 2=circulating, 3 =stagnant), HH
(number indicating direction of transfer; 1=disperse to continuous, 2 = continuous
to disperse), MP (number specifying pitch geometry; 1=triangular, 2=square), NT
(number showing whether a new system is to be used on the next run; | =same
system, any other number=a new system), ND (number of points to be calculated
along the pseudo-equilibrium curve), YAl (ra1); YA2 (142), XAl (x,4,), XA2 (x,,),
CL,C2 (constants for the equilibrium curve, y, =c1x$?), B(1), B(2), B(@3),...
(constants describing the operating curve).

“Terms are as they appear in the program; the definitions in parentheses have
meaning and units as in the nomenclature at the end of the chapter.

The expressions used for calculating various quantities in the program
are listed in Table 8.3, and the data required for its application to the
provisional design of a column for a specified separation are assembled in
Table 8.4. The computer program as prepared by Conger appears in Table
8.5; it contains many labeled segments to facilitate extension or replace-
ment of individual sections by improved relationships as they become
available from further research. The computer printout gives the number
of real plates required for a prescribed separation, the number of perfora-
tions per plate, the column diameter, and the cross-sectional area of the
downcomers.

COMPARISONS BETWEEN PREDICTIONS AND PUBLISHED DATA

Skelland and Conger (1973) have applied the provisional design method in
Tables 8.3 to 8.5 to all the appropriate published results on perforated-
plate extraction columns. Criteria determining whether or not published
data were appropriate for comparison are noted in Table 8.6. These
considerations led to the elimination of some—or occasionally all—of the



Table 8.5. FORTRAN IV computer program for the provisional design of a per-
forated-plate extraction column (terms are defined in Tables 8.3 and 8.4 and at the
foot of this table;u, is calculated omitting the term containing p, as noted below
equation 8.11).

[zXaEakeEsKaNel

OO0 e XaEsNeXsNal NSO OOOO0

N0 000

OO0 0

10

THIS PROGRAM CALCULATES THE PSEUDO-EQUILIBRIUM CURVE AND THE
NUMBER OF STAGES FOR LIQUID-LIQUID EXTRACTION IN PERFORATED
PLATE COLUMNS

REAL M,KDF,KDRyKDC,MOLSC,MOLSD

INTEGER HD,HH

DIMENSION YAR(90)'M(90)yKDF(90)yKDR(90l,KDC(QO).YA(QO),YNI(?O);
1X(90|9XX(90).B(Sl'TlTLE(IB)vDFV(9),FTRl9)

THE INTEGER ND DESIGNATES THE NUMBER CF POINTS TO 8E CALCULATED
-MAXIMUM NUMBER IS 50

CONTINUE

THIS SECTICN TO STATEMENT 10 READS IN BASIC EXTRACTION SYSTEM &
PLATE DATA

READ(S5,196)ND

WRITE(6419TIND

2EAD(5,220) MOLSC,DENC,VISC,DC
WRITE(64299)
WRITE(6,4300)MOLSC4DENC,VISC,0C
READ(5,200) MOLSD,DEND,VISD,DD
WPITE(6,4298)
WRITS(64301)M0OLSD,DEND,VISO,DD
PEAD(5,291) TEN
WRITE(6,302)}TEN

THE £1,C2 ARE CONSTANTS IN THE EQUILIBRIUM EQUATION
THE FQUATINN IS OF THE FORM YAR=C 1% x**(2

READ(5,203)C1,C2
WRITE(6,304)C1,C2
REAC(54216)00,HTH,PITCH
CONTINUE

THIS SECTION THROUGH STATEMENT 11 READS IN MATERIAL BALANCE, FLOW
RATE, & OTHER SYSTEM DATA ASSGCIATED WITH A SINGLE RUN

RFEAD{S,19G)TITLE
WPITE(6,168)TITLE
REAN(S,40CINT yHD yHH MP
WRITE(6,401)INT4HCyHHyNDsMP

NT IS AN INTEGER WHRICH DENOTVES WHETHER OF NGT THE NEXT RUN WILL
USE THE SAME BASIC EXTRACTION SYSTEM & PLATE CATA AS THE PRESENT
RUN

NT=1 NEW SYSTEM FOR NEXT RUN

413
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11

12

5

NT=ANY OTHER NUMBER THAN 1 , SAME SYSTEM NEXT RUN

THE INTEGER MD DESIGNATES THE TYPE OF DROPLET IN THE COLUMN
HD=1 DROPLETS ARE DSCILLATING
HD=2 DOROPLETS ARE CIRCULATING
HO=3 DROPLETS ARE STAGNANT

THE INTEGER HH DESIGNATES THE OIRECTION OF TRANSFER OF SOLUTE
HH = 1 TRANSFER FROM DISPERSE TO CONTINUCUS PHASE
HH = 2 TRANSFER FROM CCNTINUQUS TO DISPERSE PHASE

THE INTEGER MP DESIGNATES THE PITCH GEUME TRY
MP=1 TRIANGULAR PITCH
MP=2 SQUARE PITCH

QEAD{(5,402)QC1,QD2,U0+D2+YA2,YAL,XA2, XAl

THE B(I) ARE CONSTANTS IN THF CPERATING LINE EQUATION- THE
EQUATION IS OF THE FORM——
YAa=Bl)#B(2)* X4R(3 ) xX*%k24B (4 )*Xx*k3+B(5)*X*x4

RELD(S,2L7TIIBLLI)41=145,1)
WRITZ(64305)B(1)+8(2)+,B(3),B(4),B(5)
WRITZ(64306)009U0yHTH, PITCH
WRITE(6,303)0C1.0D2,YA2,N2,YALXA24XAL

THIS MATKIX UF NUMBERS THROUGH STATEMENT 12 IS USED IN CALCULATING

"E® FNR THE SCHEELE & MEISTER DETERMINATICN DF THE VOLUME OF A
DANPLET

FTRI1)=1.0
FTR{2}=0.86384
FTP13)=0.782
FTR{4)=0.7038
FTR{5)=0.663
FTIRI6)=0.63
FTR(T7)=0.61
FTR{8}=0.6
FTP{9}=C.6
DFV{1)=0.0
DFV(2)=0.2
DFV{31=0.4
DFV(4)=0.6
NEV(5)=0.8
DFV(6)=1.0
DFVIT)I=1.2
DFV{8)=1.4
DFVI9)=1.6
PART=(ABS{XAL-XA2)1/{(ND-5)
TFIXA1.LT.XA2)GO TO S
XX{1)=XA2-2,0%PART
GO TO 6
XX{1)=XA1l-2,0%PART
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6
7

331
332

333
334

15
16

17
18

DO 7 [=2,NDyl
XX(I)=XX(1-1)}4PART
DENDIF=ABS{(DENC~DEND)

THIS SECTION THROUGH STATEMENT 334 DETERMINES THE VOLUME &
DIAMETER OF THE OROPLETS

VDCF=((3.14159*TEN*OD/DENDIF)—(3.1#159*05ND*(00**2.0)*(UO**Z.O)/
104, 0XDENDIF*4 1 TES) ) +4.5%(({3.14159%(0CD**3.0)*¥UC/(4.0*4.17E8*
2DENDIF) 1*%2.0)*DEND*TEN*4.17E8)%*%0.333)

VF=0N*(1,0/VOUF)*%0,333

F=0.0

comMpP=0,0

DN 332 1=1,49,1

IF(VF.5Q.DFV{I))GC TO 331

IF{COMP.NE.O.0)GOD TO 332

IF(DFVLI).LT.VFIGO TO 332

COMP=DFVI{T)-VF

[FICOMP,LT.0,001)G0 TO 331

FRACT=({CGMP/(DFV{T1)-DFV{I=-1}1}}

F=FTR(I)-FKACT*{FTR(I)-FTR(I-1)}

Gu TN 332

F=FTR{I)

CONTINUF

IF{F.NELO.OIGO TO 333

F=0.6

VULP=VNOF*F

DP={{6,0%VOLP)/3.14159)%%0,3333

NEXT, VAPIDUS QUANTITIFS ,SUCH AS THE ARFA OF THE COLUMN, ARE
CALCULATED

PN=(4.0%QN21/(3.14159%U0*ND**2)
AD=PN*3,14159%DP*¥2

AF=AD

UDOWN=(53000%( DENDIF)*%0,58%5,208F~3%%C,70)/ (DENC**,45%VISC
1%*x0.11)

ADOWN=QC1/UDCWN
WRITE(64403)ADDWN.PN
IF(MP,NELL1IGC TO 15
APZ={PN*3.14159%PITCH**2,0)/3.62
GO TO 16
APZ=(PN%*3,14159%PITCH**2,0)/3.14
CONTIMUE

AT=APZ+2.0%*ACOWN
CB=(4.0%AT/3.14159)%*0,5
IF(DR.GT.C.75)G0 TO 17
DIA=DR+PITCH

GO T2 18

DIA=DE+2.,0*PITCH

CONTINUE

WRITE (643071014
AC=(3,14159*D1A%%2)} /4,0

WRITE (6,207)

SUFD=3.14159%DP%%2
REYO=0D*UO*DEND/VISO

415
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THE HEIGHT OF THE COALESCED LAYER IS CALCULATED

HC=O.2172*TEN*(VISD**O.4)*(V!SC‘*O.2)I(( DENDIF)*(0D%*].4))

2+ LUO**2 [0%DEND) / (8 .34E8#*( DENDXF))/((l.0-0.7l/ALOGlREYOJ)**2-0)
3*(0.592E—8'UDONN‘*2‘DENC)/(DENDIF)
ANP=DENC**2*TEN**3*4.1758**3/(4.17E8*VISC“6‘(DENDIF})
DPT=7.25%(TEN/(( DENDIF)*ANP*#0,]15) ) *%0,5

THE TERMINAL VELOCITY OF THE DROPLETS IS DETERMINED

IF(DP-DPT)20,20,30
20 UT=53000%( DENDIF)**O.SB‘DP‘*O.70/(DtNC‘*O.QS*VISC**O.lI)
GO Tn 31
30 UT=577%( DENDIF)*‘O.ZB*VISC‘*O.lO‘(TEN*6.17EB)**0.18/
4(DENC*%0,55)
31 UD=QN2/(AC~ADCWN)
PHID:(I.O—(1.0-4.0‘UD/UT)**0.5)/2.0
AF=(AC-AUONN)*(HTH-HC)‘PHID*SURD/VOLP
AC=A0~ADOWN
US=UT*(1-PHID)
TE=PN*VOLP/QN2

THIS SFCTION, THROUGH STATEMENT 57yCALCULATES THE INDIVIDUAL
COEFFICTIENTS OF MASS TRANSFER FOR BOTH PHASES & FOR DROPLET
FORMATION, FREE RISE (DR FALL), & COALESCENCE

CDF:(0.0#BZ*DP*DFND)/(TF*MOLSD)*((UD'*Z)/(DP*4.l?Ed))**0.0BQ*
5((TF*OD)/(UP**Z.O))**0.334*((DEND*DP*YEN‘4.l7ESl**0.5/VlSD)*'O.601
CCF=J.386*D&NC/MDLSC*(DC/TF)**O.S*IDPNC’TEN*4.17EB/((DENDIFl*
b4.17Ed*TF*VISC))**0.457*(4.17EB*TF**2/DP)‘*0.148
T={HRTH~HC ) /US
ITF(HD.EQ.1)1G0 To 53
IF(HN.EQ.2)G0 TO 59
CDR=—DP/(6.0‘T)*DFND/MOLSD’ALOG(1.0—(3.14159*00*'0.5*7**0.5/
7{DP/2.0)))
49 CCR=0.74*DC/DP*DENC/NOLSC'(DP*US*DENC/VYSC)*‘0.5*
LOVISC/(DENC*DC) )**0,3333
GG T2 56
50 CDR=31.4*DD/DP*DEND/MOLSD*(DD*DEND/VISD)'*O.125*(DP*US**2‘DENC/
2(TEN‘Q.I?Fd))**0.37*(09‘*2/(4.0*DD*T))**0.34
51 CCR=0.725*DENC/MULSC*(VlSC/(DP‘US*DENC))**0.43*(DENC*DC/VISC)
3%%0,58*US*(1.0-PHID)
50 T2 56
53 CD?=0.BZ*DD/DP*DEND/MDLSD*(DP*'Z.O/(#.O*DD*T))**0.14*
Q(DP*US*DENC/VXSC)**0.68*((TEN**B*Q.1758**3'DENC**ZD/(4.1758‘
S5VISC*%4*DENDIF) j%%Q,]
54 CCR=DC/DP*DENC/MOLSC'(50.0*0.0085‘(OP*US*DENC/VISC!*(VISC/(DENC*
60C) )} *x%x0,.7)
56 CGNTINUF
CDC=0.173%DP/TF*DEND/MOLSD* (DEND* DD/VISD)**1.115%(((DENDIF)
1*4.17‘8*DP**2.0)/(TEN'Q.IBEB))‘*l.302*(US**2*7F/DD)**0.140
57 CCC=5.959F—4*DENC/MDLSC*(DC/TF)**.S‘((DENC*US**3)/(4.17E8*VISC))*‘
10.332‘((DP**Z*DENC‘DEND‘US*‘3)/(VISD*TEN*6.17EB))**0.525
=0
D0 100 J=1,ND,1



OO0

OO0

SO0 O0

500

160

520

131

102

104

109
105

106

108
1105

IF{XX{J).LT.0.0}GO TO 100
I=1+1

XEI)=xx{J4)
YAR{I)=C1l*X{1)*%C2

THE SLOPE NF THE EQUILIARRIUM LINE (M) IS CETERMINED FROM THE FIRST
OERIVATIVE OF THE EQUILIBRIUM LINE EQUATICN

M(T)=Cl*C2*X(1)*x{C2-1.0)

THE OVERALL COEFFICIENTS FOR MASS TRANSFER ARE NOW CALCULATED

KDF(1)=(CCF*CDF)/{CCF+M{T1)*CDF)
KDR{I)={CCR*CDR}I/(CCP+M(1)*CDR)
KDC{1)={(CCC*CDC)I/(CCC+M(I)*CDC)
YA(T)=B{1)4B(2)%X{T)+B{3)*X{1)*%x2+8(4)*X{ 1} **3+R(S)*xX{1})**4
CONTINUE

IF(HH.EQ.2)GC TO 52C
TF(YA2.LT.YA{I})IGN TC 520

I=1+1

X(I)=X{I-1)+PART

GO 1O 500

CONTINUE

NN=1

IN THIS SECTION, THROUGH STATEMENT 110, THE PATE CF MASS TRANSFER
AT INTERVALS THRGUGHOUT THE COLUMN LENGTH IS CALCULATED BY TWC
DIFFERENT MEANS & THE COMPCSITION IN THE CISPERSE PHASE IS
ADJUSTED UNTIL THE Twn CALCULATIONS CIFFER BY A VERY SMALL
(ACCFPTABLE) AMCUNT

OC 110 I=1,NN,1
YNL(D)=(YAR(I)+YA(I})/2
QA=K3F(I)*AF*(YAP(I)—YA(I))OKDQ(I)*AR*((YNI(I)-YA(I))/ALQG((YAP(II

I-YACI))/ZCYARCTI)=YNL(I))))+KDCATI*ACK(YAR(I)-YNLI(T))

DN=D2*{1.0-YA2)/(1.0-YA(L))
DN1=0D2*%(1,C~YA2)/{1.0-¥YNL(I})
QB=DNI*YNI{I)}-ON*YA{T}

IF1yA-0B) 102,109,104
[F(ABS{QA-QB).LE.O0.001)GC TC 1C9
YNL{I)=YN1(I})-0.0001

GO 77 101
IF(ABSIQA-OB) . LE.0.0011GD TO 1C9
YNI(I)=YNI1(T)+C.00011

GD T2 101

IF(QA-QE)105,1C8,41036
IF(ABS(QA-UR) .LE.N.OC0L}GO TCO 108
YNI{I)=¥YN1(I)=-0.000C1

GO 72 101

[F{ARS(QA-CB) LF.0.00011G0O TC 10¢&
YNL{I)=YN1(I)+0.000C11

G0 10 10t

IF(UA-QR)1105,1108,1106
IF(ARS(QA-QB).LE.0.00001)G0C TC 1108
YNL{TI)=YN1(1)-0.000001

417



GO TC 101

1106 IF{ABS{QA-QB).LE.0.00001)G0 TO 1108
YNL{I)=YN1(1)+0.,0000011
GO 70 101

1108 IF{QA-QB)2105,2108,2106

2105 IF(ABS(QA-QB).LE.0.000001)G0 TC 2108
YNI(I)=YN1(1)~0.0000001
GO 70 101

2106 IF({ABS(QA-QB).LE.0.000001)G0 TC 2108
YNI(I)=YNI1(I}+0.00000011
GO TN 101

2108 NRITE(G,ZOS)X(IJ'YNI(IlvVAR(I)pYA(l)leI)yQA'QB

110 CONTINUE
TF(HH.NE.1)GO TO 160

C
C
C [F HH=1 PLATE TO PLATE CALCULATIGNS ARE MADE FOR TRANSFER FROM
C DISPERSE TO CONTINUOUS PHASE. SECTION ENDS BEFORE STATEMENT 160
c
C
YN=YA2
MM=0
C
C
[« MM IS COUNTER FCR STAGES
C
C

126 JJ=1
DO 140 J=1,NN,1
IF(JJNELL)GO TD 140
TF(YALY) «LTLYNIGO TO 140
IF{YA{J).EQ.YN)GC TD 135
COMP=YA(J)-YN
IF{COMP,.{T.0.00000000011G60 TO 135
FRACT=CCMP/({YA{J)-YA(J-1))
XA=X(J)=FRACT*(X(J)=-X(J~1))
JJd=JdJ+]
GO 17 140

135 xA=Xx(J)
JJ=dJ+]

140 CONTINUE

141 “MM=MM4+]
IF{MM,GE.50)G0 TC 171
ARITE(6,213)MM, YN, XA
Jd=1
NC 150 J=1,NN,1
IFIJINELL)IGE TR 150
TFIX{J) LT.XA)GO TN 150
TFIX{JI.EQ.XA)GD TN 145
COMP=X(J)-XA
[F(COMP.LT.0.00C0000001)G0 TC 145
FRACT=(X(J}=XA)I/({X(JI}~-X(J=-1})
YN=YNL(J)=FRACT*(YNL(J)-YN1(J~-1))
Jd=Jdd+1
60O TO 150

145 YN=YN1(J)
JJd=JJ+1

150 CONTINUE
IFLYN.GT.YAL)GO TO 126
WRITE(64214)MM, YN, YAL
GO 710 171
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160

165

170

171

166
197
198
199
200
201
203
207
1
208
213
1
214
1
215
1
216
298
217
299

XA=XA1l

IFf HH=2 PLATE T0 PLATE CALCULATICONS ARE MADE FOR TRANSFER FROM
CONTINUOUS TG DISPERSE PHASE. SECTION ENDS AT STATEMENT 171

MM=0

MM IS COUNTER FOR STAGES

YN=R{L)#B{2I*XA+B(3 ) XXA*¥2+¢B(4)*XA**3+B{5)*xXA%*4
Ju=1

N0 17C J=1,NN,1

IF{JJ.NELLIGO TO L7C
IF(YNL{J)SLTLYNIGC TO 170
TFIYN1(J)LEC.YNIGD TO 165
COMP=YN1{J)}-YN
IF(COMP,LT,.N,0000000CN11G0 TC 165
FRACT=(YNL(J)=YNI/(YNI{I)-YNL(J-1))
XA=X{J)-FRACT:(X(JI)-X(J=-11}}
JJ=JJ+l

GO 1O 170

XA=X{J)

JJ=Jd+l

CONTINUE

MM=MM+1

IF{MM,GE,50)G0 TO 171

WPITE (649213 )MM, YN, XA
IF{XA.GT.XA2)IGC TG 161
WRITE{6,215)MM, XA, XA2
IFINTLEQ.1IGD TO 9

GG T2 10

MANY OF THE FORMAT STATEMENTS USED IN THIS PROGRAM USE "H®™ FORMAT
COOE & MAY BE CHANGED TO A LITERAL FORMAT CGDE AS THE USER DESIRES

FORMAT(I5)

FORMAT('X*,9H ND = +I5)

FORMAT(///7420Xs18A4)

FORMAT{18A4)

FORMAT{3F10.4,F20.10)

FORMAT (F10.7)

FORMAT(2F10.5)

FORMATI///469H XA YNL YAK YA L}

QA QB

FORMAT(¢X*,5F10.5,2F10.7)

FORMAT (*X?",24HCONCENTRATINNS CN STAGE ,I13/6H YN = ,F10.7, 9H

A = ,FlO.T}

FORMAT {*X*,25HTNTAL NUMBER CF STAGES
6HYAL = ,F10.7)

FORMAT ('X',25HTQTAL NUMBER OF STAGES = .15y SH XA = 4F10.7,
6HXAZ2 = +F10.71

FORMAT(3F10.7)

FURMAT('0%,1SHDISPERSE PHASE CATA)

FORMAT(S5F10.5)

FORMAT (0", 21HCONT INUOUS PHASE DATA)

[}

+15, 9H YN = ,F10.7,

X

419



300 FORMAT(*X",34H MOLECULAR WEIGHT, MCLSC = ,Fl0.4424H POUND
1S PER POUND MOLE,/24H DENSITY, DENC = ,F10.4,29H POUNDS M
2ASS PER CUBIC FOOT,/26H VISCOSITY, VISC = 4F10.4428H POUN
3DS MASS PER FOOT HOUR,/36H MOLECULAR DIFFUSIVITY, 0C = ,F20
4410423H SQUARE FEEYT PER HOUR)

301 FORMAT(*X',34H MOLECULAR WEIGHT, MOLSD = ,F10.4y24H POUND
1S PER POUND MOLE,/24H DENSITY, DEND = ,F10.4,429H POUNDS M
2ASS PER CUBIC FOOT,/206H VISCOSITY, VISD = ,F10.4,28H POUN
3DS MASS PER FOOT HOUR,/36H MOLECULAR DIFFUSIVITY, DD = ,F20
4.10,23H SQUARE FEFT PER HOUR})

302 FORMAT(*X*,30HINTERFACIAL TENSION, TEN = 4F10.7,24H POUNDS FO
IRCE PER FOOT)

303 FORMAT(*X",30HFLOW RATE AND COMPOSITION DATA,/43H VOL FLOW RAT
1€ CONT PHASE IN, QCl = ,F10,3,22H CUBIC FEET PER HOUR,/43H
2 VOL FLOW RATE DISP PHASE IN, QD2 = ,F10.3,22H CUBIC FEET PE
3R HOUR,/S50H MOLE FRACTION IN DISPERSE PHASE I[N, YA2 = ,F10.
474/741H FLOW RATE OF DISP PHASE IN, 02 = ,F10.5,23H POQUND
SMOLES PER HOUR,/47TH MOLE FRACTION IN DISP PHASE OUT, YAl =
6+4F1l0.T4/47TH MOLE FRACTICN IN CONT PHASE GuT, XA2 = 4F10.74/
T46H MOLE FRACTION IN CONT PHASE IN, XAL = 4F10.7)

304 FORMAT{*X',30HEQUILIBRIUM EQUATION CONSTANTS,/10H Cl = 4F10.5,
1/10H €2 = ,F10.5)

305 FORMAT(*X*,33HOPERATING LINE FQUATION CONSTANTS,/12H B(1l) = ,F
110.5,/12H B(2) = ,F10.5,/12H B(3) = ,F1C.5,/12H Bl4) =
2 yF10.5,/12H B(5) = 4F10.5)

306 FORMAT('X',11HCOLUMN DATA,/29H DIA OF ORIFICE, 0D = 4Fl0.7,
17H FEET,/34H VEL THROUGH ORIFICE, UG = ,F10.3,16H FEET
2PFER HOUR,/6TH HEIGHT BETWEEN UPPER SURFACES OF CONSECUTIVE PLA
371cs, HTH = ,F10.5,7H FEETy/13H PITCH = ,F10.7,7H FEET)

307 FORMAT('X',31H COLUMN UIAMETER, DIA = 4F10.7,7H FEET)

400 FDORMAT(415)

401 FORMAT(!X'ySHNT = ,i5,/6H HD = 415,/6H HH = 15,/6H ND = ,15,/6H M
1P = ,15)

402 FORPMAT(4F10.5,4F10.7)

403 FUORMAT{*0',30HRESULTS CF DESIGN CALCULATICNS,/26H AREA OF DOW
INCOMER = ,F20.10,/41H NUMBER OF PERFORATIONS PER PLATE = ,F10
2.3)

RETURN
END

The following terms not defined in Tables 8.3 and 8.4 are also used in the
program: COMP, comparison value—used when comparing calculated quantities
with tabulated quantities; DENDIF, absolute value of the difference in densities of
the two phases; DN,DN1, values of the disperse-phase flow rate at plates n and
rn+1; DPT, estimate of the diameter of a droplet; F, the Harkins and Brown
correction factor; FRACT, interpolation factor; FTR (), DFV (1), values from
Harkins and Brown’s F Chart (Fig. 8.3); M), slope of equilibrium line from
equation; MM, stage counter; PART, increment for calculating values of XX(I);
REYO, Reynolds number based on orifice diameter; SURD, surface area of a
droplet; T, time of rise (or fall) of droplet; VOOF, estimate of volume of a droplet
before applying the Harkins and Brown correction factor F; VF, estimate of DFV:
VOLP, volume of a droplet; XA, continuous-phase concentration on the plate; x(),
concentration in continuous phase, eliminating any negative values calculated in
XX(D); XX(I) concentration (may contain negative values) in continuous phase;
YAQD), disperse-phase concentration as calculated by operating-line equation;
YAR(D), disperse-phase concentration in equilibrium with continuous-phase con-
centration X(I); YN, disperse-phase concentration on the plate; YNI, disperse-phase
concentration as calculated using pseudo-equilibrium curve.

420
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Table 8.6. Requirements for the applicability of the provisional design program.

No interfacial turbulence phenomena.

N

No interference from hydrogen bonding between solute and raffinate as
described by Licht and Conway (1950) and Garner, Ellis, and Hill (1955).

No surface-active contamination.
No jetting or streaming of the disperse phase from the perforations.
All perforations operating.

3

4

5

6. All relevant physical properties known.

7. All relevant operating conditions and equipment dimensions known.
8. Drops coalesce normally beneath each plate.

9. Operation not erratic, as when near flooding.
10. Plate wetting characteristics ensure good dispersion.
11. Contactor exclusively of the perforated-plate type.

12. Interfacial tension high (>25 dyn/cm).

runs in the following papers. Criteria which were unfulfilled for the runs
concerned are indicated in parentheses in each case:

Allerton, Strom, and Treybal, 1943 (4,5); Garner, Ells, and Fosbury,
1953 (4,8); Garner, Ellis, and Hill, 1955 (2,10); Garner, Ellis, and Hill,
1956 (10,12); Goldberger and Benenati, 1959 (7,11); Mayfield and
Church, 1952 (4,12); Moulton and Walkey, 1944 (4,6,9); Nandi and
Ghosh, 1950 (2,4,5,6); Pyle, Colburn, and Duffey, 1950 (3,6,11); Row,
Koffolt, and Withrow, 1941 (7,9,11); and Treybal and Dumoulin, 1942
4,5,9).

The) scarcity of appropriate data compelled the use of some measure-
ments which were of very dubious acceptability in terms of the tabulated
requirements. In consequence, the results may be classified into four
groups—A, B, C, and D—the last three of which did not satisfy all the
criteria of Table 8.6. This means that only Group 4 can be regarded as
providing fully eligible data, but examination of results for the “ineligible”
Groups B, C, and D is nevertheless instructive.

Group A comprised high-interfacial-tension systems which largely con-
formed to the specifications of Table 8.6. The group consists of 65 runs
corresponding to eight sets of data from six different papers. Results for
group A are summarized in Table 8.7 and plotted as individual and
averaged values, respectively, in Figure 8.6. The overall average error
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Figure 8.6. Comparison between actual and predicted numbers of plates required for the 65
separations in Group A: <, data of Allerton, Strom, and Treybal (1943); O, data of Garner,
Ellis, and Fosbury (1953); O, data of Garner, Ellis, and Hill (1955); v, data of Goldberger
and Benenati (1959); A, data of Row, Koffolt, and Withrow (1941); 0, data of Treybal and
Dumoulin (1942). Table 8.7 gives some relevant details.

between the number of perforated plates predicted by the program and the
number actually used to achieve the measured separation is — 18.6 percent.
The corresponding average absolute error without regard to algebraic sign
is 22.4 percent. Figure 8.6 shows that about 90 percent of the data are
within * 33 percent of the relationship Pactual = Mpredictea/ (1-0.186).

The fact that the program underestimates the actual number of plates
used by an average of 18.6 percent is consistent with the probable presence
of trace amounts of surface-active impurities in the six experimental
studies which provided these 65 runs. Garner, Ellis, and Fosbury (1953),
for example, attributed their decline in extraction with continued recycling
of raffinate to the accumulation of surface-active contamination in the
system.

Group B consisted of systems which in the present context exhibited
“imperfect” operation. About 83 percent of these data also involved mild
hydrogen bonding between raffinate and solute. The group comprises 54
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runs with dilute solute by Nandi and Ghosh (1950) in a nine-plate,
1.75-in.-i.d. column with 36 or 72 holes per plate. About 83 percent of the
runs transferred acetone from water to benzene or to kerosene of unspeci-
fied molecular weight. The remainder transferred benzoic acid from ben-
zene to water. The authors indicate that some perforations were not
functioning in much of the study, and there are implications of jetting or
streaming in some runs.

The interference from hydrogen bonding referred to here was described
by Licht and Conway (1950) and by Garner, Ellis, and Hill (1955). They
postulate that transfer of solute out of a solvent to which it adheres by
hydrogen bonding occurs much less readily than from a solvent to which it
is linked by the weaker Van der Waals forces. Thus, when transferring
diethylamine in alternate directions between toluene and water, Garner,
Ellis, and Hill (1955) found the transfer rate from toluene to be severalfold
greater than from water. The hydrogen bond between acetone and water is
probably considerably weaker than that between diethylamine and water
(Pimentel, 1972; Pimentel and McClellan, 1971), but is certainly signifi-
cant.

The overall average error between the actual and predicted numbers of
plates for the 54 runs of group B was —30.4 percent, and the average
absolute error was 36.6 percent. The corresponding average errors
obtained for the combined 119 runs of groups 4 and B together were
—23.9 percent and 28.8 percent, respectively.

Group C comprises 19 runs by Garner, Ellis, and Hill (1955) on a system
with strong hydrogen bonding between raffinate and solute. In this study
diethylamine was transferred from water to toluene at the relatively slow
rate described above. The column dimensions were as listed in Table 8.7.
The number of plates was consistently underpredicted for these 19 runs,
the overall average error being —62 percent. The explanation by the
authors in terms of retarded transfer due to strong hydrogen bonding
between diethylamine and water may be retained here.

Group D consisted of 40 runs on a low interfacial tension system in
which adipic acid was transferred from methyl isobutyl ketone to water. In
this study by Garner, Ellis, and Hill (1956), each phase was dispersed in
turn, using the column described in Table 8.7. The overall average error
and the average absolute error between actual and predicted numbers of
plates were +68.5 and 69 percent, respectively, corresponding to an
overestimation of the number of plates required. The direction of this
result suggests that the effects of interfacial tension may be inadequately
represented by the present formulation.

A further limitation on the present provisional program, then, is its
restriction to high-interfacial-tension systems. This is perhaps related to the
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fact that two-thirds of the data leading to the expressions for kj and kJ,
were for high o, while the correlations for k% and k7% were obtained
exclusively from high interfacial tension systems. In this regard, 83 percent
of the runs in the fairly successful group 4 were continuous-phase con-
trolled, and the continuous-phase resistance was significant in the other 17
percent.

It may be that, as in the case of circulating and noncirculating drops
during free rise, different expressions are needed for the individual
coefficients during formation and coalescence, depending upon whether o
is high or low. In any event, the restriction to high o is certainly in the
range of much industrial interest. This is because high-interfacial-tension
systems are considered desirable to facilitate phase separation and the
avoidance of stable emulsions (Treybal, 1963, p. 131; Treybal, 1968, p.
413-4; Perry, 1963, p. 14-41.

CONCLUSIONS

It must not be thought that the design procedure outlined here for
sieve-plate extraction columns is presented as the final form of treatment.
Indeed, many of the simplifications involved become apparent from an
examination of the review by Olney and Miller (1963). The program must
be regarded as provisional with respect to expressions for some phases of
the process. A framework, however, has been delineated, and areas need-
ing refinement are apparent. For design purposes, relationships based on
the correlation of experimental data are probably to be preferred for some
time to come. Although such empirical expressions leave many questions
about mechanisms unanswered, they do represent measurements against
which further theoretical developments can be tested.

More quantitative design information is clearly needed on such
phenomena as droplet detachment after growth, drop size distribution,
droplet coalescence and redispersion during free rise or fall, interfacial
turbulence, non-Newtonian properties, interactions such as those affecting

» for swarms of stagnant and oscillating drops, coalescence mechanisms
at the plane coalescence interface, surface-active contamination, effects
associated with the direction of transfer, and the influence of plate wetting
characteristics on the effectiveness of dispersion.

NOMENCLATURE

A,, Total integrated average surface of n, drops during
formation, ft2.
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Total interfacial area between two consecutive plates
during droplet coalescence, ft*.

Cross-sectional area of downcomer, ft%.

Total surface of n, drops at detachment, ft*.

Total interfacial area between two consecutive plates
during drop formation, ft2.

Cross-sectional area of entire column, ft°.

Area of perforated zone per plate, ft*.

Total interfacial area between two consecutive plates
during droplet rise, ft’.

Surface area of a single growing drop at time ¢, ft*.
Coefficient for the nth term in a series.

Flow rate of continuous phase through entire cross
section of column, l1b-mole/hr.

Drag coefficient.

Flow rate of disperse phase through entire cross section
of column, Ib-mole /hr.

Values of ® at plates n and n+1 and entering the
column, respectively, 1b-mole/hr.

Molecular diffusivity of solute in continuous and dis-
perse phases, ft>/hr.

Major (horizontal) axis of an oblate spheroid, ft.
Orifice, nozzle, or perforation diameter, ft.

Droplet diameter (assumed spherical), ft.

Transition value of d,, equation 8.25, ft.

Diameter of growing drop at time ¢, ft.

Minor (vertical) axis of an oblate spheroid, ft.

Eccentricity, dy/dy.

Fractional extraction.

Harkins and Brown correction factor.

Acceleration due to gravity, ft/hr?.

Conversion factor, 4.17x 10® (Ib-mass)(ft)/(Ib-force)
(br?).

Height between upper surfaces of consecutive plates, ft.

Thickness of coalesced layer, including plate thickness,
ft.
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de K Ky

k*

cc

k%, k*

cr’

ki ki, k2,

Overall coefficients of mass transfer based on Ay,
during droplet formation, free rise (or fall), and coa-
lescence, Ib-mole/ (hr)(ft?).

Individual continuous-phase coefficients of mass
transfer for low concentrations and transfer rates dur-

ing droplet formation, free rise (or fall), and coales-
cence, Ib-mole /(hr)(ft?).

Individual disperse-phase coefficients of mass transfer
for low concentrations and transfer rates during drop-
let formation, free rise (or fall), and coalescence, Ib-

mole /(hr)(ft2).

Mean molecular weight of phase under consideration.
Slope of the equilibrium curve, dy, /dx,,.
Dimensionless group defined by equation 8.20.
Modified Peclet number, (d,4,/D,)/(1+ u,/ u.).
Reynolds number, d,u,0,/p,.

Orifice Reynolds number, d,u_p,/ .

Schmidt number, p/pD.

Weber number, d,u?p, /og,.

Stage number 7, or an integer (in Table 8.1).

Number of perforations per plate.

Volumetric flow rate of continuous phase entering col-
umn, ft*/hr.

Volumetric flow rate of disperse phase entering col-
umn, ft3/hr.

Rate of mass transfer, 1b-mole /hr.

Solute transferred during formation of a single drop,
Ib-mole.

Ratio of effective diffusivity to molecular diffusivity.
Surface area of an oblate spheroid, ft2.

Surface area of a sphere, ft2.

Time of free rise (or fall) of droplet, (H —h,) /u,, hr.
Time of exposure in equation 8.55.

Time of formation of a single drop, hr.

Superficial velocities of continuous and disperse
phases, based on the empty-column cross section,
ft>/ (r)(ft* column cross section)=ft/hr.

Average velocity in the downcomer, ft/hr.
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Velocity through orifice, nozzle, or perforation, ft/hr.
Nozzle velocity at which a jet first forms, ft/hr.

Slip velocity, ft/hr.

Terminal velocity of a single drop, ft/hr.

Volume of a single drop, ft*.

Mole fraction of component 4 in continuous phase.
Mole fraction of component 4 in disperse phase.

Mole fraction of component 4 in the disperse phase at
sections @ and b.

Mole fraction of component 4 in the disperse phase on
plates n and n+1.

Local equilibrium concentration of 4 in the D phase at
the interface, mole fraction.

Disperse-phase concentration of A that would be in
equilibrium with existing continuous-phase concentra-
tion in stage n, mole fraction.

Mole fraction of component 4 in disperse phase during
droplet formation, free rise (or fall), and coalescence.

Mole fraction of component A in the disperse phase at
outlet and inlet to column.

/4.

Beta function, equation 8.41.

Gamma functions, equation 8.41.

Eigenvalues for first and nth terms in a series.

Viscosities of continuous and disperse phases, 1b-
mass /(ft)chr).

Viscosity of water, 1b-mass/(ft)(hr).

Mean density of phase under consideration, 1b-
mass /ft’.

Densities of continuous and disperse phases; absolute
value of p,—p,, Ib-mass/ft>.

Mean value of p/M for the phase under consideration,
1b-mole /ft>.

Interfacial tension, lb-force/ft.

Disperse-phase holdup, i.e., fraction of column active
volume occupied by disperse phase.

Component 4.
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c, d Continuous and disperse phases.
LM Logarithmic mean.
PROBLEMS

81 A droplet is growing on the tip of a vertical nozzle. Derive the
average time of surface exposure during formation, t,, expressed as a
fraction of the time of formation, t;. The time-average droplet surface
during formation was shown to be 377dl,,2 /5 in equation 8.10. For a single
growing drop, show whether the drop surface reaches 37ra;,2 /5 in a time less
than, equal to, or greater than 7.

Assume that the drop grows at a constant volumetric rate and that it
remains truly spherical throughout growth.

8.2 A spray column is used in a liquid extraction process which has a low
interfacial tension and is continuous-phase controlled. Use the form of
equation 8.14 corresponding to a spray column plus equations 8.17 and
8.63 to show whether an optimum disperse-phase holdup is indicated for a
maximum rate of mass transfer during free rise of the drops. Neglect
variations in drop size and concentration driving force with holdup.

8.3 Nitrobenzene containing a few percent of acetic acid is to be ex-
tracted by spraying it in droplet form down a water-filled column 4 ft high
and 0.0225 ft? in cross section. The nitrobenzene feed rate is 0.5 ft3 /hr,
and it is withdrawn as soon as it reaches the foot of the column. The water
rate through the column is zero, and the temperature is 68°F. The
measured values of the droplet diameter and velocity of fall in stationary
water are, respectively, 0.01475 ft and 0.39 ft/sec, and the interfacial
tension is about 20 dyn/cm. The equilibrium distribution ratio for the
prevailing conditions may be taken to be 16, expressed as lb-moles of
acetic acid per ft’> of aqueous phase/Ib-mole of acetic acid per ft* of
nitrobenzene phase. Calculate

(2) the overall mass-transfer coefficient during free fall of the droplets,
K7, assuming that (i) the droplets are stagnant; (ii) the droplets contain
maximum-speed internal circulation currents due to frictional drag of the
water; (iii) the droplets are oscillating. Compare the results of (i), (ii), and
(iii) with the experimental value of 0.503 Ib-mole /(hr)(ft) to ascertain the
hydrodynamic condition of the droplets.

(b) Compute the total interfacial area available for mass transfer in the
column at any instant during free fall of the drops.

(c) Evaluate the capacity coefficient Kja for cases (i) to (iii) in (a)
above, where a is as defined in Chapter 4.
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8.4 Apply the computer program in Table 8.5 to predict the column
requirements (n, ny, A, and column diameter) for the extraction described
in run H7 of Garner, Ellis, and Hill (1955). Use u,=2150 ft/hr, HD=3
(i.e., stagnant drops), Np=50, and TEN(0)=0.00172 Ib-force /ft (Treybal,
1963, p. 498). The remaining data in Table 8.4 may be assembled from the
original reference and by appropriate prediction. Compare the computed
column characteristics with those used by the authors.

85 Perform computations similar to those in Problem 8.4, but for runs
12, H4, and H6 of Garner, Ellis, and Hill (1955). Use the following
respective values for u,, calculated from the recorded data as u,

=4Q,,/ mdng:
12: u,=1612 ft/hr;

H4: u,=1195 ft/hr;
H6: u,= 1340 ft/hr.

8.6 Use the computer program in Table 8.5 to characterize the necessary
column dimensions (n, ny, Ap, and column diameter) for the aqueous
extraction of benzoic acid from kerosene, as performed by Allerton, Strom,
and Treybal (1943). Their runs are unnumbered, but the four to be
considered here may be identified on their pp. 374-375 as having V=
153.8, 133.9, 94.0, and 133.0 ft> kerosene/ (hr)(ft?), respectively. The corre-
sponding u, values are 1131, 985, 693, and 979 ft/hr; also HD=3, ND =150,
and TeEN(6) =0.00206 Ib-force/ft. Other data in Table 8.4 may be compiled
from the original paper and by suitable prediction. (It appears that benzoic
acid exists largely as a dimer in kerosene.) Compare the computed results
with the column characteristics used in the original study.
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Design of Cooling Towers From
Rate Equations

The terms “humidification” and “dehumidification” refer to a variety of
engineering processes involving the exchange of mass and energy between
a pure liquid and an effectively insoluble gas. The material constituting the
liquid phase represents the mass transferred, either by evaporation or
condensation. The presence of only one liquid component means that
concentration gradients and resistance to the transfer of mass are both
absent from the liquid phase, but these processes are nevertheless compli-
cated because of the need for quantitative treatment of simultaneous heat
and mass transfer between the gas and the liquid.

Operations aimed primarily at modifying the gas phase include cooling,
humidifying, and dehumidifying the gas. A hot liquid may be cooled by a
combination of sensible heat transfer and evaporation into a gas when
direct contact is made between the phases.

An extremely widespread and important application occurs in the cool-
ing of water with air. Water which has absorbed heat while flowing
through condensers or heat exchangers may be cooled for reuse by suitable
contact with atmospheric air. Of the equipment used in this process—spray
ponds, cooling ponds, crossflow towers, natural-draft cooling towers, and
mechanical-draft cooling towers, only the last are considered in detail here.

435
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Definitions

The material undergoing transfer will be designated component 4 and will
be referred to as vapor when in the nonliquid state. The insoluble,
nontransferring gas will be designated component B. Whereas mass or
molal units and concentrations expressed in mass or mole fractions are
convenient in some areas of mass transfer, the humidification literature is
predominantly in terms of mass units relative to a fixed mass of the inert
component B. Most available charts and tabulated data are in these terms,
which are accordingly adopted in this chapter. Many of the definitions in
common use were given by Grosvenor (1908).

Humidity, sometimes called “specific humidity” or “humidity ratio,” is
defined as the number of pounds of vaporized component 4 per pound of
gas B. Thus if the gas phase total pressure is P, the humidity is

M,p,

" M,(P—p,) )

where P is assumed low enough for the gas-vapor mixture to be regarded
as ideal. At saturation under the prevailing temperature, p, = P,, and

M, P,

Jcs= MB(P—PA)

(9.2)

Relative humidity, usually expressed as a percentage, is a meteorological
term given by

Pa

3= 10032

(9.3)

Percentage humidity or percentage absolute humidity is defined to be the
ratio of equation 9.1 to equation 9.2, expressed as a percentage:
p4(P—P )

JC, =100
“ PA(P_pA)

(9.4)
Comparison between equations 9.3 and 9.4 shows that the relation

between the relative and percentage or absolute humidities is

(P —-P A)

(P-py)

Humid heat is the heat needed to increase the temperature of one pound

3¢, =3Cs (9.5)
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of gas B plus its associated vapor 4 by 1°F. In algebraic form,
€, =C3+ 3,y (9.6)

For the air-water-vapor system at normal temperatures the average
specific heats are

0= Cpa =045 Btu/(Ib) (°F)

P

Cpair=Cpp = 0.24Btu/(Ib) (°F)
Thus, with equation 9.6, for this system,
¢,=(0.24+0.45 3C ) Btu/(Ib dry air) (°F) (9.7)

Enthalpy or humid enthalpy of a gas-vapor mixture is taken to be the
enthalpy of the mixture per pound of the insoluble carrier gas B. Thus

H=H,+3CH, (9.3)
where

H =humid enthalpy, Btu/1b of B,
Hy = enthalpy of B, Btu/Ib of B,
H, =enthalpy of 4, Btu/Ib of 4,

JC =humidity, 1b of 4 /1b of B.

The standard reference state for humid-enthalpy calculations is indi-
cated by stating the temperature and pressure and with the vapor (4)
condensed to liquid form. Different reference temperatures are often used
for the two components, so that ideally,

T, T,
H=HB+JCHA=fT chdT+3(3(f cpAdT+)\A0) (9.9)

Ty

where A,, is the latent heat of vaporization of component 4 at T, in
Btu/Ib. When T'_ equals T,

T,
H=fT_ (c,p+ 3Cc,,)dT+3CA,_

= fZ*csdn 3N,
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The usual reference state for water is liquid at 32°F and 1 atm, and for
dry air it is 0°F and 1 atm. The enthalpy of an air-water-vapor mixture at
t°F is then given by equation 9.9 as

H=024(1°F—0) +3C [0.45(¢°F —32) + 1075.2]

in which 1075.2 is the latent heat of vaporization of water at 32°F in
Btu/Ib. Simplifying,

H=c,t+1060.83C Btu/1b of dry air (9.10)

Humid volume of a mixture of gas B and vapor 4 is the total volume,
measured in cubic feet, of one pound of dry gas plus its associated vapor at
any specified temperature and pressure. Assuming ideal behavior, there-
fore, at t°F and P atm,

~ 359(t+460)( 1 %

— 4+ 3 i
vy= 490P Ma+ MA)ft /1b of dry air. (9.11)

The saturated volume is given by equation 9.11 with JC replaced by 3¢ s
from equation 9.2.

Dry-bulb temperature. This is the temperature measured when a
thermometer is located within a mixture of vapor and gas in the usual way.

Dew point—when a specimen of humid gas is cooled at constant pressure
and humidity, a temperature will be reached at which the gas is saturated
with moisture. The temperature at which this occurs is the dew point.

The Wet-Bulb Temperature

Suppose that a large amount of a mixture of vapor 4 and gas B at a
temperature above its dew point is brought into adiabatic contact with a
very small amount of liquid 4 having a temperature initially about the
same as that of the gas. Under such circumstances changes in the condi-
tion of the liquid do not significantly affect the temperature or humidity of
the gas with change in time.

Because the gas is unsaturated, the liquid begins to evaporate under the
influence of the partial pressure difference P, —p,, where P, is the vapor
pressure of 4 at the surface temperature of the liquid and p, is the partial
pressure of A in the bulk of the gas. This removal of latent heat by the
evaporation process will cool the liquid—eventually below the temperature
of the bulk of the gas, T;. Heat will consequently flow from the gas to the
liquid, which will reach a steady-state temperature 7, the wet-bulb tem-
perature.
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Measurement of the wet-bulb temperature is effected by using a
thermometer with a bulb covered with a wick which is thoroughly wetted
with the liquid in question. Suspension of this thermometer in a fast-
moving stream of the gas under investigation enables 7, to be read when
steady-state conditions are reached.

The process may be represented schematically in Figure 9.1, which
shows a small liquid droplet surrounded by a large amount of gas at a
dry-bulb temperature 7. At steady-state conditions the heat transferred to
the liquid from the gas is just sufficient to provide the latent heat of
vaporization and the sensible heat needed to raise the temperature of the
evaporated material from T, to T:

gy =M N A [AAW+CPA(TG_TW)] (9.12)

where A, is the latent heat of vaporization of 4 at T,, in Btu/Ib. In the
absence of significant radiation from the surroundings, and neglecting the
effect of mass transfer on A, the rate of heat transfer is also given by

qH=hGA(TG_Tw) (9-13)

where A is the liquid surface and &g is the heat-transfer coefficient in the
gas. The rate of mass transfer may be expressed as

MANAA=MAkGA(PAw“PA) (9-14)

Thus combining equation 9.12 and the steady-state equations 9.13 and
9.14,
hc( Ts— Tw)

MAkG[AAw-*-cpA(TG—Tw)]
qH BTU/hr.
(due to AT =Tg -Tw)

Pyw—Pa= (9.15)

Gas -Vapor
Mixture at M. N, A lbs of AVapor/hr
TG'%DA ATA ) .

due to Ap, =P -
e (du Pa A Py
L -
E:—_——: Liquid Droplet

at Ty
)\A* MyNy A BTU/hr

Figure 9.1. Steady-state heat and mass transfer between a small amount of liquid and a large
amount of gas.
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When p, <P and P,, <P, equation 9.1 may be solved for P,, and p,
and the results inserted in equation 9.15 to obtain

h T,-T
Jc _ = G G w )
" Jc (kEMBP)[ AAw-{-cj‘p’«i(TG_Tw) J (9 16)

where JC,, is the saturation humidity at the wet-bulb temperature T,. When
¢,4(Ts— T,) may be neglected in comparison with A,

3¢ (.t T~ T, 9.17
w— 3= kM, P A (9.17)

It is evident that measurement of the wet- and dry-bulb temperatures of
a gas specimen will enable its humidity C to be calculated from equation
9.17, provided that the term h,,/ k&MpyP can be evaluated. In this regard it
may be noted that for ideal gases,

Ap
N, =kEAp,=k*Ac, =k R;
SO
k*
*_ _¢€
ke RT

The gas flow around a thermometer may resemble flow normal to the
axis of a cylinder. Alternatively, depending upon the bulb geometry, it may
resemble flow around a sphere. For either configuration the j factors take
the form given by equations 6.101 and 6.102. Thus, when 4 is dilute, from
Ju=Jps

2/3
o 5] -2
k: pav P/ av NPr RT p/av NPr

av

2/3

av

These expressions for k% and for hg/k} may be combined with the term
hg/kEMyP on the assumption that M,,/My=10 to obtain

h Ng.
G . Nse
kEMBP _(cp)av(N ) (918)

Pr/av

In the case of the air-water-vapor system at a pressure of 1 atm, the
equality in equation 9.18 assumes a value of about 0.26. For many organic
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vapors in air the value is greater by a factor of around 2, partly because of
changes in the relative magnitudes of Schmidt and Prandtl numbers.

In view of the constancy of the term hg/k&MyP for a given system, as
shown by equation 9.18, it follows from equation 9.17 that the wet-bulb
temperature is determined only by the temperature and humidity of the
gas when radiation effects are negligible.

The Adiabatic Saturation Temperature

In contrast with the physical situation considered in developing re-
lationships for the wet-bulb temperature, attention is now directed to the
case of a limited amount of unsaturated gas in adiabatic contact with a
recirculated body of liquid large enough for its temperature to stay
constant at T,. The gas is both humidified and cooled during this process,
and with sufficiently intimate contact, it will leave at temperature T,in a
condition of saturation. It will be supposed that the liquid lost by evapora-
tion is made up with liquid which is also at T, the adiabatic saturation
temperature.

It should be noted that, unlike the situation considered in Figure 9.1, the
quantities T and p, are no longer constant, so that steady-state equations
analogous to 9.13 and 9.14 cannot be written for the present conditions,
shown schematically in Figure 9.2.

An enthalpy balance may be written for the process with T, as datum
and using inlet values of T; and 3C:

(¢5+ GccpA) (T—T,) +3CA, =-JCTS)\AS
or, with equation 9.6,

T~ 1, 9.19
= (9.19)

5CTs— GC=CS(

5

Relation between the Wet-Bulb and Adiabatic Saturation Temperatures

Comparison between equations 9.17 and 9.19 shows that the two expres-
sions become identical—and hence T, becomes equal to T,—when
hg/kEMyP equals the humid heat c,. Equation 9.18 indicates that this
occurs when Ng = Ny, and ¢, =(c,),,- For most systems these requirements
do not hold, but, fortuitously, the conditions are approximately satisfied in
the important case of the air-water-vapor system when the humidity is not
very high. The approximation hg/kgMpP=c, for the air-water-vapor
system is known as the Lewis relation (Lewis, 1922) and the ratio Ns./Np,
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Gas at Tg, . # ,P

T ?
Recirculated s’ As
Liquid at Ts
Pump
—T—Contactor
Make - up
Liquid at Tg

Gos at Tg .J{QpA

Figure 9.2. Steady-state heat and mass transfer between a large amount of liquid and a
limited amount of gas.

is called the Lewis number, Nyi.. As a result, then, of the approximate
validity of the Lewis relation, the wet-bulb and adiabatic saturation
temperatures are effectively equal for air-water-vapor mixtures. In most
other systems the adiabatic saturation temperature is lower than the
wet-bulb temperature, as shown experimentally by Sherwood and Comings
(1932).

The Psychrometric Chart

The properties of mixtures of any given gas-vapor system, as defined
earlier in this chapter, are conveniently represented on the psychrometric
chart. An example of such a chart for the air-water-vapor system at a total
pressure of 1 atm appears in Figure 9.3.

Vapor-pressure data as a function of temperature have been used with
equation 9.2 to prepare the 100-percent-saturation curve, which relates to
temperature as abscissa and humidity as right-hand ordinate in the figure.
The definition of percentage humidity shows that the curves for various
constant percentage humidities were established by interpolating linearly
between the 100-percent-saturation curve and the abscissa.

The plot of humid heat versus humidity is a representation of equation
9.7 and uses axes at the top and the right side of the chart.

Equation 9.11 has been used to obtain the lines showing specific volume
of dry air and saturated volume as functions of temperature. The volume
scale appears at the left in the figure. The humid volume of air with a given
percentage humidity is found by linear interpolation between the two lines
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at the appropriate temperature.

The adiabatic saturation lines are plots of equation 9.19, each line
corresponding to a constant value of T, represented by the abscissa of its
intersection with the 100-percent-saturation curve. Equation 9.19 shows
that for a given T, it yields a plot of JCversus 7;; with a slope of —¢, /A
According to equation 9.6, ¢, varies with humidity, and of course A, is
also somewhat dependent upon T}. It follows, therefore, that the adiabatic
saturation lines are neither strictly linear nor parallel in rectangular
ccordinates. Some presentations of the chart compensate for this by
distorting the axes so as to render the lines both linear and parallel in order
to facilitate interpolation. This refinement appears unnecessary in Figure
9.3, in view of the fact that, although two adiabatic saturation lines remote
from each other—say, at the top and bottom of the chart—are not parallel,
any two consecutive or immediately adjacent lines are sufficiently close to
being linear and parallel that the error in interpolation is negligible.
Indeed, if greater accuracy is desired, equation 9.19 itself may be applied
to the problem at hand.

Psychrometric charts for the air-water-vapor system at atmospheric
pressure but covering much wider ranges of temperature are given in Perry
(1950, pp. 759, 765, 766). Page 767 of the same reference gives a chart for
water vapor and air mixed with combustion gases, and pp. 813-816 give
charts for the binary systems of air mixed, respectively, with vapors of
carbon tetrachloride, benzene, toluene, and ortho-xylene. Psychrometric
charts may of course be prepared for other systems at any specified
pressure. Inspection of the relevant equations among 9.1 to 9.19 shows that
the information needed for such a construction consists of the molecular
weights and specific heats of components 4 and B, and the latent heat of
vaporization and vapor pressure of component 4, both as functions of
temperature over the range of interest. The use of the psychrometric chart
will be illustrated with the following example.

Ilustration 9.1.

The air supplied to a processing unit at a total pressure of 1 atm is found
to have a dry-bulb temperature of 80°F and a wet-bulb temperature of
60°F. Use the psychrometric chart and relevant equations to evaluate the
properties of this humid air.

SOLUTION. For the air-water-vapor system, 7, and 7, are effectively
equal. The condition of the air is therefore represented by the intersection
of the vertical at 80°F with that adiabatic saturation line which terminates
on the 100-percent-saturation curve at a temperature of 60°F. The humid-
ity of the air is accordingly read from Figure 9.3 as 0.0065 1b of water
vapor per pound of dry air.
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The intersection of the vertical at 80°F with the 100-percent-saturation
curve shows that this air would hold 0.0222 1b of water vapor per pound of
dry air when saturated. The percentage humidity of the air supply is
therefore

0.0065
=100| == |=29.
3, 00( 0.0222) 3 percent

The partial pressure of water vapor in the air is obtained from equation
9.1 as

__Xp
pA MA . 3{2
MB
In the present example, P=1 atm, M, = 18, M;=29, and 3C=0.0065, so
that

0.0065(1)

=——————=0.01 .
I 15 40,0065 0.01036 atm

From steam tables, P, at 80°F=0.5067/14.7=0.0345 atm. The relative
humidity is therefore

L 0.01036 )
3= 100( 0.0345 )—30.1 percent

The humid heat is read at the top of Figure 9.3 as the abscissa of the
intersection of the humid-heat line with the horizontal through JC=0.0065.
The value found is ¢,=0.241 Btu/(°F)(Ib dry air), which is within 1
percent of that calculated from equation 9.7.

Equation 9.10 shows the humid enthalpy of the air to be

H =0.241(80) + 1060.8(0.0065) =26.18 Btu/Ib dry air

The specific volume of dry air at 80°F is found from the psychrometric
chart to be 13.6 ft*/Ib dry air, and the saturated volume at the same
temperature is 14.1 ft* /1b dry air. The humid volume is therefore

oy =13.6+ (14.1-13.6)0.293=13.75 ft* /Ib dry air

The dew point is read as the abscissa of the intersection of the 100-
percent-saturation curve with the horizontal through 3¢=0.0065. A dew
point of 46°F is obtained by this procedure.

The definitions and relationships presented so far in this chapter are of
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value in a most important operation, namely, the cooling of water by
contact with air. In this application water which has absorbed heat while
flowing through condensers or heat exchangers is cooled before reuse by
contact with atmospheric air in some suitable equipment. Mechanical-draft
cooling towers are among the most commonly used devices for this
purpose, and their design is considered in some detail here. The treatment
utilizes an enthalpy driving force as first put forward by Merkel (1925).

In mechanical-draft towers, air flows upwards under the influence of a
fan located at either the top or the bottom of the tower. Water is
distributed near the top and flows countercurrently to the air over a system
of wooden grids or baffles intended to promote intimate contact between
the gas and the liquid. Design procedures involve the formulation of an
operating line, rate equations, and NTU and HTU relationships in terms
which express the simultaneous transfer of heat and mass, so as to
establish tower dimensions and operating conditions which will achieve a
specified water-cooling load.

The Operating Line

A relationship connecting some appropriate bulk characteristic of each of
the two phases at a given section of the tower is obtained by a suitable
balance and is called the operating line. Consider the water-cooling tower
sketched in Figure 9.4, which also defines much of the terminology to be
used. Note that the primes on Gj and L’ denote flow rates in mass units
instead of the molal units mostly used in Chapter 7. This facilitates the use
of published psychrometric data for the air-water-vapor system, which is
commonly in these terms.

The water is to be cooled from a specified T, to T;,, and it is desired to
find the necessary tower height Z. The quantities which are known or
deducible from wet- and dry-bulb temperature measurements as shown in
Ilustration 9.1 are T,,, T,y Ty G L}, H,, and3C,. A value is also
selected for the column cross section S. An enthalpy balance over the
differential volume SdZ gives

d(L'h) = G,dH (9.20)

Consideration of the magnitudes of the specific heat ¢, and latent heat
of vaporization of water shows that only a small fraction of the water is
evaporated during the cooling process. In fact, for each 10°F cooling,
about 1 percent of the water is evaporated (Denman, 1961). Then, noting
that the variation in ¢, is small,

d(L'h)=L'c, dT, = G,dH (921)
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Figure 9.4. Terminology for a water cooling tower. a,,a,,: interfacial areas for heat and
mass transfer per unit packed volume, ft>/ft%; Gj,L": flow rate of dry air in the air-water
vapor mixture, and water flow rate, Ib/hr; Z: tower height; S: cross-sectional area of empty
column; H, h: gas and liquid enthalpies.

Integration over the tower gives

L'c
Hl—H2=T/L(TL1—TL2) (922)
B
Equation 9.22 defines the operating line for the tower in the H-T,
coordinate system. The plot will be essentially linear because of the
effective constancy of the term L'c, /Gy,
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Transfer-Unit Expressions for Simultaneous Heat and Mass Transfer

Sensible heat is transferred from the interface to the bulk of the gas-vapor
mixture at the following rate in the element of tower volume SdZ, if the
effects of low mass-transfer rates on h; are neglected:

Aqp6= Gye,dTo=hsay( Ty~ T, )SdZ (9.23)

where T, is the gas-phase temperature at the interface. It will later be
found convenient to express the heat-transfer coefficient, A, in terms of
the mass-transfer coefficient k&. This is accomplished by means of the
Lewis relation, valid only for the air-water-vapor system, giving A
= kg My Pc,. Inserting this expression for hg in equation 9.23 results in

Gye, dTo=kEa, My Pc,( T5,—T;)Sdz (9.24)
The rate of mass transfer in the gas phase from the interface is
AN, M, = Gpd 3= kEay M, (Pyi—pP4)SdZ (925)

The partial pressures of water vapor at the interface and in the bulk of
the gas stream (p,; and p,) may be expressed in terms of humidities by the
use of equation 9.1. Accordingly, when p 4 and p, are much less than P,
equation 9.25 becomes

Gpd 3C=k3a, M, P(30,— 3C)SdZ (9.26)

Both sides of equation 9.26 are now multiplied by 1060.8 and the result
added to equation 9.24 to obtain the following expression for simultaneous
heat and mass transfer:

G3[1060.843C + ¢,dT; | = 1060.8k%a,, M, P(3¢, —3C) SdZ
+kgagMyPc (T, —T;)SdZ (9:27)

Equation 9.10 shows that the contents of the square brackets in equation
9.27 are equal to dH. Then, assuming that ay=a,=a, as found experi-
mentally at high flow rates of both phases (McAdams et al., 1949; Hensel
and Treybal, 1952),

GpdH = k3aMy P[1060.8(3C,—3C) +¢,(Ty,— T;)|SdZ  (9.28)

Combining equations 9.10 and 9.28,
GpdH=kEaMyP(H,— H)SdZ (9.29)
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Equation 9.29 is merely a rearrangement of equation 9.27 and therefore
represents simultaneous heat and mass transfer, showing that an enthalpy
difference is the appropriate driving force. It is restricted to the air-water-
vapor system because the derivation involved the use of the Lewis relation.
The expression may be rearranged for integration, assuming kxa/Gjy is
constant, as follows:

(NTU) =

, ktaM,PS -z _ kiaMPSZ
dH 07 [Taz- 2= (930)
0

w, H—H Gy Gy

The first integral defines the number of individual gas-enthalpy transfer
units. Physically, this may be regarded as the number obtained by dividing
the average enthalpy driving force, (H,— H),,, into the total change in
gas-phase enthalpy achieved in the tower, H,— H,. The corresponding
height of an individual gas-enthalpy transfer unit is given by

zZ __ G
(NTU)4 kEaMyzPS

(HTU)g= (9.31)

The application of equation 9.30 to the determination of the (NTU),
requires a knowledge of the interfacial gas-phase enthalpy H, correspond-
ing to the enthalpy of the bulk of the gas, H, at any given cross section in
the tower. This may be obtained in terms of temperatures in the liquid and
appropriate constants by considering the rate at which heat is transferred
to the interface from the main body of the liquid. Thus

dgy, =L c,dT, =h a(T,—T,;)SdZ (9.32)
A combination of equations 9.21, 9.29, and 9.32 gives
h a(T,—T,)dZ=ktaMyP(H,~ H)dZ

If it is assumed that resistance to heat and mass transfer is negligible at
the interface, then T, equals Ty, and H, is the saturation enthalpy
corresponding to Ty, so that

h,a H-H

T kEgaMyP Tg—T, (9:33)

Equations 9.30 and 9.33 are used to evaluate (NTU)g and Z by a
graphical procedure, using a plot of H versus T, for saturated air, which
also constitutes a plot of H; versus Tg,.

In systems other than air—water vapor, for which the Lewis relation is
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invalid, or when a, does not equal a,,, equation 9.29 will not hold.
Reference should then be made to Lewis and White (1953) and Olander
(1960, 1961).

Evaluation of Number of Transfer Units

The integral in equation 9.30 may be evaluated numerically by graphical
integration. Information for this procedure is obtained from the plot of the
saturation or equilibrium curve and the operating line in (H,T,)
coordinates, as sketched in Figure 9.5. (Reference should also be made to
Figure 9.4.)

Quantities which are known or deducible from wet- and dry-bulb
temperature measurements include 7, T;,, Ty, Gpy, LY, Hy,3C,, and ;.
Now Gp,=Gp =G and Ly=L;=L’, so that substitution into equation
9.22 enables H, to be evaluated and the operating line to be plotted in
Figure 9.5. The equilibrium curve for saturated air could be obtained from
water vapor-pressure data and equations 9.2, 9.7, and 9.10 or from the
tabulated data in Perry (1963, pp. 15-6-7).

For any intermediate point in the tower, such as (H,T}) on the operat-
ing line, the corresponding value of H, is located at the intersection with
the equilibrium curve of the line through (H, T,) of slope —h,a/ k&aMyP,
in accordance with equation 9.33. Assuming, therefore, that values of
hpa/kga are available (see later) this procedure enables evaluation of a
series of H;— H values between H, and H,. A plot of 1/(H,— H) versus H
is then prepared, and the (NTU),; is given by the area under the curve

Equilibrium Curve
For Saturated Air,
H[ VSs. (TLI=TG|)'

Hyvs. T

______ Operating Line,

— 06 ! ]
— — | Slope Lc|_/GB
-h a

Slope=+—
kg aMgP

Enthalpy of Air-Water

Vapor Mixtures, H.

Water Temperature, TL or TLi

Figure 9.5. Evaluation of components in expressions for NTU—water cooling.
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between the limits of integration. The tower height is next obtained from
the right side of equation 9.30.

As a first approximation, in the absence of information on the ratio
hya/kka, it is sometimes assumed that the temperature drop through the
liquid is negligible, in which case T, = T;,= T;;. Equation 9.33 shows that
—h,a/k%aMyP is then infinite, so that H, is estimated as the ordinate of a
point on the equilibrium curve vertically above the corresponding point
(H,T,) on the operating line. This approximation, in which H, is estimated
as H,, leads to replacement of the individual driving force H,— H by an
overall driving force H, — H, because H, is the enthalpy of air saturated at
the bulk temperature of the liquid, 7;, and H is the existing enthalpy of
the air at the point in question. However, such an overall driving force is
more properly used with an overall coefficient K, defined with reference
to equation 9.29 as follows:

G,dH =k2aMyP(H,— H)SdZ=K2aM,P(H,—H)SdZ (9.34)

Rearrangement yields the following expressions for the number and height
of overall gas-enthalpy transfer units:

H, KXaM_ PSZ
_ dH __ 8¢9
(NTU)OG" o, HL—H G,B

(9.35)

’

(HTU) pg= (9.36)

B
KZXaM,PS

It is important to note, as pointed out in Chapter 4, that the use of
constant overall coefficients is justified only when the equilibrium curve is
effectively linear over the range of interest, or alternatively, in the present
case, when the resistance to heat transfer in the liquid phase is negligible,
so that T, = T; = T;. Evidence regarding the validity of the latter alterna-
tive is currently inconclusive.

The availability of individual or, when appropriate, overall coefficients
or HTU values from pilot-plant or full-scale experimental runs enables the
required tower height to be calculated as

(NTU) o(HTU) ;= (NTU) ,(HTU) =2 (9.37)

As noted in Chapter 7, it is generally preferable to design in terms of
transfer units, rather than by direct use of transfer coefficients with
integrated forms of equation 9.34. This is because the HTU varies less with
flow rate than coefficients do, thereby providing a more stable basis for
design.
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The Axial Temperature-Enthalpy Profile for the Air-Water-Vapor

Mixture
A knowledge of the variation in temperature and enthalpy of the air—
water-vapor mixture along the tower is of interest; location of the T.-H
profile beneath the equilibrium curve corresponds to air that is below
saturation and incapable of fog formation. The information may be used
in estimating the individual transfer coefficients hga, s, a, and k%a from an
experimental run on a pilot or full-scale unit. The procedure for establish-
ing the T;-H profile will accordingly be outlined here, following Mickley
(1949).

Equation 9.29 is divided by equation 9.23 to obtain

GydH  kkaM,P(H,—H)SdZ
Gy, dT;  hga(Tg—Tg)SdZ

or

H-H
dH _ 1T (9.38)
dT; T~ Tg

after cancellation of the term h;/k%MyP with ¢, in accordance with the
Lewis relation. Equation 9.38 shows that the rate of change of air enthalpy
with air temperature equals the slope of the line joining the point repre-
senting the bulk conditions of the air, (H, T;), to the point representing the
corresponding interfacial conditions of the air, (H;, Tg,). The latter point,
of course, lies on the equilibrium curve.

The steps in the construction of the T;-H profile will now be itemized
with reference to Figures 9.4 and 9.6, starting at the bottom of the tower.

Step 1. Draw line ab, of slope — h,a/kkaMyP, through point (H,, T, ,).
This construction follows equation 9.33 and locates the interfacial condi-
tions (point b) at the bottom of the tower.

Step 2. Locate point ¢, having the coordinates (H,,7,), from the
specified state of the inlet air.

Step 3. Join points ¢ and b, and in accordance with equation 9.38, the
air condition will follow line cb.

Step 4. At point d the air conditions are sufficiently modified to require
a new direction for the 7;-H profile. Accordingly, from point e (at the
intersection of the operating line with the horizontal through d) draw a line
of slope —h,a/k}aMyP to locate the new interfacial conditions at point f.

Step 5. Join point d to point f to obtain the new path for the air
condition. Continue along this path until point g is reached; then locate
the new interfacial conditions (point i) from point A.
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Figure 9.6. Construction of the T;-H profile for the air-water-vapor mixture in a water
cooler.

Step 6. In this manner construct the curve through points ¢, 4,g,...,
finally reaching the point (H,,Tg,), the condition of the air leaving the
contactor. This curve is the desired enthalpy-temperature profile for the
air-water-vapor mixture in the tower.

The vertical intervals between lines ac,de,gh,... are arbitrary and contri-
bute to the approximate nature of the method. An additional factor
causing inaccuracy is the frequently close approach to saturation of the air
near the outlet.

Experimental Evaluation of Individual Rate Coefficients

The three individual rate coefficients, hga, h, a, and kZa, used in equations
9.23, 9.25, and 9.32, and subsequent manipulations, may be determined by
a graphical technique with data obtained in a single pilot-plant run using
the packing and operating conditions to be encountered on the full scale. It
should be noted, however, that rate coefficients on the small scale
frequently exceed those found on the large scale, perhaps because of liquid
channeling and poorer gas-liquid contact in larger equipment.

The inlet and outlet temperatures of the water and the inlet and outlet
wet- and dry-bulb temperatures of the gas are measured, together with the
water flow rate, in the single experimental run. This permits the calculation
of the enthalpy and humidity of the gas stream at each end of the tower by
the methods of Illustration 9.1.
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The terminal points on the operating line and on the temperature-
enthalpy profile for the air-water-vapor mixture are next plotted on the
enthalpy-temperature diagram of Figure 9.6. A constant, assumed value for
—hpa/kkaMgP is used to construct the temperature-enthalpy profile for
the air-water-vapor mixture throughout the tower, in the manner detailed
earlier. If this profile does not pass through the known upper terminal
point (H,T;,), a new value of —h,a/ kiaMyzP is assumed and the
procedure repeated until coincidence is obtained between the known and
constructed locations of (H,, T,).

Having found the correct value of —h a/ kiaMyP in this way, the
(NTU); for this experiment is evaluated by graphical integration of
equation 9.30 as previously described. The values of M, P, Z, and Gg/S
used in the run are known, allowing k2a to be obtained as
G3(NTU);/MyPSZ. Since k%a and —h,a/k&aMyP are now known, h, a
can be calculated. The quantity hga is finally obtained from the Lewis
relation for the air-water-vapor system, as hca=kgaMyPc, .,
the average of the humid heats at the top and bottom of the tower.

This experimental determination assumes that the process is adiabatic
and that the interfacial areas for heat and mass transfer are the same
(ay = a,). Although the latter assumption is approximately true at high gas
and liquid flow rates, at lower rates a,, is greater than ay,. This is because
not all of the packing is wetted at lower flow rates, but both wet and dry
surfaces contribute to heat transfer, whereas only the wetted surface is
involved in mass transfer. A rather high degree of accuracy is needed in
collecting the data because point (H,,T},) is often near the equilibrium
curve. Attempts to avoid this problem by a reduction in tower height may
cause contributions from end effects to become excessive. (See Problem 9.4
at the end of this chapter.)

Some experimental data on mass-transfer coefficients in this type of
equipment are given by McKelvey and Brooke (1959) and by Norman
(1961). These same references also provide extensive practical information
on the construction and operation of cooling towers.

where ¢, is

The Mlmmum Air-to-Water Ratio

The terminology of Figure 9.4 is used in Figure 9.7 which shows operating
lines for two different sets of conditions. Any location where the operating
line touches (point 1) or becomes tangential (point 2) to the equilibrium
curve results in zero driving force at that point. When H,— H or H, — H
becomes zero, the column height becomes infinite, in accordance with
equations 9.30 and 9.35. These conditions therefore represent limiting
values for the slope of the operating line (L'¢; / Gy) from equation 9.22,
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and correspond to minimum values of G} for given sets of L', T, Tp,,
and H,. Operable conditions require G greater than the minimum.

It is of interest to consider the variety of air conditions at the foot of the
tower that are possible in successful operation. When the Lewis relation
holds and a,, =a,,, equations 9.29 and 9.34 demonstrate that an enthalpy
difference is the relevant driving force for simultaneous transfer of heat
and mass. Thus it is only necessary that the enthalpy H, of the entering air
be below H, ,, the latter being the saturation enthalpy of the bulk of the air
at the bulk water temperature 7,,. The'development of equation 9.1'9
shows the adiabatic saturation process to be one of essentially constant
enthalpy, so that the enthalpy of the air is determined by its adiabatic
saturation temperature 7,—which effectively equals the wet-bulb tempera-
ture for the air—water-vapor system. In consequence, it is quite feasible for
T, to be above T,, provided that T,, is below T},. The tower will also
function using inlet air with a humidity of 100 percent, provided that the
air temperature is less than 77,.

Cooling-tower design usually calls for 7,,—T,,, the so-called
“approach,” to be of the order of 10°F, using a value of T, high enough
to be anticipated only, say, 2.5 to 5 percent of the time during the summer.

Illustration 9.2
A small induced-draft cooling tower is to be constructed to cool water

i Equilibrium
S Curve
b
° :
® |
. ® I
< | Operating Line,
ST | Conditions I
a3 |
2 .?_’ [ Operating Line,
T X I Conditions II
w :
|

T, IT

| l

1 LZ | Ly

Water Ternperoiure.TL or TL‘

Figure 9.7. Two sets of conditions illustrating the minimum air /water ratio.
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from 110 to 80°F by means of air at 1 atm in countercurrent flow. The
dry-bulb temperature of the inlet air will be 78°F and, for design purposes,
the wet-bulb temperature appropriate to the region will be taken as 70°F.
The mass flow rates of the water and dry-air streams will be 1500 and 1250
1b/(hr)(ft> of tower cross section) respectively. Determine

(a) The factor by which the air flow rate exceeds the minimum value.

(b) The height of packing required when allowance is made for the
heat-transfer resistance in the water phase.

(c) The packed height indicated when the water-phase resistance to heat
transfer is neglected.

SOLUTION. Refer to Figures 9.4, 9.5, and 9.7. The enthalpy of any
air-water-vapor mixture will be effectively that corresponding to saturation
at its wet-bulb temperature. This is because the adiabatic saturation
process is one of essentially constant enthalpy, Hp,, where Hy is the
enthalpy of saturated gas at T,; also, for this system, T.=T,. Thus, from
Perry (1963, p. 15-6),

H,=34.09 Btu/1b dry air

Substituting in equation 9.22,

1500(1) ,
H,=34.09+ —2-= (110—80) = 70.09 Btu/Ib dry air

The operating line is drawn between the points (H,=70.09, T,,=110°F)
and (H,=34.09, T,,=80°F) in Figure 9.8, which also shows the equi-
librium curve, H, versus T, taken from tabulated data in Perry (1963, p.
15-6-7).

SOLUTION (a). The broken line tangential to the equilibrium curve in
Figure 9.8 represents operating conditions corresponding to G% min- The
upper terminal of the line is (90, 110°F), so that from equation 9.22,

Gomin _1500(1) (110—80)
S  90—34.09

=805 Ib dry air/ (hr) (ft* of tower cross section)

Therefore

Gy 1250
Gor 805 193

SOLUTION (b). The tower will be packed with wooden slats in grid form in
the manner used in the experiments of W. J. Thomas and P. Houston [Brit.
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Figure 9.8. The operating diagram for the cooling tower of Illustration 9.2.

Chem. Eng., 4, 160-163, 217-222, (1959)}. These investigators used a tower
1 ft square in cross section and obtained the following correlations of their
measurements for packed heights greater than 0.25 ft, after correction for
end effects:

0.26 , 072
_ LY (%
hGa—1.16cS( S) ( S ) (a)
0.51 , 100
_oo( L) (&2
hLa——O.O3( s) ( - ) (b)
0.26 , | 072
g _L_’) ]
kZa 0.04( 3 5 (c)

for 865< G/ S <1680, 1000< L' /S <2000.
The flow rates for the tower under consideration are within the ranges
for which the above expressions were established. Since the packings are
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identical and both towers are small, these relationships will be adopted for
the present problem. Equations 9.33 and (b) and (c) above give

h a 0.03(1500)**' (1250)

- kEaMyP T 0,04(1500)°%(1250)°(29) (1)

The construction shown schematically in Figure 9.5 is carried out for the
present case in Figure 9.8. Some of the values obtained appear in Table
9.1. (Corresponding values of H, are also listed for use in part ¢.)

The fourth column of this table is plotted against the first in Figure 9.9.
The area under the curve between the limits of integration gives (NTU),,
=6.92, so that from equations 9.30 and (c) above,

4 1250(6.92) 6
©0.04(1500)°%(1250)°7(29) (1)

54 ft

SOLUTION (c). If the water-phase resistance to heat transfer is neglected,
H; is estimated as H,, located on the equilibrium curve vertically above a
given point (H,T,) on the operating line. In such circumstances k&a
=K¢ga. Values of 1/(H,— H) are plotted against H in Figure 9.9. The
area under the curve between the limits of integration gives (NTU) =
3.14, so that from equations 9.35 and (c) above,

. 1250(3.14)
0.04(1500)%%°(1250)°"

=297 1t
(29)(1)

These results indicate that the liquid-film resistance to heat transfer is
not negligible, in accordance with the findings of Thomas and Houston,
who cite four references in support of this contention. In contrast, G.
Cribb (Brit. Chem. Eng., 4, 264-266, 1959) cites evidence and references

Table 9.1. Values obtained for the cooling tower of Illustration 9.2.

1 1

H H, H, H-H H —H
34.09 39.5 437 0.185 0.104
40.00 44.7 492 0213 0.109
50.00 54.7 60.0 0213 0.100
60.00 65.5 73.8 0.182 0.072

70.09 78.5 92.3 0.119 0.045
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indicating the reverse conclusion for practical design purposes. The point
remains somewhat controversial at present.

Part b, for example, could alternatively be solved with a digital com-
puter. The equilibrium curve (H; versus T;,) is always the same for the
air-water-vapor system and may be empirically represented by an equation
such as H,=a+ bT+ cTZ, where a, b, and ¢ are known constants for a
given T;-range. This could be used with equations 9.22, 9.30, and 9.33 to
program the form of analytical solution shown by Foust et al. (1960, pp.
308-9).

Tlustration 9.3
The following observations have been made during the operation at 1 atm
of a countercurrent water cooling tower located in a hot and arid region.

Water measurements: Air measurements:
Flow rate: 1500 b/ (hr) (ft*) Inlet dry bulb temperature: 122°F
Inlet temperature: 115°F Inlet wet bulb temperature: 65°F
Outlet temperature: 93°F Outlet dry bulb temperature: 100.5°F

Outlet wet bulb temperature: 93°F

0.24 T T T T T

1,0.16
T Area =6.92=(NTU)4

or

|Eozf /'Hﬁ’ vs H .
-
0.08 - —
0.04 + —
Area =3.14 =(NTU)0G
lo) I | | [

20 30 40 50 60 70 80
H,BTU/1b of Dry Air

Figure 99. Graphical integration to obtain NTUs for Illustration 9.2.
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If the packed height of the mechanical-draft tower is 5 ft, determine:

(a) The air flow rate.
(b) The individual coefficients hga, hya, and kka under these operating
conditions.

SOLUTION (a). Refer to Figures 9.4 and 9.6. From the wet-bulb tempera-

tures of the inlet and outlet air streams and the tabulation in Perry (1963,
pp. 15-6-7),

H,=60.25 Btu/Ib dry air
H,=30.06 Btu/Ib dry air
and from equation 9.22,

Gy _ 1500(1)(115~93)
S 60.25-30.06

=1095 Ib/ (hr) (ft?)

SOLUTION (b). The equilibrium curve is plotted in Figure 9.10, along with
the terminal points on the operating line [((H,T,,), (H,,T,,)] and on the
Ts-H profile for the air-water-vapor mixture [(H,Tg), (HyTs)) A
constant, assumed value of the tie-line slope, —h,a/ kEaMyP, is used to
construct the T-H profile for the air-water-vapor mixture by the six-step
procedure detailed in the text. The result of the final trial appears in Figure
9.10, where an assumed tie-line slope of —2.26 resulted in a T+-H profile
for the gas phase which terminated correctly on the known point (H,, T,,).
Only six rather large segments have been used in drawing the T.-H profile,
in order to avoid obscuring the construction.

Corresponding values of H and H, are read from the ends of the tie lines
in Figure 9.10 to obtain Table 9.2.

The integral in equation 9.30 is evaluated as the sum of the values in the
final column, giving (NTU);=1.57. From equation 9.30,

_ 1095(1.57)
29(1)(5)

The correct value of —h,a/kkaM,P was found in Figure 9.10 to be
—2.26, so that

h,a=2.26(11.88)(29)(1) =777 Btu/ (hr) (ft*) (°F)

kta =11.88 Ib-mole/ (ft*) (hr) (atm)

The humidities of the entering and leaving air are read from Figure 9.3
as 0.0007 and 0.0325 1b water vapor/Ib of dry air. The corresponding
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Table 9.2. Values obtained for the cooling tower of Illustration 9.3.

1 1 )\ a ( 1
H H, H-H AH (Hi_H)av H Hi—H)av
30.06 488 00534 494 0.0537 0.2653
35 535 00541 5 0.0541 0.2705
40 58.5 0.0541 5 0.0538 0.2690
45 63.7 0.0535 5 0.0524 0.2620
50 69.5 00513 5 0.0500 0.2500
55 755 00488 595 0.0475 0.2494
60.25 819  0.0462
Sum=1.5662

humid heats are obtained from the same figure as 0.240 and 0.253 Btu/(Ib
dry air)(°F). Thus C:‘;.av=0-5(0-240+0~253)=0-246’ and from the Lewis

relation,
hga= (11.88)(29)(1) (0.246) =84.6 Btu/ (hr) (f£) (°F)

Additional runs using various heights of packing would enable at least
partial corrections to be made for end effects in the manner of W. J.
Thomas and P. Houston [Brit. Chem. Eng., 4, 160-163, 217-222, (1959)1.

Illustration 9.4
To what temperature will the water be cooled in the tower of Illustration

9.3 if

(a) The air flow rate is increased (without flooding) by 100 percent?
(b) The inlet wet-bulb temperature of the air increases to 75°F?

These changes are to be considered separately and in turn.

SOLUTION (a). The slope of the operating line corresponding to the
increased air rate is

L'c, 1500(1)

— =———"=0.685
Gz 2(1095)

For the conditions of Illustration 9.3 the correct tie line slope,
—h,a/kktaMyP, was found to be —2.26. The slope under the new condi-
tions of air flow depends upon the way in which A, a and kZXa vary with
G,/S. This, in turn, depends on the type of packing used; thus, in a
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Figure 9.10. Construction of the T;-H profile for the gas phase in the cooling tower of
Illustration 9.3.

4-ft-square tower, H. J. Lowe and D. G. Christie [Inst. Mech. Eng. Heat
Transfer Symp., Paper 113, 933, (1962)] found that

1-n "
L’ Gp
(%) (3)
where n ranged from 0.4 to 0.8 with variations in packing. For illustration
purposes in the present case, it is supposed that h,a and k&a vary with

G/ S raised to the respective exponents 1.0 and 0.72, as in equations (b)
and (c) of Illustration 9.2. The new tie-line slope is therefore

2].0
~2.26 5557 = —275
In Illustration 9.3,
ktaM,PSZ

(NTU) o= === =157
B
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Figure 9.11. Location of the operating line for the cooling tower of Illustration 9.4a.

so that under the new conditions of part (a),

0.72
(NTU) ;= 1.5722

With the new slopes of the operating line and tie lines now known, the
position of the operating line is found by trial and error, such that
(NTU); = 1.29. The upper terminal of the operating line lies on the vertical
through 7, =115°F, and the lower terminal will be on the horizontal at
H,=30.06 Btu/Ib dry air. The results of the initial and final trials are
shown in Figures 9.11 and 9.12, the latter being constructed in a manner
analogous to that in Illustration 9.2. The water is evidently cooled to
82.5°F, as indicated by the abscissa of the lower terminal of the operating
line.

=129

SOLUTION (b). The solution for this case is similar in principle to that for
part (a). The slope of the operating line is the same as for Illustration 9.3,
because the air and water flow rates are now unchanged. The upper
terminal of the operating line will lie on the vertical at T, =115°F, and
the lower terminal will be on the horizontal at H,=38.61 Btu/lb dry air.
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Figure 9.12. Graphical integration to obtain (NTU); for Illustration 9.4a.

The latter is the enthalpy of an air-water-vapor mixture with a wet-bulb
temperature of 75°F (Perry, 1963, p. 15-6).

The slope of the tie lines and the (NTU),, will also remain the same as in
Illustration 9.3. This follows because #, a and k%a remain constant in view
of the unaltered flow rates (see, e.g., equations b and c in Illustration 9.2).
In addition, the variation in physical properties with humidity will not be
sufficient to change kZa significantly (see, e.g., Illustration 5.7).

The operating line is accordingly located by trial and error, so as to
satisfy all the above conditions. The correct position is found when the
subsequent integration (analogous to Figure 9.12) gives (NTU),=1.57.
The operating line resulting from the final trial in Figure 9.13 fulfills all
these requirements, and the abscissa of its lower terminal shows that the
water is cooled to 96°F.

Cocurrent Flow

Cocurrent flow of gas and liquid is not widely used, except in certain spray
chambers and in some laboratory studies such as experiments on a
wetted-wall column. In these cases, when the liquid is being cooled in
downward flow, the combination is one of hot liquid with gas of low
enthalpy at the top of the column, and cold liquid with highly humid gas
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Figure 9.13. Location of the operating line for the cooling tower of Illustration 9.4b.

of high enthalpy at the bottom of the column. The operating line is
accordingly beneath the equilibrium curve but with negative slope, in
contrast to the positive slope shown in Figure 9.5.

Illustration 9.5

Water enters an experimental spray tower at 100°F and is cooled to 81°F
by a cocurrent stream of air. The air enters with wet- and dry-bulb
temperatures of 45 and 72°F, and leaves with wet- and dry-bulb tempera-
tures of 63 and 76°F.

If the water flow rate is 500 1b/(hr)(ft?), the tower height is 4.5 ft, and
the operation takes place at atmospheric pressure, evaluate the air flow
rate and the individual coefficients hga, h,a, and k}a under these condi-
tions.

SOLUTION. From the wet-bulb temperatures and the tabulation in Perry
(1963, p. 15-6),
H,;=17.65 Btu/Ib dry air

H,=28.57 Btu/Ib dry air
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and from equation 9.22,

17.65—28.57 500(1)
T TG, /s

(100~ 81)

where the negative slope of the operating line reflects the co-current nature
of the process.

?B =868 1b/ (hr) (ft?)

The equilibrium curve, operating line, and terminal points on the T,-H
profile for the air-water-vapor mixture are plotted in Figure 9.14. Trial and
error shows that a tie-line slope (—h,a/ktaM,P) of —32 enables con-
struction of a T;-H profile which correctly passes through the known
terminal (H,, T;,). (The broken-line construction is shown for only three
of the five segments of the T;-H profile, to avoid obscuring the diagram.)

60 T T T
Equilibrium Curve—
for Saturated Air

50 |_Tie Line Slope = _

-32 (final trial)

40

30

H, T

Te - -
I/ Operating Line

Tg-H Profile for the Air-cherCD

Vapor Mixture (final trial)
1 1 1

70 80 90 100
TL'TL,- ,or TGi."F

20 "Hl,

Enthalpy of Air-Water Vapor Mixtures, BTU/Ib Dry Air.

Figure 9.14. Construction of the T;-H profile for the gas phase in the spray tower of
Illustration 9.5.
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Corresponding values of H and H; are read from the ends of tie lines
and used to evaluate equation 9.30 as
H,

dH__ s kea)(1)(3)

. H—H 868

(NTU)g=~

where the minus sign before the integral arises from the cocurrent nature
of the operation.

k%a=3.32 Ib-mole/ (ft*) (hr) (atm)

hya=3.2(3.32)(29) (1) =308 Btu/ (hr) (ft)*(°F)

From equations 9.7 and 9.10,

_ H,—0244 17.65—0.24(72)
~ 0.451,+1060.8  0.45(72) +1060.8

3, (¢, in °F)

=0.00034 1b water vapor /Ib dry air

_ 28.57-0.24(76)
2 0.45(76) +1060.8

=0.0094 b water vapor/Ib dry air

Substituting in equation 9.7,

¢, =0.24+0.45(0.00034) = 0.240 Btu/ (1b dry air) (°F)
¢,,=0.24+0.45(0.0094) = 0.244 Btu/ (Ib dry air) (°F)

=0.242 Btu/(1b dry air) (°F)

c:,av
The Lewis relation gives

hga=(3.32)(29)(1)(0.242) =233 Btu/ (hr) (¢*) (°F)

Dehumidification

The dehumidification of a warm gas-vapor mixture may be effected by
countercurrent contact with a cold liquid having the same composition as
the vapor. Part of the vapor is condensed, and cooling of the gas is
accompanied by warming of the liquid. In the air-water-vapor system,
where the Lewis relation applies, and when ay=a,,, the graphical con-
struction procedures are as described for water cooling, except that the
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operating line is now located above the equilibrium curve with positive
slope, and the individual and overall driving forces are reversed. Thus
equations 9.30 and 9.36 are used with the respective driving forces H—~ H,
and H—H,.

Hlustration 9.6

Warm, moist air is being cooled and dehumidified in a packed tower at 1
atm by countercurrent contact with cold water. The air enters at a rate of
1400 Ib dry air/(hr)(ft*) and with wet- and dry-bulb temperatures of 115
and 135°F. It leaves with a wet-bulb temperature of 85°F. The water
enters the top of the column at a temperature of 65°F and a flow rate of
1.35 times the minimum operable value. Measurements at these flow rates
on reduced heights of the same packing (such that the outlet air was
unsaturated) permitted the evaluation of —h;a/k%aM,P as —2.5.
Calculate

(a) The water flow rate.

(b) The water-outlet temperature.

(c) The outlet dry-bulb temperature and humidity of the air.

(d) The water removed from the air stream per 1000 Ib of dry air.

(¢) The (NTU),.

SOLUTION (a). Refer to Figure 9.4. The hot and cold ends of the column
are reversed in comparison with the case for water cooling. The top of the
column is now represented by the lower terminal of the operating line,
point 1, on the H-T diagram of Figure 9.15, located by the following
coordinates:

T, =85°F, so H;=49.43 Btu/Ib dry air
T,,=65°F

The upper terminal of the operating line will lie on the horizontal
through H,=104.98 Btu/Ib dry air. This is the enthalpy of an air-water-
vapor mixture with T,,, =115°F (Perry, 1963, p. 15-7).

The broken line from point 1 to the intersection of the equilibrium curve
with the horizontal at H, represents operating conditions corresponding to
Ly, The upper terminal of the line is (104.98,1 15°F), so that from
equation 9.22,

Lpa _ 1400(104.98-49.43)
S (1)(115-65)

L_
S

=1555 1b water/ (hr) (ft?)

1.35(1555) =2100 b water/ (hr) (ft?)
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SOLUTION (b). From equation 9.22,

1400

T,, =65+ ————
L2 2100(1)

(104.98 —49.43) = 102°F

SOLUTION (c). The operating line and the inlet air condition (H,, T,) are
plotted in Figure 9.15. Tie-line slopes of —2.5 are used to construct the
T,-H profile for the air-water-vapor mixture by the six-step procedure
detailed in the text. To avoid overcrowding, the broken-line construction is
shown for only the top four segments of the profile, which crosses the
equilibrium curve at point P. Fog would be expected to appear in the
tower beyond this point, although the subsequent path of the T;-H profile
is unclear. As stated by Thomas and Houston [Brit. Chem. Eng., 4, 220
(1959)),

The alternatives are that the air becomes super-saturated, indicated by the T;-H
profile crossing the equilibrium curve, or that the profile follows the line of the
equilibrium curve.

In the present case it is probable that the air will emerge saturated at 85°F.
Figure 9.3 shows that its humidity will then be 0.0264 1b water vapor /1b
dry air.

SOLUTION (d).

Water removed /1000 Ib dry air=1000(3C,—3C,)

—1000(0.0628 —0.0264) = 36.4 Ib water

SOLUTION (€). The direction of heat and mass transfer here is opposite to
that for water cooling. The left side of equation 9.30 therefore becomes

H,
dH
(NTU) =f
= ) H-H

i

Corresponding values of H and H, are read as the ordinates of the upper
and lower terminals of tie lines in Figure 9.15 and used to evaluate the
integral, as in Figures 9.9 and 9.12 or as in Illustration 9.3. The result is
(NTU),=3.12.

The water temperature is below the dew point of the air stream at all
locations in the tower.



470 Design of Cooling Towers from Rate Equations

3

>

5 120 T T T T

o Equilibrium Curve for

<~ 110} saturated Aj HooTg_
S Saturate ir @ 2 Gy
@ 100 A -
“w

2 90} —
= J

>

s 80 -
§ 70 Tg-H Profile |
> for the Air -

s 60H Water Vapor -
° Mixture

=

. S50 Operating Line

~ 1 ]

< a0 W Hi+Te; o Lmin/Gg

° Tie Lines,Slope=-2.5

> 30 ~
°

€ 50 ] | ] ] ] ] 1

S 60 70 80 90 100 110 120 130 140

TL,TLi,or Tg . °F

Figure 9.15. The operating diagram with the Tg-H profile for the gas phase in the
dehumidifying tower of Illustration 9.6.

Humidification and Gas Cooling with Liquid at the Adiabatic Saturation
Temperature

Consider the situation shown in Figure 9.2, in which a continuous stream
of gas is brought into contact with recirculated liquid. The temperature
throughout the liquid attains the adiabatic saturation temperature of the
inlet gas, T,, and the degree of saturation of the exit gas depends on the
intimacy and duration of contact between the two phases. Normally the
rate of addition of make-up liquid is low enough that small departures of
its temperature from T, have a negligible effect upon the conditions of the
main body of liquid.

In this operation 7,,=7,,= T;;=T, so that the operating line on the
H-T; diagram shrinks to a point. The gas cools and humidifies along that
adiabatic saturation line that terminates at T, on the psychrometric chart.
But the adiabatic saturation process is one of essentially constant enthalpy,
Hy,, where H, is the enthalpy of saturated gas at T_. There is consequently
no enthalpy driving force in this process, and the “operating point” just
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referred to lies on the equilibrium curve in the H-T, diagram. This
diagram therefore cannot be used; instead, design may be achieved in
terms of either the temperature or humidity driving force, both of which
are confined to the gas phase. These terms will not involve the Lewis
relation, so that the treatment applies to any gas-liquid combination. The
assumption ay = a,, may also be relaxed.

Relationships in terms of heat transfer are obtained from equation 9.23,
which is written as follows for this process:

Gy, dTg=hgay(T,— T)SdZ (9.39)
where T throughout the tower has the constant, known value 7,. This, of

course, contrasts with the situation in water cooling, where Tg; varies
throughout the contactor. Rearranging and integrating,

, T~ T, hgaySZ

(NTU)g=In To =T, Gyeom (9.40)
, G;?cs,av

(HTU);= W (9.41)

Alternative relationships in terms of mass transfer are obtainable from
equation 9.26, which takes the following form in the present case:

G}y d3e=kkay My P (37,~3¢)SdZ (9.42)

where 3¢, throughout the tower has the constant, known value 3¢, namely,
the saturation humidity at T,. Rearranging and integrating,

—30, _ kia,M,PSZ

3
(NTU)};=In—=

T G, (9.43)
//‘= ,B
(HTU)g —_—k{;aMMBPS (9.44)
The ratio of equation 9.44 to 9.41 shows that
HTU)¢ h.a
(HTU)G _ 6 (9.45)

(HTU);; B kz‘aMMBPcs,av

In the special case of the air-water-vapor system, the Lewis relation will
prevail, so that when ay=a,,, the right side of equation 9.45 becomes
unity and (HTU)g=(HTU);. In consequence, since Z=(NTU);(HTU);
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=(NTU)¢(HTU)g, it follows that (NTU)g= (NTU) for this particular
situation,

Hlustration 9.7

Air is being cooled and humidified adiabatically at 1 atm by passage
through a bed of 1-in. ceramic Raschig rings which are randomly packed
to a depth of 1 ft. Water is continuously recirculated countercurrently
through the bed from a small reservoir, so that its temperature attains a
single, steady value at all locations in the system. If the wet- and dry-bulb
temperatures of the entering air are 95 and 235°F and the flow rates of the
ingoing water and air are respectively 1500 Ib/(hr)(ft?) and 5300 ft? /(hr)
(ft?), determine

(a) The temperature and humidity of the air leaving the bed.

(b) The water flow rates which will give air with a humidity of 0.034 Ib
water vapor/Ib dry air, for dry-air rates of 200 and 500 1b /(hr)(ft?).

(c¢) The condition of the outlet air if the bed height is increased by 67
percent with the original flow rates.

(d) The ratio a; /a,,.

SOLUTION (a). Under adiabatic conditions the recirculating water will
acquire the adiabatic saturation temperature of the entering air; thus the
water temperature is 7, =T, ,=95°F. Figure 9.3 shows that 3¢, =0.005 1b
water vapor /Ib dry air, so that from equation 9.11,

359(235+460) / 1 0.005 3 Ly .
vy, = 292(1) (2—9 18 )— 17.65 ft° humid air/1b dry air
Gs _ 5300 : 2
<= 17.65 =300 1b dry air/ (hr) (ft )

The application of equation 9.40 or 9.43 will require a numerical value
of hgay or kfa,,. Correlations of these coefficients with air and water flow
rates in countercurrent operation through beds of ceramic Raschig rings
were obtained by F. Yoshida and T. Tanaka [Ind. Eng. Chem., 43,
1467-1473, (1951)]. Their bed was 10 in. in diameter and 12.5 in. deep, and
the water temperatures were constant at the adiabatic saturation values.
The apparatus was constructed to minimize end effects. The resulting
correlations were

Gl ;402
hGaH=O.117(TB)(L?) (A)

G/ 302
k;;aMMBP=0.45(TB)(L?) (B)
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for the ranges 137< Gp/S<586, 201< L'/ S<4160, 158°F < T, <302°F;
and for 0.6-, 1.0-, and 1.4-in. Raschig rings in random packing. It will be
supposed that the air and water enter and leave the bed in the same
manner as in the work of Yoshida and Tanaka. Conditions should then
permit the adoption of equations A and B above for the present case.

For illustration purposes, Solutions a and b are carried out using equa-
tion 9.43 with equation B, whereas Solution ¢ is performed using equation
9.40 and equation A.

From Figure 9.3, when T,,,=95°F, 3, =0.037, so that equations 9.43
and B give

0.2
. . 0.037-0.005 _ 045(300)(1500) (1) _
(NTU) =In =00 = 200 =1.943

3¢, =0.032 Ib water vapor /Ib dry air

The air condition through the bed follows the adiabatic saturation line
which terminates at 95°F in Figure 9.3. The abscissa of a point on this line
for which 3¢, =0.032 gives T, as 117°F.

SOLUTION (b). In this assembly the same result will be obtained for a
variety of air flow rates, assuming only that

137< G}/ S<586
0.2
. . 0037-0005 _045(Gp/S)(L'/S) (1)
(NTU)g =InG037-0.034 ~ G,/S

L’/ S=3000 Ib water/ (hr) (ft*)
Figure 9.3 shows that T;, = 107°F.

SOLUTION (c). The term c,,, will initially be approximated by c,, and
adjustment made after the first estimate of 3¢,. From equation 9.7,

¢,,=0.24+0.45(0.005) =0.242 Btu/ (Ib dry air) (°F)

Equations 9.40 and A above give

23595 _ 0.117(300) (1500)**(1.67)

= =349
Tg—95 300(0.242)

(NTU), =In

T4 =99.3°F
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The ordinate of a point with this abscissa on the 95°F adiabatic
saturation line of Figure 9.3 shows 3, =0.0357 1b water vapor/Ib dry air.
This is used to calculate ¢ as 0.256, so that c,,, becomes 0.249. The
revised result is then

| _aa0(0242) _
(NTU);, -3.49( 2 ) 3.39
Ty =99.7°F

3¢, =0.0356 Ib water vapor/Ib dry air

SOLUTION (d). The ratio of equation A to equation B gives

hgay _0.117

kia,M,P 045 ~0-%6

Combination with the Lewis relation shows that

9 _026 .,
aym Cs '

Evidently, in the experiments from which equations A and B were
developed, ay =a,,.

It should be noted that results different from equations A and B have
been obtained, for example, by W. H. McAdams, J. B. Pohlenz, and R. C.
St. John [Chem. Eng. Prog., 45, 241, (1949)] for adiabatic humidification
using 1-in. carbon rings as packing. Further differences were found for the
same operation by S. L. Hensel and R. E. Treybal [Chem. Eng. Prog., 48,
362, (1952)), whose packing consisted of 1.5-in. Berl saddles.

NOMENCLATURE

A, B Components 4 and B (for the air-water-vapor
system, A4 is water vapor and B is air).

A Area; total interfacial area, ft2.

a, ay, a,, Interfacial area per unit packed volume; for heat
transfer; for mass transfer, ft?/ft3.

C4 Concentration of component A, Ib-mole /6.

e Specific heat of liquid, Btu /(b)(°F).
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(HTU),, (HTU);,
(HTU);

(HTU)og

he: by
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Specific heat at constant pressure for component 4;
for air; average for a mixture; for component B: for
water vapor, Btu/(Ib)(°F).

Humid heat defined by and above equation 9.6,
Btu/(Ib B)(°F).

Average of ¢, at top and bottom of tower, Btu/(lb
B)(°F).

Mass flow rate of dry air in the air-water-vapor
mixture, 1b-mass /hr.

Enthalpy or humid enthalpy (defined by and above
equations 9.8 and 9.9) in the bulk of the gas, Btu/lb
B.

Enthalpy of 4; of B, Btu/Ib 4 or B.

Local value of H for the gas phase at the interface,
Btu/Ib B.

Enthalpy or humid enthalpy of air saturated at the
bulk temperature 7, of the liquid, Btu/Ib air (B).
Enthalpy or humid enthalpy of saturated gas at T,
Btu/Ib B.

Humidity or specific humidity (defined by and
above equation 9.1) in the bulk of the gas, Ib 4/1b
B.

Percentage humidity or percentage absolute humid-
ity, defined by and above equation 9.4.

Local value of 3¢ at the interface, Ib 4 /Ib B.
Relative humidity, defined by equation 9.3.
Saturation value of 3. defined by equation 9.2, Ib
A/lb B.

The saturation value of 3 at 7, 1b 4 /1b B.

The saturation value of 3 at T,, Ib 4/Ib B.

Heights of individual G-phase transfer units defined
by equations 9.31, 9.41, and 9.44, respectively, ft.
Height of overall G-phase transfer unit defined by
equation 9.36, ft.

Enthalpy of liquid, Btu/1b.

Heat-transfer coefficients in the gas and liquid
phases, Btu/(hr)(ft?)(°F).



476 Design of Cooling Towers from Rate Equations

hga, hya

Jps Ju

*
k&a

L/
MA’ Mav’ MB

NSc

(NTU),, (NTU),,
(NTU)

(NTU)g

P
PA
PAs’ PAw
Py

Dy
qu
9ucG

quL

Capacity coefficients of heat transfer in the gas and
liquid phases, Btu/(hr)(ft*)(°F).

The j factors for mass and heat transfer, equations
6.101 and 6.102.

Overall mass-transfer coefficient for low transfer
rates, defined by equation 9.34, 1b-mole /(ft?)(hr)
(atm).

Individual mass-transfer coefficient, N, /Ac,, ft/hr.
Individual mass-transfer coefficient; at low transfer
rates, N, /Ap,, Ib-mole/(ft?)(hr)(atm).

Capacity coefficient of mass transfer at low transfer
rates, Ib-mole /(ft*)(hr)(atm).

Mass flow rate of liquid water, lb-mass /(hr).
Molecular weights: of 4; average; of B.

Molal flux of component A relative to stationary
coordinates, Ib-mole /(ft?)(hr).

Transfer rate of 4 in entire column, 1b-mole/hr.
Lewis number, Ny /Ny,

Prandtl number, defined in Chapter 6.

Schmidt number, defined in Chapter 6.

Number of individual G-phase transfer units, de-
fined by equations 9.30, 9.40, and 9.43, respectively.

Number of overall G-phase transfer units, defined
by equation 9.35.

Total pressure, atm.

Vapor pressure of component 4, atm.

Values of P, at temperatures 7, and 7, atm.
Partial pressure of component 4 in the bulk of the
gas, atm.

Local value of p, at the interface, atm.

Rate of heat transfer, Btu/hr.

Rate of sensible heat transfer from the interface to
the bulk of the gas-vapor mixture in the entire
column, Btu/hr.

Rate of heat transfer to the interface from the bulk
of the liquid in the entire column, Btu/hr.

Gas constant, 0.73 (atm)(ft*) /(Ib-mole)(°R).

Cross-sectional area of empty column, ft2.
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T, T Tei» Tt
T, T, T, Absolute temperature; temperature m the bulk of the
gas; in the gas at the interface; in the bulk of the li-
quid; in the liquid at the interface; adiabatic satu-
ration temperature; wet-bulb temperature, °Ror °F.
T_,T, Ty Temperatures in equation 9.9, °R.
t Temperature, °F.
vy Humid volume, defined by and above equation
9.11, ft3/1b dry air.
z Tower height, ft.
AA.v’ AAw’
Ao Ao Latent heat of vaporization of component 4 at T;
at T,; at T_; at T, Btu/lb.
Pav Average density, Ib-mass/ft’.
Subscripts:
1 and 2 refer to conditions at the top and bottom of the
tower, respectively.
PROBLEMS

9.1 The air supplied to a dryer consists of 10,000 Ib dry air/hr at 145°F
and 20 percent humidity. The supply is prepared from air initially at 70°F
and 30 percent humidity by heating to 235°F, humidifying adiabatically at
1 atm to the required moisture content, and then reheating to 145°F.
Determine

(a) The temperature of the air leaving the humidifier.

(b) The adiabatic saturation temperature in the humidifier.

(c) The heat loads of the heater and reheater.

(d) The temperature to which the air would be raised before entering the
humidifier and the corresponding adiabatic saturation temperature if all
heating took place in the initial single stage.

(¢) The humidity, relative humidity, humid heat, humid enthalpy, humid
volume, wet-bulb temperature, and dew point of the final conditioned air.

9.2 Water is cooled from 115 to 85°F by countercurrent contact with air
in an induced-draft cooling tower at 1 atm. The air enters with a dry-bulb
temperature of 85°F, and the design wet-bulb temperature for the location
is 65°F. The water flow rate is 1250 Ib/ (hr)(ft? of tower cross section), and
the dry-air rate is 1.5 times the minimum. The mass-transfer coefficient
kZa is estimated to be 30 Ib-mole/ (ft*)(hr)(atm).

Determine the dry-air flow rate, the wet-bulb temperature of the air
leaving the tower, and the packed height required if hya/k&a is 60.
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9.3 The performance of a 1-ft-square countercurrent water cooling tower
packed with wooden slats was studied by Thomas and Houston [Brit.
Chem. Eng., 4, 160-163, 217-222, (1959)]. The following data are from their
experiment PP4, performed at 1 atm with a packed height of 33 inches.

Water rate 1000 Ib /hr ft2
Inlet water temperature 110.2°F
Outlet water temperature 96.7°F
Inlet air temperature (dry bulb) 73.8°F
Inlet air temperature (wet bulb) 62.6°F
Outlet air temperature (dry bulb) 82.9°F
Outlet air temperature (wet bulb) 80.5°F

For these conditions,

(2) Determine the (NTU);, hga, h,a, and kga (all uncorrected for end
effects).

(b) Compare these results with values calculated from the correlations a,
b, and c cited in Illustration 9.2, which are all corrected for end effects.

9.4 A procedure for eliminating end effects from measurements on a
countercurrent, packed water cooling tower was described by Thomas and
Houston [Brit. Chem. Eng., 4, 217, (1959)]. Provided the exit air is un-
saturated, a plot of (NTU),, as ordinate versus packed height was found to
be linear at fixed air and water rates. Extrapolation to zero (NTU),; gives
the packed height equivalent to the end effects. Alternatively, extrapolation
to zero packed height gives the (NTU), corresponding to the end effects.
The (NTU);, equivalent to the packing equals (NTU); —(NTU),, and is
used to calculate values of the individual transfer coefficients which are
free from end effects.

Using the method of Illustration 9.3, Thomas and Houston obtained the
following uncorrected values of (NTU);: 0.682, 0.907, 1.149, and 1.421,
corresponding to packed heights of 33, 63, 104, and 131 in. These results
were obtained at air and water rates of 1680 and 1000 Ib/(hr)(ft?),
respectively, in a 1-ft-square experimental tower at 1 atm. Determine:

(a) The height of packing equivalent to the end effects in this case.
(b) The (NTU),, corresponding to the end effects.
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(c) The individual transfer coefficients after correction for end effects
under these operating conditions. Compare the results with values calcu-
lated from equations a, b, and ¢ in Illustration 9.2.

9.5 A wetted-wall column has a length of 4 ft and an internal diameter of
1 in., and is being used for co-current contact between water and air at
atmospheric pressure. The water flow rate is 128 Ib/hr with inlet and
outlet temperatures of 125 and 119°F, respectively. The air enters at a rate
of 12 Ib/hr with wet- and dry-bulb temperatures of 66 and 124°F. If the
ratio h, /k% is 600, evaluate the (NTU);, (HTU);, and kga for these
conditions.

9.6 Plot the axial temperature-enthalpy profile for the air—water-vapor
mixture in the column of Problem 9.5, and obtain the wet- and dry-bulb
temperatures and humidity of the air leaving the unit. Prepare qualitative
sketches showing temperature distributions on either side of the interface
between air and water and the directions of transfer of sensible heat in
each phase in the upper and lower parts of the column.

9.7 A warm air stream removes 250 1b/hr of water vapor from a dryer.
The air leaves the dryer with wet- and dry-bulb temperatures of 93 and
105°F, and enters a countercurrent, packed dehumidifying tower at 1 atm
for removal of the water vapor acquired in the dryer. The air leaves the
packed tower with wet- and dry-bulb temperatures of 80 and 82°F, and is
then returned to the dryer after reheating. Water enters the packed tower
at 70°F and leaves at 75°F. The tower has a cross section of 20 ft2, and it
is known that h; a/k%a=435 (Btu)(atm)/(°F)(Ib-mole) for this unit when
the dry-air and water flow rates are, respectively, about 1250 and 4000
1b/(hr)(ft? of tower cross section).

Determine whether the value cited for 4, a/kZa is relevant to the present
operation. Estimate the (NTU); under these conditions and locate the
T;-H profile for the air-water-vapor mixture in the tower.

9.8 The two adiabatic humidifiers in Problem 9.1 consist of randomly
packed beds of 1.4-in. ceramic Raschig rings. Countercurrent contact with
continuously recirculated water is used in both cases, with the two phases
entering and leaving the beds in the same way as in the work of Yoshida
and Tanaka [Ind. Eng. Chem., 43, 14671473, (1951)]. If the water and dry
air enter each humidifier at the respective rates of 1250 and 580 1b/(hr)
(ft?), estimate the bed diameter and packed heights necessary to obtain air
with the desired conditions in the two cases. For the humidifier used in
part d of Problem 9.1, what water rate would be required if the packed
height is 1 ft?
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Appendix

Table 1. Lennard-Jones force constants as determined from viscosity data.”

Molecule Compound s, A ¢/kg, °K
A Argon 3.542 933
He Helium 2.551% 10.22
Kr Krypton 3.655 178.9
Ne Neon 2.820 328
Xe Xenon 4.047 231.0
Air Air 3.711 78.6
AsH; Arsine 4.145 259.8
BCl, Boron chloride 5.127 337.7
BF, Boron fluoride 4.198 186.3
B(OCHs), Methyl borate 5.503 396.7
Br, Bromine 4.296 507.9
CCl, Carbon tetrachloride 5.947 3227
CF, Carbon tetrafluoride 4.662 134.0
CHCl,4 Chloroform 5.389 340.2
CH,Cl, Methylene chloride 4.898 356.3
CH,Br Methyl bromide 4.118 449.2
CH,Cl Methyl chloride 4.182 350
CH,OH Methanol 3.626 481.8
CH, Methane 3.758 148.6
co Carbon monoxide 3.690 91.7
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Table 1. Continued
Molecule Compound o, A €/kg, °K
Cos Carbonyl sulfide 4.130 336.0
Co, Carbon dioxide 3.941 195.2
Cs, Carbon disulfide 4.483 467
C,H, Acetylene 4.033 231.8
C,H, Ethylene 4.163 2247
C,H, Ethane 4.443 215.7
C,H;Cl Ethyl chloride 4.898 300
C,H,OH Ethanol 4.530 362.6
C,;N, Cyanogen 4.361 348.6
CH;0CH, Methyl ether 4.307 395.0
CH,CHCH; Propylene 4.678 298.9
CH,;CCH Methylacetylene 4.761 251.8
C;3H Cyclopropane 4.807 248.9
C;H, Propane 5.118 237.1
n-C;H,OH n-Propyl alcohol 4.549 576.7
CH,COCH, Acetone 4.600 560.2
CH,COOCH, Methyl acetate 4.936 469.8
n-C4H,o n-Butane 4.687 5314
iso-C4H, o Isobutane 5.278 330.1
C,H;0C,H; Ethyl ether 5.678 313.8
CH,COOC,H; Ethyl acetate 5.205 5213
n-C;H,, n-Pentane 5.784 341.1
C(CH3)4 2,2-Dimethylpropane 6.464 193.4
CeHg Benzene 3.349 412.3
CsH,>» Cyclohexane 6.182 297.1
n-CeH 4 n-Hexane 5.949 399.3
Cl, Chlorine 4217 316.0
F, Fluorine 3.357 112.6
HBr Hydrogen bromide 3.353 449
HCN Hydrogen cyanide 3.630 569.1
HCl Hydrogen chloride 3.339 344.7
HF Hydrogen fluoride 3.148 330
HI Hydrogen iodide 4.211 288.7




Table 1. Continued

Molecule Compound o, A e/kg, °K
H, Hydrogen 2.827 59.7
H,0 Water 2.641 809.1
H,0, Hydrogen peroxide 4.196 289.3
H,S Hydrogen sulfide 3.623 301.1
Hg Mercury 2.969 750
HgBr, Mercuric bromide 5.080 686.2
HgCl, Mercuric chloride 4.550 750
Hgl, Mercuric todide 5.625 695.6
I, Iodine 5.160 474.2
NH, Ammonia 2.900 558.3
NO Nitric oxide 3.492 116.7
NOC1 Nitrosyl chloride 4.112 395.3
N, Nitrogen 3.798 71.4
N,O Nitrous oxide 3.828 2324
0, Oxygen 3.467 106.7
PH, Phosphine 3.981 251.5
SF, Sulfur hexafluoride 5.128 222.1
SO, Sulfur dioxide 4.112 3354
SiF, Silicon tetrafluoride 4.880 171.9
SiH, Silicon hydride 4.084 207.6
SnBr, Stannic bromide 6.388 563.7
UF, Uranium hexafluoride 5.967 236.8

“R. A. Svehla, NASA Tech. Rept. R-132, Lewis Research Center, Cleveland, Ohio,
1962. For estimation of unlisted force constants use

£ =075T,; o=3V!/?
kg

where the symbols are defined in Chapter 3. Taken from R. C. Reid and T. K.
Sherwood, The Properties of Gases and Liquids, 2nd ed., McGraw-Hill, New York,

1966, pp. 632-633.
®The potential ¢ was determined by quantum-mechanical formulas.



Table 2. Values of the collision integral £, ,, based on the Lennard-Jones poten-
tial.?

ksT/eqp” QD,ABb kpT/eqp Qp. a5 kgT/eqp Qp. 4
0.30 2.662 1.65 1.153 40 0.8836
0.35 2.476 1.70 1.140 4.1 0.8788
0.40 2.318 1.75 1.128 42 0.8740
0.45 2.184 1.80 1.116 43 0.8694
0.50 2.066 1.85 1.105 44 0.8652
0.55 1.966 1.90 1.094 45 0.8610
0.60 1.877 1.95 1.084 46 0.8568
0.65 1.798 2.00 1.075 4.7 0.8530
0.70 1.729 2.1 1.057 48 0.8492
0.75 1.667 22 1.041 49 0.8456
0.80 1.612 23 1.026 5.0 0.8422
0.85 1.562 2.4 1.012 6 0.8124
0.90 1.517 2.5 0.9996 7 0.7896
0.95 1.476 2.6 0.9878 8 0.7712
1.00 1.439 2.7 0.9770 9 0.7556
1.05 1.406 2.8 0.9672 10 0.7424
1.10 1.375 2.9 0.9576 20 0.6640
1.15 1.346 3.0 0.9490 30 0.6232
1.20 1.320 3.1 0.9406 40 0.5960
1.25 1.296 3.2 0.9328 50 0.5756
1.30 1.273 3.3 0.9256 60 0.5596
1.35 1.253 34 0.9186 70 0.5464
1.40 1.233 3.5 0.9120 80 0.5352
1.45 1.215 3.6 0.9058 90 0.5256
1.50 1.198 3.7 0.8998 100 0.5130
1.55 1.182 3.8 0.8942 200 0.4644
1.60 1.167 3.9 0.8888 400 : 0.4170

aFrom J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases
and Liquids, Wiley, New York, 1954.
bHirschfelder uses the symbols T* for kzT /€ p and 2" ¥in place of Qp 45



Table 3. Atomic diffusion volumes for use in equation 3.5.

Atomic and Structural Diffusion Volume Increments, v

C 16.5 ()] 19.5
H 1.98 (S) 17.0
6] 5.48 Aromatic or Hetero-
™) 5.69 cyclic rings —202
Diffusion Volumes of Simple Molecules, 2 v
H, 7.07 Cco, 26.9
D, 6.70 N,0O 359
He 2.88 NH, 14.9
N, 17.9 H,0 12.7
0o, 16.6 (CCL,Fy) 114.8
Air 20.1 (SF¢) 69.7
Ne 5.59
Ar 16.1 (ClL) 377
Kr 228 (Br,) 67.2
Xe) 379 (SO,) 41.1
CO 18.9

aFrom E. N. Fuller, P. D. Schettler, and J. C. Giddings, Ind. Eng. Chem., 58 (5),
19-27, (May, 1966). Parentheses indicate a value based on only a few data.

Table 4. Eigenvalues and derivatives relating to equations 5.131, 5.133, 5.142, and
5.144-5.146 for mass transfer in laminar flow through tubes.”

J B; (3¢/3B);.r, -1 (do;/dr ), -1
1 2.7043644199 —0.5008991914 —1.0143004587
2 6.67903 14493 0.3714622734 1.34924 16221
3 10.6733795381 —0.31826 44696 —1.5723193392
4 14.67107 84627 0.2864821001 1.7460043350
5 18.66987 18645 —0.26449 06034 — 1.8908571240
6 22.66914 33588 0.2479944920 2.01646 66530
7 26.66866 19960 —0.23496 76067 —2.1281647501
8 30.66832 33409 0.2243062663 2.2292554182
9 34.66807 38224 —0.2153485062 —2.3219433391
10 38.66788 33469 0.20766 87724 2.40778 11647
1 42.66773 38055 —0.2009787384 —2.4879082547

“From G. M. Brown, 4. I. Ch. E. J., 6,

179-183, (1960).
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Table 6.  Eigenvalues and derivatives relating to equations 5.180-5.183 for mass
transfer in laminar flow between flat, parallel plates.”

J Y OY/3Y); 0, =1 (dy;/dn.),, -
1 1.68159 53222 —0.99043 69608 —1.42915 55060
2 5.6698573459 1.1791073461 3.8070701070
3 9.66824 24625 —1.28624 87056 —5.9202379188
4 13.66766 14426 1.3620196175 7.8925351208
5 17.66737 35653 —1.4213256612 —9.77094 42849
6 21.6672053243 1.47040 11597 11.5798087072
7 25.66709 64863 —1.5124603349 —13.3338789738
8 29.66702 10447 1.5493860066 15.04298 83445
9 33.66696 60687 —1.5823801630 —16.7141293950
10 37.6669244563 1.6122592197 18.3525124063

“From G. M. Brown, 4. I. Ch. E. J., 6, 179-183, (1960). Higher eigenvalues and
related constants may be estimated from the following relationships relevant to
equations 5.181-5.183:

y=4(i-1)+1
- Gj(d‘l’j/dh+)h+=|=2.02557yj_'/3
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Table 8. Eigenvalues and constants in equation 5.184.%

J U F, X(1)

1 4287224 0.175024 —1.26970
2 8.30372 —-0.051725 1.4022
3 12.3114 0.02506 —1.4911

“R. D. Cess and E. C. Shaffer, Appl. Sci. Res., A, 8, 339-344,
(1959). Eigenvalues and constants for j >3 may be estimated
from

p=4+1
Fy=(—1)Y 247277 1/6

X (1) = (—1)0.971035}/
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457,462,472-473
Capacity of packed columns, 309-310
Capillary forces, effect on mass trandfer, 3,
77
Channelling in packed towers, 365453
Chapman-Enskog  theory, 50
Chemica reaction and mass transfer, 3
Chilton-Colbum analogy, 267-263
Chromatography, 2, 4
Circulation inside drops, 403, 405-407, 409
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in a semi-infinite medium, 47
Diffusivity, molecular, 4, 49-80
conversion factor, 17, 77
effective value in solids, 37-39, 77
effect of concentration, in electrolytes,
69-76
in nonelectrolytes, 61-67
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mass transfer during rise, 402408
circulating, continuous phase, 406-408
circulating, disperse phase, 402-406
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vapor-liquid, prediction in ideal binaries,
84-87
Equilibrium curve, 83-84
Equilibrium data for air saturated with
water vapor, 450, 456
Equimolal counterdiffusion, 4, 13-14, 17,
344-346
coefficients, 94-95
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mass transfer in, 101, 286, 288-289
Flux, definitions, 6, 8-11
interrelationships, 8-11, 44
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transfer units for, 346-349
evaluation of NTU, 350-352
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minimum absorbent-to-feed ratio, 339
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from laminar boundary layer theory,
192-193
from penetration theory, 194
for variation in physical properties, 194-
208
comparison between various corrections,
192
driving force for, 189-191, 194, 199, 202,
208
effect of density variation, 194-195, 197-
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207
of viscosity variation, 195-199, 200-208
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near a stagnation point, 193
other studies in boundary layers, 193
reference compositions for variable fluid
properties, 195
variation in physical properties, criteria
for correctional emphasis, 194
High mass flux (turbulent flow), 291-295
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effect of density variation, 293, 295
experimental work compared with theory,
293
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tion, 113-114, 181, 226
Interfacial area in plate columns, 388-397
during droplet coalescence, 397
during droplet formation, 388-391
during droplet rise, 391-397
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Ion exchange, 2, 4
Isotropic turbulence, 234

Jet formation, 390-391
Jetting velocity in drop formation, 390-391
j factors, analogies in terms of, 4, 264-289
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8
relative to molal average velocity, 8
relative to stationary coordinates, 8
interrelationships, 8-11, 44
Mass fraction, 6
Mass transfer coefficients, conversion factors,
105-106
individual, 91-92, 94-96, 105-106
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Molecular diffusion, 6
in gases, 12-17
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and mass transfer from a sphere, 283-284
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283-285
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162-163
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in turbulent boundary layers, 225-228
Non-Newtonian boundary layers (turbulent),
223
NTU, 4, definition, 345-346, 348, 449, 451
evaluation, 350-352, 450-451
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flux, 316-317
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tion with reflux, 326-344
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with side streams, 340-344
with total reflux, 339-341

see also Transfer units

Oblate spheroid, see Spheroid
One-seventh-power law, 221
Operating lines, 310-344
conditions for linearity in binary distilla-
tion, 313, 344, 357-358
construction from triangular diagrams,
335, 336, 339-340, 343-344, 371-372
for binary aqueous distillation with a leak-
ing condenser, 322-325
for binary aqueous distillation with open
steam, 319-322
for binary distillation with minimum re-
flux, 316-317
with multiple feeds, 317-319
with reflux, 312-316
with side streams, 317-319
with total reflux, 317
for cooling towers, 446-447, 464-466
for dehumidifiers, 467-470
for desorption, extraction, and gas absorp-
tion with reflux, 326-344
with minimum reflux, 337-339
with multiple feeds, 340-344
with side streams, 340-344
with total reflux, 339-341
in dilute systems, 310-312
limiting flow rates and, 312
when only one component transfers, 312
Oscillation of drops, criteria for, 394-395,
396-397,410
effects of surfactants, 409-411

Packed beds, 4, 19, 20, 286-289
heat and mass transfer in, 286-289
j factors for, 286-289
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recommended packing size, 364-365
see also Desorption; Distillation; Extrac-
tion; and Gas absorption
Parallel plates, mass transfer in laminar flow
between, 176-180
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Perforated-plate extraction columns, 4, 385-
388
design of, 384-434
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396, 401
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natural convection (turbulent), 225-
228
Prandtl number, effect on distribution of
heat transfer resistance in turbulent
flow, 239
Prandtl’s one-seventh-power law, 221
Prandtl-Taylor analogy, 241-243
for a flat plate, 243, 301



508 Subject Index

Pressure drop in flow through packed beds,
309-310
Pseudo-equilibrium curve, 384-388
Psychrometric chart, 442-445
for various systems, 443

q line, 315-316, 358-360

Raffinate-type reflux, futility of, 344
Raoult’s law, 84
Raschig rings, 353-356
Rate equation for simultaneous heat and
mass transfer in water-cooling towers,
448-449, 451
Rate equations, in equimolal counterdiffu-
sion, 344
in unimolal unidirectional diffusion, 346
Rate of surface renewal, 98, 100-101, 106-
107
Rectangular conduits, equivalent diameter
for, 289
Reflux, in binary distillation, 312-325
cold, 314, 379-380
minimum, 316-317
total, 317
Reflux in desorption, extraction, and gas
absorption, 326-344
minimum, 337-339
total, 339-341
when to use, 326, 336
Reflux (raffinate), futility of, 344
Relative humidity, 436, 445
Relative volatility, 85, 354, 367
Resistances to mass transfer, additivity, 4,
93
individual, 93
overall, 93
Resistance to mass transfer, distribution in
turbulent flow, 238-239, 252-253,
259-264
Reverse osmosis, 2, 144, 176
Reynolds’ analogy, 239-241, 242, 294
Reynolds number for film flow, 133, 229

Saturated humid volume, 438, 445
Saturation humidity, 436, 442, 445
Schmidt number for gases and liquids, 116
effect on distribution of mass transfer re-
sistance in turbulent flow, 238-239,
253-254, 259-264

Shear stress, effect of high mass flux, 181-
184
on surface in turbulent boundary layer,
222
Sherwood number, 19, 20
minimum value for spheres, 19-20
Side streams, in binary distitlation, 317-319
in desorption, extraction, and gas absorp-
tion, 340-344
Sieve-plate columns, see Perforated-plate
columns
Simultaneous heat and mass transfer, 200-
207
transfer units for, 448450
Skin friction, 273
Slab, unsteady-state diffusion in, 28-35
average concentration at time t, 34
concentration distribution at time t, 34,
37
diffusion through a single surface, 35
diffusion through two surfaces, 29-35
with unequal surface concentrations, 35
drying of, 28, 35, 3742
Slip velocity, 392-393
in a perforated-plate column, 392
in a spray column, 392
Solids, mass transfer in, 3, 37, 39, 77
Solvent extraction, see Extraction
Specific humidity, 436
Sphere, initial acceleration period during
free fall, 282
j factors for, 273-284
mass transfer correlations for, 273-277
sources of deviation in mass transfer data,
278
steady-state diffusion from, 18-21
interaction between multiple spheres,
19-20
sublimation from, 45
unsteady-state diffusion in, 21-28
average concentration at time t, 26-28
concentration distribution at time t, 25-
26
drying of, 21, 3740
Sphere (hollow), concentration distribution
during steady diffusion, 45-46
Spheroid, oblate, characteristic dimension,
284-285
drag force on, 284
j factors for, 284-285



occurrence of, 284
surface, 284, 397
compared to a sphere, 397
volume, 284
Stagewise columns, design from rate equa-
tions, 384434
Stagnant drops, mass transfer in, 4, 403-404
Static drop volume, 388
Stokesian flow region and mass transfer
from spheres, 274
Stress distribution in tube flow, 232-234
Stretching-surface model, 98, 398
Stripping, see Desorption
Stripping section, in distillation, 314
Sublimation of spheres and oblate spheroids,
284-285
Superficial velocity, 392
Surface active agents, see Surfactants
Surface age distribution function, 98, 106-
107
general, 100
Surface area of drops, 391, 396-397
Surface renewal and mass transfer, 96-102,
106-107
Surface-stretch model, 98, 398
Surfactants, damping of waves by, 410
effects on mass transfer from drops, 409-
411,424
use in drop-size measurement, 389
Swarms of drops, continuous phase mass
transfer, 406-407

Taylor-Prandtl analogy, 241-243
for a flat plate, 243, 301
Temperature depression due to evaporation,
200-207, 294
due to sublimation, 118
Temperature-enthalpy profile for gas, in
cooling towers, 452-453, 460-462,
466
in dehumidifiers, 469
Terminal velocity, of a sphere, 281-282
of droplets, 392-393, 393-395
effects of surfactants, 393, 394
Theoretical stage, 373
Thin-film reactors, 143, 180
Tie line, 89-91, 329, 331-332, 460-464, 466-
467
interpolation, 91
Total mechanical energy balance, 233-234
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Total reflux, in binary distillation, 317
in desorption, extraction, and gas absorp-
tion, 339-341
Transfer units, approximations in unimolal
unidirectional diffusion, 349
correlations for individual HTUs, 353-357
definition, 345-346, 348, 449,451
evaluation of NTU, 350-352, 450-451
corresponding to end effects, 478-479
for simultaneous heat and mass transfer,
448-451
in dehumidifiers, 467-469
in desorption, 346-352
in distillation, 344-346, 350-352
in extraction, 346-352
in gas absorption, 346-352
in water coolers, 448-451
in equimolal counterdiffusion, 344-346
in unimolal unidirectional diffusion, 346-
349
physical meaning of, 345-346, 449
preference over coefficients, 349, 451
relation between individual and overall
HTU, 352-353
see also NTU
Transpiration cooling, 1, 110, 142-143, 176,
180
Triangular conduits, equivalent diameter for,
289
Triangular coordinates, 87-90
in desorption, extraction, and gas absorp-
tion, 327-329, 331-332
line ratio principle and mixing of streams,
329-333
Tube flow, mass transfer applications, 142-
144, 232
Tube flow (laminar), mass transfer in, 142-
176
boundary conditions for mass transfer,
147
continuity equation, 144-145
developing velocity and concentration dis-
tributions, 149-151,172-173
uniform mass flux at wall, 150-151
uniform wall concentration, 149-150,
172-173
development of velocity and concentra-
tion distributions, 147-149
differential equation for solute distribu-
tion, 145-147
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dispersion in, 175-176
examples of mass transfer in, 142-144,
232
fully developed parabolic velocity distribu-
tion and developing concentration dis-
tribution, 159-168
uniform mass flux at wall, 151, 167-168
uniform wall concentration, 150, 155,
157,158, 159-167,173-175
fully developed velocity and concentra-
tion distributions, 168-172
uniform mass flux at wall, 151, 169-170
uniform wall concentration, 150, 168-
169
with cubic polynomial concentration
distribution, 170-172
plug flow and developing concentration
distribution, uniform wall concentra-
tion, 150-158
velocity distribution, 166
Tube flow (turbulent), mass transfer in, 239-
241, 243-264, 265-271, 289
concentration distributions, 251-254
dispersion in, 175-176
j factors for, 265-271
universal velocity distribution, 232-238
Turbulence intensity, effect on heat and
mass transfer from immersed bodies,
278-284
Turbulence, interfacial, 289-291
Turbulence scale, effect on heat and mass
transfer from immersed bodies, 278
Two-film theory, 4, 94-96, 102, 345, 347

Unimolal unidirectional diffusion, 4, 13, 14,
17-18, 346-349
coefficients, 96
examples, 346
in gases, 13,14, 16-17
in liquids, 17-18
Units, choice of, 109-110, 221
Universal characteristic dimension for mass
transfer, 284, 285-286
Universal velocity distribution, between
parallel plates, 237
in boundary layers, 237-238
in smooth tubes, 232-238

Vapor-liquid equilibria in an ideai binary
system, prediction, 84-87
Vapor pressure variation with surface curva-
ture, 21
Velocity distribution, in a buffer zone, 237,
248
in a laminar sublayer, 235, 237
in an eddying sublayer, 247-248
in a turbulent core, 235-237
in falling liquid film, 132, 138
average velocity, 139
maximum velocity, 138
in laminar boundary layers, 114
with natural convection, 122
in turbulent boundary layers,
221
with natural convection, 226
in turbulent tube flow, continuous expres-
sion for, 255-257, 264
unjversal, turbulent flow between paraliel
plates, 237
in boundary layers, 237-238
in smooth tubes, 232-238
Volumetric coefficients, 93-94
von Kdrmdn analogy, 243-246

Water cooling, 2, 4, 435, 445-446, 454-
467
Water, diffusivity as solute, 55-58
Water loss in cooling towers, 446
Waves, damping by surfactants, 410
Waves, effect on mass transfer in falling
films, 134, 136, 140, 141
Wet-bulb temperature, 4, 21, 438-441
measurement, 439
relation to adiabatic saturation tempera-
ture, 441-442
Wetted-wall columns, mass transfer in, 101,
138-142, 143, 265-266
distillation, 143
evaporation, 155, 162, 265-266
extraction, 101, 143
gas absorption, 143
with high mass flux, 293
humidification, 143
see also Falling films
Work, shaft work, 233



